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We used a multi-voxel classification analysis of functional magnetic resonance imaging
(fMRI) data to determine to what extent item-specific information about complex natural
scenes is represented in several category-selective areas of human extrastriate visual
cortex during visual perception and visual mental imagery. Participants in the scanner
either viewed or were instructed to visualize previously memorized natural scene
exemplars, and the neuroimaging data were subsequently subjected to a multi-voxel
pattern analysis (MVPA) using a support vector machine (SVM) classifier. We found
that item-specific information was represented in multiple scene-selective areas: the
occipital place area (OPA), parahippocampal place area (PPA), retrosplenial cortex (RSC),
and a scene-selective portion of the precuneus/intraparietal sulcus region (PCu/IPS).
Furthermore, item-specific information from perceived scenes was re-instantiated during
mental imagery of the same scenes. These results support findings from previous
decoding analyses for other types of visual information and/or brain areas during imagery
or working memory, and extend them to the case of visual scenes (and scene-selective
cortex). Taken together, such findings support models suggesting that reflective mental
processes are subserved by the re-instantiation of perceptual information in high-level
visual cortex. We also examined activity in the fusiform face area (FFA) and found that it,
too, contained significant item-specific scene information during perception, but not during
mental imagery. This suggests that although decodable scene-relevant activity occurs in
FFA during perception, FFA activity may not be a necessary (or even relevant) component
of one’s mental representation of visual scenes.
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INTRODUCTION
Current models of working memory and related reflective activi-
ties (e.g., mental imagery) suggest that active representations are
maintained via control signals originating in heteromodal asso-
ciation areas (e.g., prefrontal cortex) that re-instantiate neural
activity in sensory cortex that was first engaged when an item was
initially perceived (Petrides, 1994; Kosslyn et al., 2001; Curtis and
D’Esposito, 2003; Ruchkin et al., 2003; Pasternak and Greenlee,
2005; Ranganath and D’Esposito, 2005). Consistent with these
models, earlier neuroimaging studies observed category-related
activity in category-selective extrastriate (CSE) visual areas such
as fusiform face area (FFA; Kanwisher et al., 1997; McCarthy
et al., 1997) and parahippocampal place area (PPA; Epstein and
Kanwisher, 1998) when individuals maintained representations
of items from the relevant category during visual working mem-
ory (Druzgal and D’Esposito, 2003; Postle et al., 2003; Ranganath
et al., 2004). Similar category-specific activity is also seen during
visual mental imagery (O’Craven and Kanwisher, 2000) and in
response to shifts of reflective attention toward a particular active
representation (e.g., refreshing; Johnson et al., 2007; Lepsien and
Nobre, 2007; Johnson and Johnson, 2009).

Such studies, however, provide only circumstantial evidence
supporting the idea that category-specific activity in CSE cortex

reflects information about the identity of individual item repre-
sentations. An alternative explanation is that thinking of items
from a particular category causes a general increase in baseline
activity in relevant CSE areas, without that activity contain-
ing any information about the specific item from that category
being held in mind. For example, one study (Puri et al., 2009)
found that preparation to view faces or houses induced greater
activity in FFA and PPA, respectively, even though participants
only knew which category to expect rather than any particular
exemplar from the category. In order to determine that item-
specific information is also present in reflection-induced activity,
a method is needed that is capable of assessing cortical activa-
tion patterns related to individual items within a category, when
those items’ representations are presumed to involve similar over-
all category-specific activity increases in CSE cortex. Multi-voxel
pattern analysis (MVPA) is one method that can assess such
patterns.

A number of studies in recent years have used MVPA to
directly probe how information is represented in visually respon-
sive brain areas. Several initial studies focused on classifying
general categories of items during visual perception, finding that
information about the category being viewed could be reliably
decoded in many visually responsive cortical regions (Haxby
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et al., 2001; Cox and Savoy, 2003; Norman et al., 2006). Pattern
analyses have also been used to decode category information dur-
ing working memory maintenance (Han et al., 2013) or visual
imagery (Cichy et al., 2012), and pattern analysis may afford bet-
ter detection of category-related brain activity due to reflective
processing than more traditional univariate functional magnetic
resonance imaging (fMRI) analyses (Han et al., 2013).

Following reports of successful category classification, there
has been increasing interest in using MVPA to decode more fine-
grained information in visually responsive brain regions, at the
sub-category or exemplar levels. [The terminology varies in pub-
lished papers, but here we use the term “category” to refer to
stimulus classes such as faces, scenes, objects, and body parts that
are associated with known CSE regions such as FFA, PPA, lat-
eral occipital complex (LOC), and extrastriate body area (EBA),
respectively; “sub-category” to refer to smaller groupings such as
“forests” vs. “mountains” within the category “scenes” or “tools”
vs. “fruits” within the category “objects”; and “exemplar” to refer
to individual items within a category or sub-category.] Multi-
voxel classification analyses have revealed exemplar-specific activ-
ity during visual perception in LOC for objects (Eger et al., 2008)
and anterior inferior temporal cortex for faces (Kriegeskorte et al.,
2007). Other studies have been able to construct reliable predic-
tions of the visual stimulus being projected onto the retina based
on activity in early visual cortex (Kay et al., 2008; Miyawaki et al.,
2008).

Several studies also successfully used classification techniques
to decode information at the sub-category or exemplar level dur-
ing working memory maintenance or visual imagery. Activity in
early visual cortex, LOC, and other areas has been used to pre-
dict the identity or characteristics of simple stimuli, such as the
orientation or contrast of gratings, or X’s vs. O’s (Thirion et al.,
2006; Harrison and Tong, 2009; Serences et al., 2009; Stokes et al.,
2009; Xing et al., 2013). For more complex stimuli, Reddy et al.
(2010) were able to decode the object sub-categories of tools and
food (as well as buildings and faces) during both perception and
mental imagery, based on activity in a large set of face-, scene-,
and object-responsive voxels. More recently, Lee et al. (2012) were
able to decode the identities of individual object exemplars (e.g., a
bag, a car, a chair) without regard to possible sub-category group-
ings during perception and imagery, based on activity in LOC as
well as retinotopic visual areas.

The studies cited above provide broad support for the gen-
eral notion that multiple visually responsive brain areas represent
information about not only the overall category, but also the sub-
category, characteristics, or identity of specific items maintained
in working memory/visual mental imagery during reflective pro-
cessing. However, there remain many open questions regarding
what type of information is represented in which brain areas for
a given item or category, and whether the nature or quality of
that information differs between perceptual processing and reflec-
tive (working memory/mental imagery) processing. The research
landscape regarding the brain’s representation of natural visual
scenes is particularly complex, given the wide variety of possible
visual scenes, the many ways in which they can be characterized or
sub-categorized, and the large number of scene-responsive brain
regions.

For the visual perception of natural scenes, Walther et al.
(2009) found that PPA and retrosplenial cortex (RSC) did encode
information distinguishing different sub-categories of scenes in
a block design during perception, and Kriegeskorte et al. (2007)
also found that PPA distinguished between two house pic-
tures used in that study. Park et al. (2011) found via MVPA
that PPA, RSC, and other areas distinguished between scenes
with urban vs. natural content, and between scenes with closed
vs. open spatial boundaries; and Epstein and Morgan (2012)
found that several scene-responsive regions contained informa-
tion distinguishing not only scene sub-categories, but the identi-
ties of different specific visual landmarks. Bonnici et al. (2012)
also found that activity patterns in the medial temporal lobe
could be used to distinguish between highly visually similar
scenes.

