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Reading development builds upon the accurate representation of the phonological structure
of spoken language. This representation and its neural foundations have been studied
extensively with respect to reading due to pervasive performance deficits on basic
phonological tasks observed in children with dyslexia. The subcortical auditory system
– a site of intersection for sensory and cognitive input – is exquisitely tuned to code
fine timing differences between phonemes, and so likely plays a foundational role in the
development of phonological processing and, eventually, reading. This temporal coding
of speech varies systematically with reading ability in school age children. Little is known,
however, about subcortical speech representation in pre-school age children. We measured
auditory brainstem responses to the stop consonants [ba] and [ga] in a cohort of 4-
year-old children and assessed their phonological skills. In a typical auditory system,
brainstem responses to [ba] and [ga] are out of phase (i.e., differ in time) due to formant
frequency differences in the consonant-vowel transitions of the stimuli. We found that
children who performed worst on the phonological awareness task insufficiently code
this difference, revealing a physiologic link between early phonological skills and the
neural representation of speech. We discuss this finding in light of existing theories of
the role of the auditory system in developmental dyslexia, and argue for a systems-level
perspective for understanding the importance of precise temporal coding for learning to
read.
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INTRODUCTION
Learning to read scaffolds on the development of more basic lan-
guage skills. One such primitive is phonological awareness, the
knowledge that spoken language is made up of smaller units such
as syllables and phonemes (Sandak et al., 2004; Kovelman et al.,
2012; Pugh et al., 2013). Phonological processing has been an
area of keen interest in the study of reading for years due to the
observation of pervasive performance deficits in dyslexics on basic
phonological tasks (Swan and Goswami, 1997; Pugh et al., 2013;
Ramus et al., 2013). Theories of developmental dyslexia, and the-
ories of reading more generally, must therefore account for the
biological mechanisms supporting phonological processing and
related language skills.

Developmental dyslexia affects approximately 5–10% of chil-
dren and is characterized by a failure to develop effective reading
skills despite typical intelligence and adequate support from par-
ents, teachers, and caregivers (Démonet et al., 2004). As a group,
children (and adults) with dyslexia have a constellation of deficits
in auditory processing. There are, for example, extensive perfor-
mance gaps between dyslexic and typically developing children on

a variety of basic auditory tasks (Wright et al., 1997; Goswami
et al., 2002; Ahissar et al., 2006). Children with dyslexia have
difficulty coding rapidly changing frequency content in speech
such as formant transitions in consonant–vowel syllables (Tal-
lal and Piercy, 1975; Tallal, 1980). Dyslexics also have difficulty
tracking amplitude envelope modulations in speech, such as in
syllable onsets (Goswami et al., 2002, 2011). However, it remains
unknown whether these deficits are each observed within an indi-
vidual or if there are variable manifestations of developmental
dyslexia.

Neurophysiologic deficits associated with dyslexia include
increased variability in neural firing as observed in auditory mid-
brain in humans (Hornickel and Kraus, 2013) and cortex in a rat
model of dyslexia (Centanni et al., 2013), in addition to decreased
auditory cortical phase-locking to the acoustic envelope (Abrams
et al., 2009; Lehongre et al., 2011). Our own group has identi-
fied a number of deficits in speech coding throughout the central
auditory system that are linked to poor reading (Kraus et al.,
1996; Wible et al., 2005; Abrams et al., 2009; Banai et al., 2009;
Chandrasekaran et al., 2009; Hornickel and Kraus, 2013).
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In light of the wide variety of auditory deficits identified
in dyslexics, a plethora of theories as to the disorder’s biolog-
ical origin have emerged, each of which has tried to identify
a “core deficit.” Although these theories are not necessarily
mutually exclusive, there is little accord in the literature (cf.
Livingstone et al., 1991; Wright et al., 2000; Stein, 2001; Ahissar,
2007; Vidyasagar and Pammer, 2010; Goswami, 2011; Lallier et al.,
2013). Many theories have centered on a core deficit in phonolog-
ical processing and, consequently, a number of neurophysiologic
investigations have characterized the biology underlying this skill
and deficits thereof. Neuroimaging studies have identified dimin-
ished activity in left-lateralized language networks in dyslexic chil-
dren performing phonological tasks (Kovelman et al., 2012; Pugh
et al., 2013). Lehongre et al. (2011) used magnetoencephalogra-
phy to measure neural entrainment to amplitude modulated noise
bursts, and found that dyslexics had poorer phase-locking in the
“low gamma” range (∼30 Hz), correlating with poor performance
on phonological tasks. Finally, the discrimination of stop conso-
nants in auditory midbrain is linked to reading ability in school
age children (Hornickel et al., 2009).