However, to our knowledge, no study to date has used pattern
analysis to examine item-specific information in any visual area
during working memory or mental imagery for natural scenes.
Thus, the primary aim of the present study was to determine if
activity in scene-selective areas of cortex represents item-specific
information during mental imagery, and to what extent that
information constitutes a re-instantiation of item-specific activity
patterns observed during visual perception.

In this study, we presented participants with either pictures
of previously memorized scenes to view, or with verbal labels
of those pictures, in which case participants were instructed
to remember and form the most vivid and accurate mental
image possible of the indicated picture. A face-scene localizer
task allowed us to locate several scene-selective regions of inter-
est (ROIs), and then we used MVPA to assess whether those
areas reliably encoded information about the identity of specific
scene items during perception and/or imagery. We also exam-
ined whether item-specific activity patterns from perception were
re-instantiated during mental imagery.

Based on previous reports that different scene-selective areas
may participate to different degrees in top-down vs. bottom-up
representations of visual scenes (e.g., Johnson et al., 2007), we
also used MVPA to test whether all scene-selective areas reliably
distinguished between the overall processes of visual perception
and mental imagery, and to what extent the ability to differentiate
between perception and imagery differed by region.

Finally, this experimental design also allowed us to localize
the FFA and address a secondary question, namely whether scene
identity information is limited to CSE areas that are maximally
selective for scenes, or whether a CSE area such as the FFA could
also contain identity information about a category other than the
one for which the area is maximally selective.

MATERIALS AND METHODS
PARTICIPANTS
Sixteen healthy young adults participated in Experiment 1
[7 females, mean age = 23.1 ± 2.7 (SD)]. For Experiment 2, 12
participants (some, but not all, of whom were the same indi-
viduals as in the first study) were scanned [7 females, mean
age = 23.3 ± 3.0 (SD)]. All participants gave written informed
consent and were compensated for their time in a protocol
approved by the Yale University Human Investigation Committee.
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TASK—EXPERIMENT 1
The version of the main Perception-Imagery (P-I) task used in
Experiment 1 is shown in Figure 1. Before fMRI scanning, partic-
ipants repeatedly viewed four scene pictures (for all participants,
a beach, a desert, a field, and a house) and were instructed to mem-
orize the details of the pictures as well as they could for later
mental imagery. For the P-I task (Figure 1A), on each trial, par-
ticipants were either shown one of the pictures along with its
name (Perception) or simply the name of one picture (Beach,
Desert, Field, or House), in which case they were instructed to
form the most vivid and accurate mental image possible of that
picture as long as the label was onscreen (Imagery). Thus the 2
processes (Perception, Imagery) × the 4 stimuli (Beach, Desert,
Field, House) formed a total of 8 conditions [Perceive Beach (PB),
Image Beach (IB), Perceive Desert (PD), and so on] of the task
(Figure 1B). These four scene pictures were intentionally selected
from different sub-categories of visual scenes with relatively large
differences in color, spatial composition, etc., to minimize fea-
tural confusion between images. Thus successful classification
between items in this study would likely reflect information dif-
ferences at some combination of the sub-category and exemplar
(within sub-category) levels, somewhat limiting the granularity
of information representation that could be deduced but also
maximizing chances of successful classification, while using a
design that could easily be extended in future studies to exam-
ine more fine-grained differences among scene exemplars (see
Discussion). In this paper, we will refer to the different scenes
used simply as “items” and information revealed in classification
as “item-specific,” acknowledging that such information likely
comprises a fusion of sub-category-specific and exemplar-specific
information.

Pictures or labels were onscreen for 4 s each with an inter-trial
interval of 12 s. The pictures occupied approximately 20 degrees
of visual angle. Conditions were presented in a pseudo-random
order optimized to produce maximal orthogonality between con-
ditions during subsequent fMRI analyses. To counterbalance trial
orders across participants, every participant encountered the runs
of the task in a different order, and for every second participant
perception and imagery trials were switched. Participants prac-
ticed the task both before scanning and during the anatomical
scans that occurred immediately prior to functional scanning, in
order to ensure that their memories of the stimuli were fresh and
to increase the likelihood that any repetition attenuation effects
from repeatedly viewing the same stimuli would have reached
asymptote by the time functional scans began.

TASK—EXPERIMENT 2
Although scene-selective areas such as PPA are not typically sen-
sitive to non-scene stimuli (e.g., letter strings), it is theoretically
possible that the minor visual differences between words used
to cue the item to imagine (e.g., “Desert,” “Field”; see Figure 1)
could result in successful classification between items on men-
tal imagery trials, rather than the mental images themselves. To
confirm that this was not the case, we conducted a replication
(Experiment 2) in which 12 participants performed the same P-I
task as in Experiment 1, except that the visual labels of the pic-
tures were removed from both Perception and Imagery trials and

replaced by auditory labels [recordings of a male voice speaking
the same words as the visual labels (Beach, Desert, Field, House)].
Auditory labels were presented via headphones at the beginning
of each (Perception or Imagery) trial. All other aspects of the
study were identical between Experiments 1 and 2.

fMRI DATA ACQUISITION
Scanning was performed on a Siemens 3T Trio system with a
standard 8-channel head coil. Functional scans consisted of a
moderately high-resolution (2 × 2 × 2.5 mm) echoplanar imag-
ing sequence (parameters: TE = 24 ms, flip angle = 60◦, FoV =
256 mm, FoV phase = 75%, interleaved acquisition, 26 slices, TR
= 2000 ms). Participants performed 6 functional runs of the P-I
task. Each run lasted 8 min 50 s (265 volumes) and contained 32
trials (4 per condition), for a total of 24 trials per condition per
participant. The first 6 volumes (12 s) of each run were discarded
to allow time for the fMRI signal to reach steady state. As these
scan parameters did not allow for whole-brain coverage, slices
were manually prescribed at an oblique angle based on visual
inspection of the participant’s head shape after initial anatomical
scans were acquired. Slices were tilted at the angle deemed most
likely to provide coverage of the four major scene-selective ROIs
noted below (based on the average locations of these ROIs from
previous group analyses of localizer tasks).

STATISTICS AND DATA ANALYSIS
Initial processing of fMRI data was performed using SPM5
(Wellcome Department of Imaging Neuroscience, University
College London, UK). Data were motion-corrected, and all of a
participant’s functional runs were coregistered to a mean image of
that participant’s first run after motion correction. Prior to classi-
fication, an initial general linear model (GLM) was estimated for
each participant’s data from the P-I task as a means of essentially
collapsing fMRI signal from the multiple functional volumes
acquired in each trial into a single volume. In this GLM analy-
sis, each individual trial of the task (defined as an event with 4 s
duration) was convolved with a canonical hemodynamic response
function, producing a separate regressor in the model for each
trial. Estimating this GLM [using an autoregressive AR(1) model
to remove serial correlations during estimation] produced a vol-
ume of beta values for each trial of the P-I task, representing
overall activation in each voxel of the brain for that trial. Each
beta image was transformed into Z-scores to control for any dif-
ferences in overall brain activation between trials. Values from
these Z-transformed beta images were used as the basis for classi-
fication analyses (see below). Classification analyses on the main
P-I task were all performed on unsmoothed data.

For each subject, scene-selective ROIs were selected using a
face-scene localizer task similar to that used in previous stud-
ies (Wojciulik et al., 1998; Yi and Chun, 2005; Johnson et al.,
2007). Each participant performed 2 runs of this task; each run
contained 4 blocks (16 s long) of faces and 4 blocks of scenes.
Each block contained 20 stimuli (shown for 500 ms with a 300 ms
inter-stimulus interval) presented centrally; blocks were separated
by 16 s blocks of rest. Participants were instructed to watch the
streams of pictures closely and press a button every time they
saw the same picture twice in a row (1-back task). Each localizer
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FIGURE 1 | Task design. (A) On Perceive trials, participants were shown
a picture of a scene along with its label for 4 s. On Image trials,
participants saw only an empty frame with a label instructing which of
the four scenes to imagine. The example displays shown here
correspond to Experiment 1; in Experiment 2, the displays were the
same except that the printed labels were removed entirely and replaced

with auditorily presented recordings of the same words spoken aloud.
(B) The two processes (Perception, Imagery ) × the 4 stimuli (Beach,
Desert, Field, House) formed a total of 8 conditions of the task.
(C) Sample ROI locations for four representative subjects, two from
Experiment 1 and two from Experiment 2. Clusters are overlaid on raw
functional images from that participant’s data.

run lasted 4 min 24 s (132 volumes) and used the same scan
parameters and slice positioning as the main P-I task. Data were
motion-corrected in the same manner as the P-I task and were
also coregistered to the first run of the P-I task, so that func-
tional data from both tasks were in the same anatomical space.
Face and scene blocks were modeled as 16 s events and convolved
with the canonical HRF to form regressors for another GLM anal-
ysis, and scene-selective ROIs were obtained by assessing the Scene
> Face contrast from this analysis. [It is worth noting that the
“scene-selective” ROIs we discuss here are not necessarily areas
that activate exclusively for scenes; they are simply scene-selective
insofar as they activate preferentially for scenes compared to at
least one other category of complex, naturalistic visual stimuli
(faces).] However, in contrast to the main P-I task, the same
GLM was estimated for both the unsmoothed localizer data and
for a second copy of the data that had been smoothed with a
Gaussian kernel [5 mm full width at half maximum (FWHM)],
for purposes of locating ROIs.

Specifically, scene-selective ROIs were obtained by initially
running the above GLM on the smoothed functional data from the
localizer task and examining the Scene > Face contrast (generally
at a p threshold of 0.001, uncorrected, and a cluster thresh-
old of 10 voxels, although thresholds were relaxed as necessary

to locate certain ROIs for a few participants). We located four
bilateral ROIs for each participant that had reliably appeared
in group analyses of face-scene localizer data in previous stud-
ies (Johnson et al., 2007; Johnson and Johnson, 2009): PPA
(Epstein and Kanwisher, 1998); RSC (O’Craven and Kanwisher,
2000); an occipital scene area which has been variously referred
to as the transverse occipital sulcus (TOS; Grill-Spector, 2003;
MacEvoy and Epstein, 2007), middle occipital gyrus (MOG;
Johnson et al., 2007; Johnson and Johnson, 2009), or occipi-
tal place area (OPA; Dilks et al., 2013; the nomenclature we
use here), and an area located near the precuneus/intraparietal
sulcus (PCu/IPS; Johnson et al., 2007; Johnson and Johnson,
2009).

For each participant, we selected the peak voxel from each
cluster corresponding to the approximate anatomical location of
these ROIs in prior group analyses, and focused on a 10 mm-
radius sphere around that peak voxel for each ROI (examples
of all ROIs for four representative participants are shown in
Figure 1C). Within each spherical ROI, we then selected only the
80 most scene-selective voxels (approximately 20% of the 410
voxels found in each 10 mm-radius sphere) for classifier anal-
yses, in order to eliminate noise input from voxels that might
contain white matter, empty space, or gray matter that was not
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strongly activated by scene stimuli (for one participant at one
ROI, only 65 in-brain voxels were found within 10 mm of the
peak voxel of that ROI, so only those 65 voxels were used).
This 80-voxel figure was initially chosen as an informed esti-
mate of the number of “good” gray matter voxels that could be
expected to be contained in each 10 mm-radius, 410-voxel sphere.
Subsequent analyses (conducted after the main analyses discussed
below, using the a priori number of 80 voxels, were completed)
compared the results from using 10, 20, 40, 80, 160, or 320 vox-
els per spherical ROI, and found that classification performance
did effectively plateau at around 80 voxels for most ROIs (see
Supplementary Figure 1), and in some cases decreased for 160
or 320 voxels relative to 80 voxels. Scene selectivity was assessed
by using the t-statistic for the Scene > Face contrast of the GLM
analysis of the unsmoothed localizer data. For the classification
analyses of individual category-selective ROIs, all of which were
found bilaterally for all participants, the 80 voxels from each
hemisphere were combined for classification, so a total of 160
voxels were used for each area. For the classification analyses
across all scene areas shown in Figure 2 (see Results), voxels from
both hemispheres and all four ROIs were fed into the classifier.
Thus, the classification across all scene areas shown in Figure 2
used (80 voxels) × (4 ROIs) × (2 hemispheres) = 640 voxels as
input.

After voxel selection, Z-transformed beta values from each
voxel for each trial were extracted from the GLM analy-
sis of the unsmoothed P-I task data and fed into a sup-
port vector machine (SVM) classifier, using custom Matlab
code centered around the built-in SVM implementation within
Matlab.

FIGURE 2 | Classification across all scene areas. Classification accuracy
for Experiments 1 and 2 using voxels from all scene-selective ROIs.
Analyses used 640 voxels per participant (4 scene-selective regions × 2
hemispheres × 80 voxels per region). Results are shown for classifying
between individual scene items during perception (left bars), classifying
between scenes during mental imagery (middle bars), and re-instantiation
of perceptual information during mental imagery (right bars). All were
significantly above chance (AUC = 0.5) for both experiments. ∗∗p < 0.01,
∗∗∗p < 0.001. Error bars represent standard error of the mean (s.e.m.). See
text and Table 1 for full statistics.

ANALYSES OF ITEM-LEVEL INFORMATION
For analyses of item-level information during perception or
imagery, voxels were separated by run and we used a k-fold cross-
validation approach, taking data from 5 runs of the P-I task as
training data and the remaining run as test data, and then rotating
which run was used as test data through all 6 runs of the task (due
to time constraints, one participant only had 5 runs of the task;
analyses were adjusted accordingly). For each participant, classi-
fication results reported in the text and figures were obtained by
first training a separate classifier for each pair of conditions (e.g.,
PB vs. PD, ID vs. IF, and so on), and then applying each classifier
to all trials of the test data set (regardless of whether the condi-
tion of that trial was one of the ones used to initially train the
classifier). Thus, for each pairwise classifier, each trial received a
score (either positive or negative, in arbitrary units) indicating the
classifier’s relative confidence that the trial belonged to one or the
other of the conditions used to train it. Then, for each condition,
the scores for all trials were collapsed across relevant classifiers
(e.g., for condition PB in classifying individual scene items during
perception, the scores for the PB vs. PD, PB vs. PF, and PB vs. PH
classifiers would be averaged), ultimately yielding a confidence
score for each trial and each condition that the trial in question
belonged to that condition, relative to all other conditions. These
scores were then used to calculate receiver operating characteris-
tic (ROC) curves and the area under the ROC curve (AUC) for
each condition and each participant. Finally, AUCs were aver-
aged across condition for each participant to yield a single AUC
value for each participant in each analysis (perception, imagery),
indicating the algorithm’s accuracy at distinguishing among the
initially specified conditions for that participant. These AUC val-
ues (ranging from 0 to 1, with chance = 0.5) were then subjected
to traditional group statistics (e.g., t-tests against chance).