While these studies (in addition to many others) have offered
insight into the pathophysiology underlying phonological and/or
reading deficits, they are complicated by the reciprocal relation-
ship between phonological processing and reading. For although
phonological awareness likely bootstraps reading development,
the first years of reading themselves influence phonological aware-
ness (Castles and Coltheart, 2004). Therefore, here, we assessed
the relationship between phonological awareness and neuro-
physiologic discrimination of stop consonants in a group of
typically developing 4-year-old children. We hypothesized that
early phonological awareness is linked to the precision of physi-
ologic speech sound discrimination. To test this hypothesis, we
measured neural responses to a pair of speech stimuli previ-
ously shown to vary systematically with phonological processing
in school-age children (Hornickel et al., 2009). By assessing physi-
ologic processing of speech in pre-school age children we hope to
gain insight into the developmental trajectory of reading develop-
ment. Moreover, we may identify a potential biomarker to predict
subsequent reading ability.

MATERIALS AND METHODS
SUBJECTS
Four-year-old children (N = 26, 14 female) were recruited from
the Chicago area to participate in a developmental study at North-
western University. No child had a history of a neurologic or
otologic condition, second language experience, or a diagnosis
of autism spectrum disorder. Four children had immediate family
histories of dyslexia (parent or sibling). All children passed a brief
screening of peripheral auditory function (normal tympanometry
and distortion product otoacoustic emissions at least 6 dB above
the noise floor for octaves from 1–8 kHz). Additionally, all children
had normal click-evoked auditory brainstem responses (Wave V
latency < 6.0 ms, measured by a 100 μs click presented at 80 dB
SPL to the right ear at 31.25 Hz).

Although we consider these children too young to have attained
fully developed reading skills, and so refer to them as “pre-
readers,” we note that many of them may have begun some explicit

instruction. We did not formally evaluate their reading skills and
acknowledge this as a limitation. Nevertheless, we suggest that
our cohort represents children who have either not yet begun to
learn to read, or are only in the first stages, and so offers novel
insight into the relationship between phonological processing and
auditory-neurophysiologic responses to speech early in life.

Parents provided informed consent for their children to partici-
pate in the study, and the subjects provided verbal assent. The Insti-
tutional Review Board of Northwestern University approved all
procedures and children were paid $10/hr for their participation.

BEHAVIORAL MEASURE – PHONOLOGICAL AWARENESS
Phonological awareness was measured with the Clinical Evalua-
tion of Language Fundamentals Preschool, 2nd edn., phonological
awareness subtest (CELF 2; Wiig et al., 2004). The test evaluates
a child’s knowledge of the sound structure of the English lan-
guage and measures a child’s ability to manipulate sound through:
compound word and syllable blending, sentence and syllable seg-
mentation, and rhyme awareness and production. Raw scores are
computed and were used for analysis. The maximum score is 24,
and higher scores correspond to better performance. All children
met the age-appropriate “criterion” cutoff, indicating that they are
within the range of typically developing children. Therefore our
data represent a cohort of children with developmentally appro-
priate performance on the phonological awareness test but with a
large range of variability.

NEUROPHYSIOLOGY: STIMULI
Auditory brainstem responses were elicited in response to the
stop consonants [ba] and [ga]. Both consonant–vowel (CV) syl-
lables were 170 ms stimuli that have been described previously
(Hornickel et al., 2009). Briefly, both begin with a 5 ms stop
burst and have a 50 ms transition from the consonant to the
vowel. The vowel is sustained for 120 ms. Both stimuli have a
flat fundamental frequency (F0 = 100 Hz) and during the 50 ms
transition the first three formant frequencies shift. The [ba] and
[ga] differ only in the F2 onset frequency (F2OF[ba] = 900 Hz;
F2OF[ga] = 2480 Hz) but are identical in F2 frequency for the
vowel portion (F2VOWEL = 1240 Hz; see Figure 1). The remaining
formants are identical (F1 = 400–720 Hz; F3 = 2580–2500 Hz)
with F4−6 steady through the 170 ms stimuli (F4 = 3300 Hz,
F5 = 3750 Hz, F6 = 4900 Hz). Stimuli were presented monau-
rally to the right ear at 80.4 dB SPL through electromagnetically
shielded insert earphones (ER-3, Etymotic Research, Elk Grove
Village, IL, USA). Stimulus presentation was controlled by E-
Prime 2.0 (Psychology Software Tools, Inc., Sharpsburg, PA, USA)
and stimuli were presented in alternating polarity with an 81 ms
interstimulus interval. 4200 sweeps of each stimulus were pre-
sented, and the presentation order was randomized for each
subject.