RE-INSTANTIATION ANALYSES
To test for evidence of re-instantiation (i.e., similar item-specific
neural activity during perception and imagery), we trained a sep-
arate group of classifiers similar to the above. However, instead
of using k-fold cross validation, these classifiers simply used each
possible pair of Perceive conditions for all 6 runs as training data
(e.g., PB vs. PD, PF vs. PH) and the corresponding pair of Image
conditions for all 6 runs as test data (e.g., IB vs. ID, IF vs. IH,
respectively) to determine whether the same criteria used to clas-
sify two items during perception could also classify the same two
items during imagery. Relevant classifier scores were collapsed,
AUCs were calculated, and statistical tests were conducted as
above.

(We also performed a version of this analysis training on Image
trials and testing on Perceive trials, but as the results were virtu-
ally indistinguishable from those of training on Perceive trials and
testing on Image trials, only the latter are reported here.)

PERCEPTION vs. IMAGERY ANALYSES
To test for overall classification of perception vs. imagery in each
scene-selective ROI, a k-fold cross validation approach was again
used as in the analyses of item-level information during percep-
tion or imagery. However, classification was much simpler, as
each trial was simply coded as either a Perception or an Imagery
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trial, and thus only a single (Perception vs. Imagery) SVM clas-
sifier needed to be trained for each fold of the cross-validation.
AUCs were calculated and statistical tests conducted as in all other
analyses.

ITEM-SPECIFIC INFORMATION IN FFA
For the analyses examining whether face-selective cortex also
contained information about the identities of specific scenes,
procedures were identical to those outlined above for the scene-
selective ROIs, except for the following: The Face > Scene contrast
was evaluated in the face-scene localizer analysis, we chose clus-
ters located near the known anatomical locations of left and right
FFA, and we selected the most face-selective (rather than the most
scene-selective) voxels within a 10 mm radius of those clusters’
peak voxels.

RESULTS
Participants performed a task (Figure 1) in which they either per-
ceived or were instructed to form a mental image of one of four
previously memorized scene stimuli (a beach, a desert, a field, and
a house), yielding a total of eight conditions: Perceive Beach (PB),
Image Beach (IB), Perceive Desert (PD), and so on. We examined
activity in four scene-selective a priori ROIs (OPA, PPA, RSC,
and PCu/IPS, as noted in the Materials and Methods section;
see Figure 1C), as well as FFA, and used an SVM classification
algorithm to determine whether each ROI contained informa-
tion that allowed the classifier to distinguish between each pair
of conditions.

CLASSIFICATION ACROSS ALL SCENE AREAS
Before examining classification performance in individual ROIs,
we first examined whether the entire set of scene-selective vox-
els contained information about individual scene items during
perception and/or mental imagery (Figure 2; see Table 1 for
t-statistics, p-values, and effect sizes). We found highly reliable
classification between individual scene items during perception
(AUCs: Experiment 1 = 0.627, Experiment 2 = 0.634), indicating
that scene-selective cortex as a whole did contain item-specific
information. Classification between individual scene items dur-
ing imagery was also above chance (AUCs: Experiment 1 = 0.560,
Experiment 2 = 0.558), indicating that scene-selective cor-
tex contains item-specific information during imagery as well.
Furthermore, classifiers testing for re-instantiation (i.e., similar
item-specific neural activity during perception and imagery, as
evidenced by successful classification when using the Perceive
conditions as training data and Image conditions as test data)
also performed above chance for scene-selective cortex as a
whole (AUCs: Experiment 1 = 0.553, Experiment 2 = 0.561).
This confirmed our hypotheses that scene-selective cortex con-
tains information distinguishing individual scene items dur-
ing both perception and imagery, and that item-specific
activity from perception is re-instantiated during mental
imagery.

CLASSIFYING INDIVIDUAL SCENE REPRESENTATIONS DURING
PERCEPTION BY ROI
Having shown that item-specific information is present in scene-
selective cortex broadly construed, we then performed follow-up

tests examining whether above-chance classification could be
observed in individual ROIs. Results for item-specific classifica-
tion in each ROI are shown in Figure 3A and Table 1A. As fewer
voxels were being fed into the classifier, performance in individ-
ual ROIs might be expected to be lower and more variable than
for all scene-selective areas combined. Nevertheless, for percep-
tion, we found above-chance classification significantly or at a
trend level in all four ROIs in Experiment 1 [AUCs: OPA = 0.579,
PPA = 0.598, RSC = 0.525 (p = 0.069), PCu/IPS = 0.564] and
Experiment 2 [AUCs: OPA = 0.610, PPA = 0.583, RSC = 0.526
(p = 0.067), PCu/IPS = 0.548 (p = 0.051)]. These findings sug-
gest that all of the scene-selective extrastriate areas we examined
contained information distinguishing between individual natural
scenes during perception.

CLASSIFYING INDIVIDUAL SCENE REPRESENTATIONS DURING
IMAGERY BY ROI
We next tested whether above-chance scene classification could
also be observed in individual scene-selective ROIs during men-
tal imagery (Figure 3B and Table 1B). Classification performance
during imagery was generally lower than for perception, as
expected, but still above chance significantly or at a trend level
in all of our ROIs in Experiment 1 [AUCs: OPA = 0.536,
PPA = 0.529 (p = 0.094), RSC = 0.537, PCu/IPS = 0.533] and
in three out of four ROIs in Experiment 2 [AUCs: OPA = 0.554,
PPA = 0.503 (n.s.), RSC = 0.531; PCu/IPS = 0.545 (p = 0.055)].
This suggests that the scene-selective areas in OPA, RSC, and
PCu/IPS all contained information distinguishing between indi-
vidual natural scenes during reflective acts such as mental imagery
as well as during perception. In PPA, classification was only
marginally above chance in Experiment 1 and did not differ sig-
nificantly from chance in Experiment 2. However, the results
of our re-instantiation analyses (see below) imply that item-
specific information may nonetheless be present in PPA during
imagery.

EVIDENCE OF PERCEPTUAL PATTERN RE-INSTANTIATION DURING
IMAGERY BY ROI
We next tested for evidence of re-instantiation (similar
item-specific neural activity during perception and imagery)
in individual ROIs using a set of classifiers given the Perceive
conditions as training data and the corresponding Image condi-
tions as test data (see Materials and Methods). Results for these
re-instantiation analyses in each ROI are shown in Figure 4 and
Table 1C. Although classifier accuracies in these analyses for the
OPA were numerically above chance, the difference was not sig-
nificant in either Experiment 1 (AUC = 0.517) or Experiment
2 (AUC = 0.515). However, re-instantiation classification in the
other ROIs exhibited significant performance above chance in
either Experiment 1 (AUCs: PPA = 0.544, PCu/IPS = 0.527) or
Experiment 2 (AUCs: PPA = 0.536, RSC = 0.524) or both, with
weaker trends for RSC in Experiment 1 [AUC = 0.521 (p = 0.12)]
and PCu/IPS in Experiment 2 [AUC = 0.525 (p = 0.11)].