NEUROPHYSIOLOGY: RECORDING AND DATA PROCESSING
Brainstem responses were collected using a BioSEMI Active2
recording system with ABR module. Active electrodes were placed
at Cz and each ear with CMS/DRL placed on the forehead,
one-half centimeter on either side of Fpz. Only ipsilateral (Cz-
A2) responses are used in analysis. Responses were digitized at
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FIGURE 1 | (A) Schematic illustrating formant information for the [ba] and [ga]
stimuli. The F 0, F 1, and F 3 are identical. The stimuli differ in F 2 onset
frequencies with [ba] (blue) ascending and [ga] (green) descending to stabilize
for the vowel portion. (B) Schematic illustrating the expected phase

relationship between brainstem responses to the [ba] and [ga]. Since the [ga]
(green) has a higher F 2 onset frequency it is expected that brainstem
responses to [ga] phase lead those to [ba]. (C,D) Grand average waveforms
are displayed for the [ba] (top, blue) and [ga] (bottom, green).

16.384 kHz and collected with online filters from 100–3000 Hz
(20 dB/decade roll-off) in the BioSEMI ActiABR and recorded
into LabView 2.0 (National Instruments, Austin, TX, USA). Since
speech-evoked brainstem responses are ideally filtered with a high-
pass of 70 Hz (Skoe and Kraus, 2010), in MATLAB responses
were offline amplified in the frequency domain with an inverse
power ramp, 20 dB per decade for 3 decades below 100 Hz (i.e.,
from 0.1 to 100 Hz, then flat from 0.1 Hz down to DC). Next,
a bandpass filter (70–2000 Hz, Butterworth filter, 12 dB/octave
roll-off) was applied to frequency-amplified responses. Responses
were epoched from −40–213 ms (stimulus onset at 0 ms) and
baseline corrected. Artifact rejection was set at ± 35 μVs. Final
responses comprised 2000 artifact-free sweeps of each polar-
ity, and responses from alternating polarities were added to
emphasize the envelope-following brainstem response while mini-
mizing the influence of stimulus artifact and cochlear microphonic
(Campbell et al., 2012).

NEUROPHYSIOLOGY DATA ANALYSIS: PHASE DISTINCTION BETWEEN
RESPONSES
Due to the tonotopicity of the ascending auditory system, stim-
uli that differ in frequency elicit brainstem responses which are

out of phase (Gorga et al., 1988). Therefore, it is expected that
responses to [ba] and [ga] begin out of phase from each other
(during the transition portion) and are phase-aligned during
the vowel, when the stimuli are acoustically identical. In this
regard, the relative phases of the two responses are used as prox-
ies for the relative timing of the responses at each frequency. A
schematic illustrating this expected relationship is presented in
Figure 1.

The phase relationship between responses to [ba] and [ga] was
measured using custom routines in MATLAB (Skoe et al., in press).
Responses were divided into overlapping 20 ms windows from
−40–170 ms (1 ms separating each adjacent window) and ramped
with a 20 ms Hanning window. The cross-power spectral density
function (cspd) was applied between brainstem responses, and
power estimates were converted to phase angles to index alignment
of the two signals. A larger phase angle (in radians) indicates that
the responses are farther out of phase and, therefore, that there is
a larger timing lag between responses at a given frequency. A three
dimensional “cross-phaseogram” figure is constructed illustrating
time (ms, x-axis), frequency (Hz, y-axis), and phase angle (radi-
ans, colorbar). During the transition region positive phase angles
indicate better neural consonant distinction, as this indicates that
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[ga] phase-leads [ba], the expected relationship since [ga] has a
higher F2OF.