Notably, in PPA the re-instantiation analyses were significantly
better than chance in both experiments whereas cross-validation
imagery classification was significant only at a trend level in
Experiment 1, and not significantly different from chance in
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Table 1 | Statistical summary of critical results.

Experiment 1 Experiment 2 Replication

ROI AUC d t p AUC d t p X2 p

(A) CLASSIFICATION OF ITEM-SPECIFIC SCENE INFORMATION DURING PERCEPTION

OPA 0.579 1.06 4.24 0.00071 0.610 1.83 6.33 5.6 ×10−5 34.1 7.1 ×10−7

PPA 0.598 1.40 5.61 4.9 ×10−5 0.583 1.04 3.61 0.0041 30.8 3.3 × 10−6

RSC 0.525 0.490 1.96 0.069 0.526 0.587 2.03 0.067 10.8 0.029

PCu/IPS 0.564 1.14 4.56 0.00038 0.548 0.633 2.19 0.051 21.7 0.00023

Combined 0.627 1.64 6.56 9.1 ×10−6 0.634 1.75 6.05 8.3 × 10−5 42.0 1.7 × 10−8

FFA 0.574 1.94 7.75 1.3 × 10−6 0.565 0.841 2.91 0.014 35.7 3.4 × 10−7

(B) CLASSIFICATION OF ITEM-SPECIFIC SCENE INFORMATION DURING IMAGERY

OPA 0.536 0.566 2.23 0.042 0.554 0.927 3.21 0.0083 15.9 0.0031

PPA 0.529 0.448 1.79 0.094 0.503 0.057 0.20 0.85 5.1 0.28

RSC 0.537 0.806 3.22 0.0057 0.531 0.712 2.47 0.031 17.3 0.0017

PCu/IPS 0.533 0.620 2.48 0.025 0.545 0.618 2.14 0.055 13.1 0.011

Combined 0.560 0.917 3.67 0.0023 0.558 0.970 3.36 0.0064 22.3 0.00018

FFA 0.521 0.386 1.55 0.14 0.503 0.069 0.24 0.82 4.3 0.37

(C) RE-INSTANTIATION OF ITEM-SPECIFIC INFORMATION FROM PERCEPTION TO IMAGERY

OPA 0.517 0.327 1.31 0.21 0.515 0.208 0.72 0.49 4.6 0.34

PPA 0.544 0.680 2.72 0.016 0.536 0.787 2.73 0.020 16.1 0.0028

RSC 0.521 0.411 1.64 0.12 0.524 0.670 2.32 0.040 10.6 0.031

PCu/IPS 0.527 0.670 2.68 0.017 0.525 0.499 1.73 0.11 12.5 0.014

Combined 0.553 0.760 3.04 0.0083 0.561 0.939 3.25 0.0077 19.3 0.00068

FFA 0.523 0.400 1.60 0.13 0.505 0.093 0.32 0.75 4.6 0.33

All statistics represent two-tailed t-tests against a chance AUC value of 0.5. Replication X2 and p-values were obtained by Fisher’s method of combining p-values

across replications (Fisher, 1925). Experiment 1: all degrees of freedom (df) = 15. Experiment 2: all df = 11. AUC, area under ROC curve; d, Cohen’s d.

FIGURE 3 | Classifying individual scenes during perception and imagery

by ROI. (A) Classification accuracy for distinguishing between different scene
items during perception for Experiments 1 and 2. In all cases, classification
was above chance (AUC = 0.5) either significantly or at a trend level. (B)

Classification accuracy for distinguishing between different scene items

during mental imagery for Experiments 1 and 2. In all cases but PPA in
Experiment 2, accuracies were significantly or near-significantly above
chance. Analyses used 80 voxels per hemisphere per region, for a total of
160 voxels per region. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, †p < 0.07,
††p < 0.10. Error bars represent s.e.m. See text and Table 1 for full statistics.

Experiment 2. This suggests that stimulus-specific information
may indeed be present in PPA during mental imagery. One pos-
sibility for why item-specific information was not detected for
imagery classification could be that item-specific information in
PPA during imagery is more variable than in other areas (e.g.,

perhaps due to the particular features participants focus on for
different imagery trials) but nonetheless consistently reflects some
portion of activity patterns exhibited during perception, which
are presumably more stable from trial to trial than imagery-
related patterns. Such a situation would reduce cross-validation
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FIGURE 4 | Re-instantiation classification accuracy for distinguishing

between individual scenes during mental imagery by ROI. For these
analyses, classifiers were trained with perception trials and tested on
imagery trials, whereas the results shown in Figure 3B were both trained
and tested with subsets of the imagery trials. PPA, RSC, and PCu/IPS all
exhibited re-instantiation accuracies that were above chance (AUC = 0.5),
either significantly or at a trend level, in one or both experiments. OPA
re-instantiation accuracies were numerically but not significantly above
chance in both experiments. Analyses used 80 voxels per hemisphere per
region, for a total of 160 voxels per region. ∗p < 0.05, ††p < 0.13. Error bars
represent s.e.m. See text and Table 1 for full statistics.

performance from imagery trials to imagery trials, while sparing
performance on perception-to-imagery classification.

CLASSIFYING PERCEPTION vs. IMAGERY
We also asked to what extent the classifier was able to distinguish
perception trials from imagery trials on the whole, regardless
of the specific items being seen or visualized. As noted above,
for this analysis, we coded each trial as either a Perception or
Imagery trial and used a single cross-validation classifier. Results
are shown in Figure 5. As expected, performance for classifying
perception vs. imagery was high, and significantly above chance
in all ROIs and both experiments (all AUC > 0.72, all p < 10−5).
However, perception vs. imagery classification differed by area
in both Experiment 1 [F(3, 45) = 13.79, p = 1.64 × 10−6] and
Experiment 2 [F(3, 33) = 15.95, p = 1.40 × 10−6; both One-
Way repeated-measures ANOVAs], supporting previous hypothe-
ses that different areas along the visual processing pipeline
for scenes may not all distinguish equally between percep-
tual and reflective processing (Johnson et al., 2007; Johnson
and Johnson, 2009). OPA distinguished the most between per-
ception and imagery, significantly more so than PPA [AUCs:
0.881 vs. 0.839, t(27) = 2.77, p = 0.010]; PPA did not signifi-
cantly differ from PCu/IPS [AUCs: 0.839 vs. 0.808, t(27) = 1.55,
p = 0.13]; but PCu/IPS distinguished between perception and
imagery significantly more than RSC [AUCs: 0.808 vs. 0.730,
t(27) = 3.71, p = 0.00095; values were collapsed across experi-
ment for these comparisons, as the label modality (visual or
auditory) should not be expected to affect perception vs. imagery
classification].