SUBJECT GROUPS
Scores on the CELF formed a normal distribution with a mean
score of 18.96 (SD, 3.80; Kolmogorov–Smirnov D(26) = 0.146,
p = 0.160). Children were grouped based on their performance
on the CELF with a median split defining the top phonological
awareness “Top PA” (CELF > 19, N = 14, 6 female) and bot-
tom phonological awareness “Bottom PA” (CELF < 19, N = 12, 6
female) groups. Five subjects in the Top PA performed at ceiling
on the test (scores of 24). Each group included two children with a
family history of dyslexia. Groups did not differ in distribution of
males and females (χ2 = 0.154, p = 0.70) nor on non-verbal
intelligence (matrix reasoning subtest, Wechsler Preschool and
Primary Scale of Intelligence, Revised; Wechsler, 1989; p = 0.35).
As expected, the groups did statistically differ in performance on
the CELF, t(24) = 9.11, p < .001, Cohen’s d = 3.56. Summary
statistics for the two groups are presented in Table 1.

RESULTS
SUMMARY OF RESULTS
Group average cross-phaseograms are presented in Figure 2. The
Top phonological awareness group (Top PA) evinces a large phase
distinction corresponding in time to the transitions in the stimuli,
which occurs in the responses from approximately 300–700 Hz
(indicated by a large orange–red swatch) and a more moderate
phase shift from approximately 750–1000 Hz. Conversely, rela-
tively small phase distinctions were observed in the bottom group
(Bottom PA) suggesting that the frequency difference between the
stimuli was not strongly represented in these children. Phase dis-
tinctions for individual subjects are presented in Figure 3, along
with group means. No phase distinctions were observed in the
response region corresponding to the steady state vowel in either
group, as is expected since the stimuli are acoustically identical in
the vowel portions.

PHASE DISTINCTIONS IN THE CONSONANT-VOWEL TRANSITION,
300-700 Hz
Mean phase angle distinctions were calculated for the lower fre-
quency region (15−55 ms × 300−700 Hz). This was the primary

Table 1 | Demographics for the top and bottom phonological

awareness groups are summarized.

Top PA (N = 14) Bottom PA (N = 12)

Males 6 6

Family history of dyslexia 2 2

CELF cutoff ≥ 20 ≤ 18

CELF (raw score) 22.0 (1.7) 15.4 (2.0)

Non-verbal IQ (percentile) 70.8 (24.6) 79.4 (19.9)

Groups are matched on all criteria except CELF score. The number of males and
number of subjects in each group with a family history of dyslexia are reported.
Means (with SDs) are reported for the CELF and for the non-verbal IQ test (Matrix
Reasoning sub-test of the WPPSI)

FIGURE 2 | Group average cross-phaseograms are presented for the

Top phonological awareness (PA) and Bottom PA groups. The Top PA
more strongly codes the difference between the [ba] and [ga] stimuli, as
indicated by the large red–orange swatches in response to the CV
transition.

region of interest, since it corresponds best to previous reports
(Skoe et al., in press; Parbery-Clark et al., 2012). In the Top PA
there was a larger mean phase distinction than in the Bottom PA
group, t(24) = 2.61, p = .015, Cohen’s d = 1.07. See Table 2 for
descriptive statistics. Since there was a slightly skewed distribution
in the Top PA group, this comparison was repeated, and confirmed,
with the non-parametric Mann–Whitney U test (p = 0.015).

Individual phase distinctions for each group are presented in
Figure 3. The majority of subjects in the Top PA group had pos-
itive phase distinctions whereas most subjects in the Bottom PA
group had either very small phase distinctions or distinctions in
the opposite of the expected direction (i.e., responses to [ba] phase
lead those to [ga]). It is also noteworthy that the magnitude of
the largest phase distinctions in the Top PA group exceeds those
observed in the Bottom PA group.

Finally, a trending correlation between CELF score and phase
distinction was observed (Spearman’s ρ(26) = 0.38, p = .056) with
higher scores on the CELF corresponding to larger phase distinc-
tion. We suspect that with a larger subject group, and relatively
fewer subjects at ceiling on the CELF, this relationship would be
stronger.

PHASE DISTINCTIONS IN THE CONSONANT-VOWEL TRANSITION,
750-1000 Hz
To further explore group differences, and to ensure that there were
no phase distinctions in response to the vowel, additional analyses
were pursued. The first analysis focused on the higher frequency
phase distinction (25−55 ms × 750−1000 Hz). As indicated in
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FIGURE 3 | (A,B) Phase distinctions for individual subjects (15−55 ms × 300−600 Hz) are presented for the Top PA (Panel A, red) and Bottom PA (Panel B,
black) groups. (C) Group means are presented. Error bars, ± 1 SEM; *p < 0.05.

Table 2 | Mean phase distinctions for the two frequency ranges are

reported for each group (in rad, with SDs).

Top PA Bottom PA

300–700 Hz Transition 0.690 (0.56) 0.053 (0.69)

Vowel −0.041 (0.16) 0.084 (0.56)

750–1000 Hz Transition 0.551 (0.50) 0.074 (0.74)

Vowel −0.075 (0.34) −0.144 (0.29)

Figure 2, the Top PA group had a larger mean phase distinc-
tion than the Bottom PA group, t(24) = 2.00, p = 0.06, Cohen’s
d = 0.82.

PHASE DISTINCTIONS IN THE VOWEL REGION
Since the [ba] and [ga] stimuli are identical in the steady state
vowel portions no phase distinction is expected in this region.
This is reflected in Figure 2 where green indicates a phase dif-
ference of about 0 rad. To confirm this statistically, mean phase
angles were calculated for the same frequency regions as in the
transition from 60 to 155 ms. There were no group differences
in phase distinction for the lower frequency region (300–700 Hz;
t(24) = 0.81, p = 0.427) or higher frequency region (750–1000 Hz,
t(24) = 0.55, p = 0.589).

DISCUSSION
We assessed the physiologic discrimination of stop consonants in
a group of 4-year-old children and reveal a link between this dis-
crimination and phonological awareness. Children with higher
phonological awareness had superior neural discrimination of the
stop consonants [ba] and [ga], as inferred by far-field electro-
physiology. Conversely, children who performed worse on the
phonological awareness test, on average, did not robustly distin-
guish these speech sounds. This relationship has previously been
observed in school age children, with neural speech discrimination

varying in concert with phonological awareness (Hornickel et al.,
2009). By demonstrating this relationship in pre-school children
too young to have attained full reading competence we can begin
to trace the developmental trajectory of the primitives necessary
for complex language-based tasks such as reading. However, we
do not know if these children with weak consonant differenti-
ation will soon develop a strong neural differentiation and end
up as normal readers, or if they will face challenges as they learn
to read. The latter possibility would suggest that these children
are at risk for a reading disorder. Regardless, this relationship
highlights the role of central auditory processing in developing
language skills, and complements phonological deficit theories of
reading.

One interpretation of the current results is that they reflect
different levels of maturation. The auditory system undergoes
rapid developmental plasticity through the first several years of
life, and this is reflected in subcortical (Johnson et al., 2008; Skoe
et al., in press) and cortical evoked potentials (Choudhury and
Benasich, 2011). Individual differences in this rate of maturation
may explain the variability in the [ba]-[ga] phase distinction. We
do not think this vitiates the link between subcortical auditory
function and phonological processing, however. After all, slower
maturation of the neural processes important for phonological
development may set certain children at a disadvantage when they
begin learning to read. Nevertheless, the functional developmental
consequences of this maturation for reading (dis)ability remain to
be seen.

TEMPORAL SAMPLING: A SYSTEM-WIDE PERSPECTIVE
Goswami (2011) has proposed a theoretical framework to under-
stand developmental dyslexia, the“temporal sampling framework”
(TSF). Under TSF, the core deficit in dyslexia is phonological and
is due to impaired oscillatory phase locking for low frequency tem-
poral coding in auditory cortex. An attractive feature of TSF is that
it resolves many apparent discrepancies between competing theo-
ries of developmental dyslexia. Support for TSF may be found in a
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large series of psychophysical and neurophysiologic investigations
(Witton et al., 1998; Goswami et al., 2002, 2011; Serniclaes et al.,
2004; Noordenbos et al., 2012, 2013; Leong and Goswami, 2013;
Power et al., 2013).