FIGURE 5 | Classification accuracy for distinguishing between the

overall processes of perception and mental imagery by ROI. In all
cases, accuracies were significantly above chance (AUC = 0.5), but there
were significant differences in accuracy by region. OPA differentiated
between perception and imagery the best, followed by PPA, PCu/IPS, and
RSC. Pairwise comparisons between OPA and PPA, and between PCu/IPS
and RSC, were significant, though PPA and PCu/IPS did not significantly
differ. Analyses used 80 voxels per hemisphere per region, for a total of 160
voxels per region. ∗p < 0.05, ∗∗∗p < 0.001. Error bars represent s.e.m. See
text and Table 1 for full statistics.

CLASSIFYING SCENE IDENTITY INFORMATION IN FACE-SELECTIVE
CORTEX
As our localizer data allowed us to isolate face-selective corti-
cal areas in addition to scene-selective areas, we also addressed
the question of whether voxels selective for non-scene cate-
gories nevertheless contained information about scene identity
during perception and/or mental imagery. Results are shown
in Figure 6 and Table 1. Notably, even after choosing the most
face-selective voxels in the FFA, we still found significantly
above-chance classification between scene items during percep-
tion in both Experiment 1 (AUC = 0.574) and Experiment
2 (AUC = 0.565). However, classification between scene items
during imagery did not significantly differ from chance in
either Experiment 1 [AUC = 0.521 (p = 0.14)] or Experiment
2 [AUC = 0.503 (n.s.)], nor did re-instantiation classification
[Experiment 1: AUC = 0.523 (p = 0.13); Experiment 2: AUC =
0.505 (n.s.)]. In both experiments, classification between scene
items was significantly better during perception than during
imagery [Experiment 1: t(15) = 4.41, p = 0.00050; Experiment 2:
t(11) = 2.55, p = 0.027]. Thus, even the most face-selective voxels
in the FFA represent information distinguishing individual scenes
during perception. We did not find strong evidence of FFA rep-
resenting scene identity information during imagery (although
there was a very weak trend in that direction in Experiment 1),
but of course it is still possible that more sensitive experiments
could uncover such information. However, even if scene iden-
tity information does exist in FFA during imagery, the current
findings suggest that it is present to a smaller degree than in our
scene-selective ROIs, or in the FFA itself during perception.
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FIGURE 6 | Classifying scene identity information in face-selective

cortex. Classification accuracy for Experiments 1 and 2 using voxels from
the fusiform face area (FFA). Results are shown for classifying between
different scene items during perception (left bars), classifying between
scene items during mental imagery (middle bars), and re-instantiation of
perceptual information during mental imagery (right bars). Accuracies were
significantly above chance (AUC = 0.5) during perception for both
experiments, but did not differ from chance in either experiment during
imagery or for re-instantiation. Analyses used 80 voxels from each of the
left and right FFA, for a total of 160 voxels. ∗p < 0.05, ∗∗∗p < 0.001. Error
bars represent s.e.m. See text and Table 1 for full statistics.

REPLICATION
In addition to summarizing AUCs, t-statistics, p-values, and effect
sizes (Cohen’s d) for the critical results presented above, Table 1
also presents X2 and p-values for the two experiments combined,
using Fisher’s method of combining p-values across replications
(Fisher, 1925). Although Experiment 2 was initially conceived as
a control experiment to confirm that the visual labels used in
Experiment 1 did not drive successful classification during men-
tal imagery, it is clear from the data that Experiment 2 replicated
Experiment 1 very closely, and in many cases AUCs and effect
sizes were greater for Experiment 2 than Experiment 1. Thus,
given no evidence that visual vs. auditory labels made a difference
in the results of the two experiments, we viewed it as appropri-
ate to treat these experiments as a two-study meta-analysis and
combine their p-values.

Considering these combined p-values also does not substan-
tially alter the interpretation of any major results, but it does
afford even greater confidence that the results obtained in each
study individually were not due to random sampling fluctuations.
Using the meta-analysis p-values, classification of item-specific
information during perception was significantly above chance in
all ROIs (including FFA); classification of item-specific informa-
tion during imagery was significantly above chance in OPA, RSC,
and PCu/IPS (but not PPA or FFA); and re-instantiation classifi-
cation was significantly above chance in PPA, RSC, and PCu/IPS
(but not OPA or FFA).

CONTRIBUTIONS OF MEAN ACTIVATION
In MVPA, it can be important to consider to what extent
differences between conditions simply reflect difference in overall

activation levels and not the “pattern” of activity in a region per se
(e.g., Coutanche, 2013). To address this question, we performed
three control analyses, each repeating the analysis above with a
transformed version of the data. One such analysis considered the
original data with the mean activation value (across voxels, within
each trial) subtracted out (“mean-subtracted”); one considered
only the mean activation value as the sole feature input into classi-
fication (“mean-only”); and one considered the original data after
Z-scoring across voxels within each trial (“Z-scored”), which also
has the effect of removing the mean activation value.

Full results from these control analyses are presented in
Supplementary Table 1. Generally speaking, the pattern of results
suggested that mean activation values were not a critical con-
stituent of the successful classification performance in the anal-
yses presented above. Although mean activation values were
occasionally informative (i.e., performance of the mean-only clas-
sification was above chance), the mean-only classification was
often at chance in cases where the original-data classification
was successful, and even when the mean-only classification was
above chance, its performance was almost always poorer than the
original-data classification.

Furthermore, consideration of the mean-subtracted and
Z-scored analyses showed that their performance was very similar
to that of the original-data classification. In some instances, the
mean-subtracted or Z-scored data produced slightly better per-
formance than the original data and in other instances they were
slightly worse, but overall, differences were essentially negligible.
This demonstrates that even in cases where the mean activation
value was informative, it did not generally convey a significant
amount of unique information (i.e., information that was not
also encoded in the activity patterns of the mean-subtracted or
Z-scored data).

DISCUSSION
ITEM-SPECIFIC ACTIVITY IN SCENE-SELECTIVE AREAS DURING
PERCEPTION AND IMAGERY
In this study, we found that item-specific scene information was
present in multiple scene-selective cortical areas during both
visual perception and visual mental imagery. This finding sup-
ports and extends previous work that has found sub-category-
level information represented in various regions of scene-selective
CSE cortex during perception (Kriegeskorte et al., 2007; Walther
et al., 2009; Park et al., 2011; Bonnici et al., 2012; Epstein and
Morgan, 2012), as well as work that has uncovered item-specific
information in other areas during visual mental imagery (Thirion
et al., 2006; Harrison and Tong, 2009; Serences et al., 2009; Stokes
et al., 2009; Reddy et al., 2010; Lee et al., 2012; Xing et al., 2013).
However, to our knowledge, this is the first study demonstrating
that item-specific information about natural scenes is represented
in multiple areas of scene-selective cortex during reflective pro-
cesses engaged for mental imagery. This result, combined with the
results from our perception-to-imagery re-instantiation analyses,
provides additional evidence in favor of models that claim infor-
mation relevant to the item held in mind is represented in CSE
visual areas during reflective processing, and furthermore that
this activity supports reflection by partially re-instantiating the
same patterns of neural activity that were experienced when the
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item was initially perceived (Petrides, 1994; Kosslyn et al., 2001;
Curtis and D’Esposito, 2003; Ruchkin et al., 2003; Pasternak and
Greenlee, 2005; Ranganath and D’Esposito, 2005; Johnson et al.,
2007).