Although TSF predicts deficient slow cortical phase locking in
dyslexia (at rates < 30 Hz; Goswami, 2011), our demonstration
of a link between high frequency phase locking in the subcor-
tical auditory system and phonological processing may also be
consistent with TSF. While TSF predicts superior cortical phase
locking at fast rates for dyslexics, and here we report a deficit
for high frequency temporal coding in auditory midbrain, we
advocate for a systems-level perspective with different “optimal”
rates of phase locking as a function of the physiology of the site
of interest along the auditory pathway. We see this as compat-
ible with TSF because our view is that the auditory system is
best thought of as an integrated circuit that interacts dynami-
cally with cognitive, reward, and other sensory systems (Kraus and
Nicol, in press; Kraus and Chandrasekaran, 2010; Bajo and King,
2012; Anderson et al., 2013). The subcortical evoked response we
analyzed in the current paper (and others from our group) is
generated predominantly by inferior colliculus (IC; for review see
Chandrasekaran and Kraus, 2010). Most IC neurons phase lock
in the range of 100–1000 Hz (Liu et al., 2006) which is 10-fold
the range of the impaired theta and delta oscillatory phase locking
in auditory cortex observed in dyslexia (Goswami, 2011). Opti-
mal phonological coding may rely on the interaction of rapid
temporal sampling in IC with relatively slow sampling in audi-
tory cortex. Indeed, Abrams et al. (2006) reported that subcortical
timing was linked to the temporal integrity of auditory cortical
speech coding. Wible et al. (2005) reported correlated subcorti-
cal and cortical neural synchrony in representing speech, both of
which were diminished in children with language-based learning
problems.

That said, relatively little is known about the temporal cod-
ing of low frequency information in IC (i.e., < 30 Hz), which
may in fact be deficient in dyslexics. Recordings from cat IC do
demonstrate phase locking as low as 10 Hz (Langner and Schreiner,
1988), however, the lower limits of phase locking in human IC, and
more broadly the oscillatory dynamics of IC, remain an avenue for
future research. Temporal coding at multiple rates may occur in
parallel through the auditory pathway; evidence from a guinea
pig model suggests that a paralemniscal thalamocortical pathway
relays slow temporal information to auditory cortex in parallel
with fast temporal information relayed through a lemniscal path-
way (Abrams et al., 2011). Therefore, a full elucidation of the
relationship between auditory phase locking and reading ability on
a system-wide level will likely have to accommodate simultaneous
temporal coding at multiple rates.

Further support for this integrated view of system-wide tem-
poral coding comes from the rhythm perception literature, which
has connected poor reading with an impaired ability to entrain to
an external beat and impoverished perception of musical meter
(Thomson et al., 2006; Huss et al., 2011; Tierney and Kraus,
2013b). This rhythmic entrainment seems to rely on auditory
cortical phase locking (Power et al., 2012). However, the ability
to entrain to an external beat is also linked to rapid subcortical
phase locking and neural synchrony (Tierney and Kraus, 2013a),

again suggesting that phase locking across multiple temporal rates
may support perceptual skills linked to reading, if not phonolog-
ical processing itself. An overarching theoretical framework for
reading, then, may have to include relatively rapid subcortical
phase locking as a key component that interacts with slower cor-
tical oscillatory sampling. Both rapid and slow sampling likely
rely on the synchronous firing of neurons in the auditory sys-
tem, which supports precise representation of transient sounds
(McGinley et al., 2012), 0.1 ms precision timing (Anderson et al.,
2012), and speech discrimination (Engineer et al., 2008). And once
again, dyslexia has been linked to deficits in neural synchrony as
observed in humans (Hornickel and Kraus, 2013) and a rat model
(Centanni et al., 2013).

This view would be also consistent with the Rapid Auditory
Processing theory of developmental dyslexia (RAP; Tallal, 1980;
Benasich and Tallal, 2002). Decreased sensitivity to rapidly chang-
ing phonological features could drive the impoverished distinction
between speech sounds. Previous work has demonstrated that
lengthening formant transitions in speech can improve the cortical
discrimination of speech sounds (Bradlow et al., 1999; Stein-
schneider and Fishman, 2011), but it is unknown what effect this
has on subcortical discrimination. Finally, we note that these our
findings would be broadly consistent with the view that there are
general, non-linguistic sensory deficits in dyslexia (Wright et al.,
1997; Stein, 2001; Ahissar et al., 2006). Future work, therefore,
should consider the interactions of acoustics, phonemics, and
behavioral relevance in subcortical temporal processing.