When considering activity from all of our scene-selective ROIs
combined (Figure 2), the evidence in favor of item-specific activ-
ity during both perception and imagery, and re-instantiation
from perception to imagery, was clear; all analyses in the
“Combined” region (Table 1) demonstrated large effect sizes
with strong statistical significance. Classifier performance was
less strong in the individual scene-selective ROIs than in the
combined region, suggesting that individual ROIs each con-
tributed non-redundant information to the unified cross-region
representation. However, it is notable that we still found some
evidence of item-specific scene information in all individ-
ual ROIs during both perception and imagery. Future stud-
ies will no doubt be helpful for replicating (and extending)
some of the borderline findings reported here, but the present
data demonstrate a promising start for the continued study
of fine-grained information and how it is combined across
regions in scene-selective cortex during both perception and
imagery.

We also observed differences among regions that are con-
sistent with previous observations and hypotheses, particularly
with regard to how clearly different scene-selective areas distin-
guish between perception and imagery. It is, of course, reasonable
to expect two areas to both represent information about visual
scenes, but for the nature of that information to differ between the
areas (e.g., Epstein, 2008; Park and Chun, 2009; Park et al., 2010).
As expected, “higher” visual areas such as the RSC less reliably
distinguished between perceiving and imagining scenes than the
presumably “lower” level OPA area (with PPA and PCu/IPS falling
in between), consistent with the hypothesis that areas later in the
perceptual scene-processing pipeline may contain information at
a higher level of abstraction that is more accessible and more read-
ily re-instantiated during reflective processing, such as retriev-
ing and/or reactivating information during mental imagery or
refreshing active representations (Johnson et al., 2007; Johnson
and Johnson, 2009). Future studies will be needed to determine
if classification accuracy in different areas can be manipulated
experimentally by varying the type and degree of low-level or
high-level information differentiating scene exemplars.

As noted in the Introduction, several previous studies have
used MVPA to examine the representation of visual informa-
tion during perception in scene-selective cortex at the category,
sub-category, and exemplar levels. Notably, Bonnici et al. (2012)
demonstrated that it is possible to decode highly similar natu-
ral scenes at the exemplar level during perception. In this study,
however, we opted to use scene exemplars that were drawn from
different scene sub-categories, to maximize our chances of success
for imagery-based decoding. This allowed us to conclude with
confidence that scene identity information can be decoded from
activity in scene-selective extrastriate cortex for exemplars with
relatively large differences in low-level image features, but leaves
open the question as to whether more fine-grained differences
(e.g., between two highly similar beach exemplars) could also be
decoded during mental imagery. Future studies could extend our

design to include imagery of exemplars drawn from the same
scene sub-categories to address this question.

It is also worth noting that although studies such as those
by Walther et al. (2009) and Park et al. (2011) have demon-
strated successful classification between scene sub-categories, it
is still unknown whether semantically labeled sub-categories
(e.g., “beaches” vs. “deserts”) truly enjoy a privileged categor-
ical representation in visually responsive cortex. An alterna-
tive hypothesis is that scene sub-categories (beaches/deserts)
and within-sub-category exemplars (beach 1/beach 2) are dif-
ferentiated using the same set of low-level visual features, and
that grouping scene stimuli by a semantic category label sim-
ply tends to produce collections of stimuli that are clustered
closely enough on those feature dimensions (and far enough
from the collections produced from other semantic labels) to
aid classification. Thus, what distinguishes two scenes from dif-
ferent sub-categories, vs. what distinguishes two scenes within
the same sub-category, may not itself be a categorical distinc-
tion, but instead only a difference of degrees of featural similarity.
Again, future MVPA studies of both perception and imagery,
using scene stimuli with greater similarity and/or more explicitly
defined low-level feature characteristics, could help address this
question.

SCENE INFORMATION IN FFA
In addition to scene-selective areas, the present study also found
that FFA encodes information differentiating individual scenes
from one another during perception, but did not find any reli-
able indication that FFA represents item-specific scene informa-
tion during imagery. This supports the finding of Park et al.
(2011), who also found above-chance classification performance
for sub-category-level scene information in FFA during percep-
tion. However, Park and colleagues’ “urban” scene stimuli con-
tained some representations of human beings, which they noted
could have driven their results in FFA. In contrast, our scene stim-
uli contained no representations of human or animal life, and
thus our study resolves the ambiguity over whether scene infor-
mation alone, devoid of faces or bodies, can drive above-chance
classification in FFA during perception.

Although FFA has been repeatedly shown to activate more for
faces than for other categories of visual stimuli, it does not acti-
vate exclusively for faces; other categories, including scenes, do
activate the FFA above baseline, even if the magnitude of that acti-
vation is less than for faces (e.g., Kanwisher et al., 1997, 1999;
McCarthy et al., 1997; Gauthier et al., 2000; Tong et al., 2000;
Yovel and Kanwisher, 2004). Our results thus suggest that this
activity evoked in FFA by non-face stimuli does carry informa-
tion about those stimuli’s identities; however, it remains to be
shown whether this information is actually used by the brain
in scene identification. At the same time, if the FFA is involved
to some extent in natural scene processing during perception,
these results could partially help explain the navigation deficits
that can accompany both acquired and congenital prosopagnosia,
although both forms of prosopagnosia are rather heterogeneous
disorders that may implicate a variety of visual deficits and brain
areas depending on the patient in question (Duchaine and Yovel,
2008).
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It is also notable that although we observed scene-specific
activity in FFA during perception, we found no such evidence
during mental imagery. Although it is possible that FFA does
contain relatively small amounts of item-specific information for
scenes during imagery that were simply too weak to be detected,
another possibility is that FFA processes certain features of all
incoming perceptual stimuli in a way that can be read out by
fMRI-based classification analyses, but that this information is
not used or re-instantiated during mental imagery of scenes.
PPA also showed relatively weak performance, compared to other
scene-selective regions, in the classification of individual scene
representations during imagery, but a key difference is that PPA
showed substantially stronger performance in the re-instantiation
analyses whereas FFA did not. Future studies employing more
stimulus categories, more ROIs, and more trials will be needed
to address the questions of whether other category-selective areas
besides FFA represent information about the identities of stim-
uli outside their preferred category during perception (or even
imagery), whether FFA contains identity information about non-
face stimuli during imagery to a degree that was not detectable in
the present investigation, and what factors may influence classifi-
cation success for scene identity in PPA and other scene-selective
regions during perception and/or imagery.

STATISTICAL AND METHODOLOGICAL CONSIDERATIONS
Results in the analyses classifying over all scene areas were very
robust for this area of research, with all AUCs > 0.55 and p < 0.01
in the imagery and re-instantiation analyses, and even stronger
during perception. The classification AUC values for individ-
ual ROIs tended to be lower (e.g., many around 0.53–0.54, with
chance = 0.50 and perfect classification = 1.0). However, it
is important to consider several important factors when inter-
preting the magnitude of such findings. First, there are many
different configurations of classification algorithms and param-
eters to choose from, which will tend to yield varying results.
The different methods should agree in broad terms, but some
might yield higher raw classification values on average, with the
drawback of greater between-subject variability that would lead
to decreased statistical significance overall. In this study, we opted
to use a more conservative algorithm (SVM) and method of
reporting its results (area under ROC curve) that in our previ-
ous tests had lower variance than other methods, even if the mean
performance values were not the highest.