A BIOMARKER FOR SUBSEQUENT READING ABILITY?
Although it is important to develop and refine empirically based
theories of reading, it is also important to develop methods to
identify children at risk for reading disorders. Previous neuro-
physiologic studies have identified cortical predictors of dyslexia,
such as slower right hemisphere polarity shifts in evoked responses
to speech (Guttorm et al., 2005; for review, see Leppänen et al.,
2012). The structural integrity and volume of left articulate fas-
ciculus is diminished in young children with poor phonological
awareness (Saygin et al., 2013). Performance on speech perception
tasks is also predictive (Benasich and Tallal, 2002), in addition to
oscillatory dynamics in the infant brain (Gou et al., 2011). While
the current analysis is not longitudinal, the techniques employed
here may one day be useful for predicting future reading ability,
either independently or as a complement to existing techniques.
In fact, the children in the current study will be tracked over
the next several years in hopes of identifying early predictors of
subsequent reading ability. We note that the CELF phonological
awareness test combines many subskills under the phonological
awareness construct (Wiig et al., 2004); it is unknown if group
differences are driven primarily by one or two of these subskills,
and future investigation is warranted to look specifically at which
aspects of phonological awareness are linked to auditory system
development.

There are a number of attractive features of the “cross-
phaseogram” as a potential biomarker. For one, it is a fast and
objective automated procedure. Moreover, as we illustrate here,
this measure relates to individual differences in language-based
skills. Subcortical evoked responses to speech are relatively easy
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to obtain and meaningful in individuals (Skoe and Kraus, 2010).
From a practical standpoint, responses may be elicited when a
child is sleeping or watching a video, thereby eliminating the need
for subject compliance in task-related physiologic measurements.
And by following the children in this study longitudinally, we may
be able to explore individual differences in neurophysiology that
distinguish between individual presentations of dyslexia.

DYSLEXIA, TREATMENT, AND THE SEARCH FOR A CORE DEFICIT
A number of short-term interventions have been employed to
improve phonological abilities and reading skills, and these offer
further insight into the biological foundations of reading. Some
of these studies have focused on perceptual deficits related to poor
phonological processing (Tallal et al., 1996; Temple et al., 2003).
Other interventions have been broader, such as assistive listening
devices that improve classroom signal-to-noise ratios by direct-
ing attention to meaningful sound – and in fact also improve
neural synchrony in response to speech (Hornickel et al., 2012).
Non-speech training such as playing action video games, which
improve attentional abilities (Green and Bavelier, 2012), can also
improve reading skills (Franceschini et al., 2013), suggesting a
role for non-auditory mechanisms in reading development and/or
remediation.

Music training, which engenders a host of auditory percep-
tual and cognitive benefits, may also hold promise. Since precise
temporal coding of sound supports fundamental reading skills,
and this coding is strengthened by musical experience, it stands
to reason that music training may promote the development of
reading-related skills (Tierney and Kraus, 2013c). In fact, music
experience has been directly linked to improved phonological skills
and reading (Moreno et al., 2009; Besson et al., 2011), in addition
to physiologic discrimination of speech sounds, as presented in
the current study (Parbery-Clark et al., 2012; Strait et al., 2013).
Given the established link between rhythm skills and phonologi-
cal abilities, the rhythmic components of music training may be
especially important for developing language-based skills. In fact,
Bhide et al. (2013) reported that a comprehensive rhythm training
regimen improves phonological skills.

To understand the biological bases of reading, and develop
strategies that engender reading skills and remediate dyslexia, it
is important to identify which skills to target. In this regard, the
quest for the core deficit is important. That said, this search may
at times cloud the principal problem, namely, that certain chil-
dren have tremendous difficulty learning to read. Moreover, the
possibility remains that no single deficit accounts for every child
who has difficulty reading. Our view is that even without a full
understanding of the pathophysiology of dyslexia it is important to
identify children at risk as early as possible. Here we have identified
a neural correlate of early phonological awareness in pre-school
age children. Due to the importance of precise phonological rep-
resentations for reading this correlate may indicate a biological
bottleneck certain children face when they begin to learn to read.
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