These values are also highly consistent with those reported by
similar previous studies. For example, Eger et al. (2008) obtained
only about 55% accuracy (chance = 50%) classifying exemplars of
objects in the LOC during perception, and one might expect clas-
sification accuracy during imagery to be a bit lower than during
perception (as we indeed found here). Comparable performance
was found by Bonnici et al. (2012) for classifying between scene
exemplars during perception based on activity in parahippocam-
pal gyrus. Lee et al. (2012), whose experiment design is similar
to the one reported here, also reported classification accuracy of
just a few percentage points above chance for imagery of objects
based on activity in object-selective cortex. Although it is difficult
to make direct comparisons across studies given the heterogeneity
of visual information studied, brain regions examined, analysis

techniques used, output measures reported, fMRI parameters
applied, statistical power obtained (numbers of participants and
scan time per participant), and experimental designs used (e.g.,
block vs. event-related designs), it is clear that low classification
accuracies are common for research of this sort, but nonethe-
less consistent enough to yield statistically significant results with
typical participant sample sizes.

Because classifier performance values vary between algorithms
and studies, it may be useful to consider the values of standard
effect-size measures such as Cohen’s d (see Table 1). For example,
for classification of item-level information during mental imagery
in individual scene-selective regions, all the results we reported as
significant (p < 0.05) had effect sizes between 0.566 and 0.927.
These would generally be considered medium- to large-sized
effects (Cohen, 1988), even though the corresponding AUC values
for those effects were only 0.536 and 0.554, respectively.

We also note that all of the p-values reported here are two-
tailed, to err on the side of being conservative, although the use
of one-tailed values could be justified. Researchers continue to
debate over when and whether one-tailed tests should be used; but
when this issue was heavily discussed in the 1950s, Kimmel (1957)
stated three criteria for appropriate use of one-tailed tests: (1)
“. . . when a difference in the unpredicted direction, while possi-
ble, would be psychologically meaningless.” (2) “. . . when results
in the unpredicted direction will, under no conditions, be used
to determine a course of behavior different in any way from that
determined by no difference at all.” (3) “. . . when a directional
hypothesis is deducible from psychological theory but results in
the opposite direction are not deducible from coexisting psycho-
logical theory.” These conditions would seem to be satisfied in
the case of an algorithm that either performs better than chance
when given meaningful input or exactly at chance (on average)
when given random input. Any accuracies/AUCs dipping below
the 0.5 chance threshold can only denote performance which is
at chance, but which has a value less than 0.5 simply due to ran-
dom sampling fluctuations. As the only neurally/psychologically
viable interpretations are of performance above chance or a null
result, a one-tailed test would be appropriate by Kimmel’s cri-
teria. Thus, all the p-values reported here could potentially be
cut in half; although this would not substantially change any
major results, it would bring several individual analyses cur-
rently labeled “trends” within the conventional 0.05 significance
threshold.

Another methodological issue worthy of consideration is the
possible contribution of eye movements to our results. In the
present study, we did not monitor eye movements in the scan-
ner or instruct participants to maintain fixation on a single point
during imagery or perception, which invites the question as to
how classification performance might be affected by requiring
participants to maintain fixation. One possibility is that requiring
fixation could reduce trial-to-trial variability and thus improve
classifier performance, either from lesser variability in bottom-up
visual input or in the cognitive strategies employed by partici-
pants to perform mental imagery, or both. On the other hand,
maintaining fixation is generally more effortful and less natural
than free-viewing. Therefore, it is also possible that requiring fix-
ation may split participants’ attention between performing the
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actual task and their efforts to maintain a steady eye position, and
as a result actually reduce the quality of perceptual and imagined
representations and thus reduce classification performance.

Previous investigations of receptive-field sizes in the areas we
examined suggest that they are typically large and thus fairly
robust to changes in eye position. Specifically, Oliva and Torralba
(2006) noted that “Receptive fields in the inferior temporal cor-
tex and parahippocampal region cover most of the useful visual
field (20–40◦)” (p. 34). Similarly, MacEvoy and Epstein (2007)
found that receptive fields in the PPA, RSC, and OPA even
spanned across visual hemifields and concluded that these areas
“may support scene perception and navigation by maintaining
stable representations of large-scale features of the visual environ-
ment that are insensitive to the shifts in retinal stimulation that
occur frequently during natural vision” (p. 2089). Such receptive
fields would typically cover the entirety of the stimuli we pre-
sented (around 20◦ of visual angle), and thus making saccades
within the bounds of those stimuli should, in theory, have lit-
tle effect on activity patterns in those regions. A follow-up study
specifically examining the consequences of manipulating fixation
requirements would be necessary to resolve these questions con-
clusively, but based on the studies of receptive field sizes cited
above, we would predict the effect of fixation vs. free-viewing on
classification performance, if any, to be relatively modest.

SUMMARY
Overall, the present study presents strong evidence that several
scene-selective extrastriate areas represent individuating infor-
mation about complex natural scenes during both perception
and the reflective processes involved in mental imagery, and fur-
thermore that neural activity produced during scene perception
is re-instantiated in scene-selective cortical areas in the service
of reflective thought. Furthermore, we again find that certain
scene-selective regions differentiate more than others between the
overall processes of perception and reflection. We also found that
item-specific scene information is present in the face-selective
FFA during perception, but found no evidence that FFA rep-
resents scene identity information during top-down reflective
processing such as mental imagery. Future work will be needed to
more precisely establish the nature of the information represented
in each cortical area during perception and/or imagery, how that
information differs between areas, whether more fine-grained
information identifying exemplars within scene sub-categories
may also be successfully decoded during mental imagery, what
factors may contribute to which and how much perceptual infor-
mation is successfully re-instantiated during reflective thought,
how specificity of perceptual and reflective representations may
vary in different subject populations, and how information in
various regions contributes to distinguishing between perception
and reflection.
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Supplementary Figure 1 | Comparison of classification using different

numbers of voxels per region of interest. Classification analyses for

individual scene-selective ROIs in the main text (Figure 3) used 80 voxels

per ROI per hemisphere, for a total of 160 voxels per ROI. Here, those

analyses are repeated using 10, 20, 40, 80, 160, or 320 voxels per ROI per

hemisphere. If a participant did not have enough in-brain voxels in a given

ROI, all of their in-brain voxels in a 10 mm radius were used, so some

analyses contain fewer voxels than the stated number for some

participants. Classification performance varied with region, condition, and

experiment, but in most cases performance reached a plateau by 80

voxels per ROI per hemisphere, and in some cases performance

worsened at higher voxel counts (e.g., in OPA for imagery classification),

likely due to the inclusion of white matter or other noise voxels. P-values

represent uncorrected two-tailed t-tests against chance (0.5) at each

point, color-coded according to experiment. Error bars represent s.e.m.

Supplementary Table 1 | Contributions of mean activation levels to

classifier performance. All p-values represent two-tailed t-tests against a

chance AUC value of 0.5. For each region, experiment, and type of

analysis, classifier performance is reported for the original data (as

reported in the main manuscript and Table 1), the data with the mean

activation value (across voxels, within each trial) subtracted out, a

classifier based only on mean activity levels, and the data after Z-scoring

across features (within each trial). Experiment 1: all degrees of freedom

(df ) = 15. Experiment 2: all df = 11. AUC = area under ROC curve.
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