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Functional near-infrared spectroscopy (fNIRS) is an emerging low-cost noninvasive
neuroimaging technique that measures cortical bloodflow. While fNIRS has gained interest
as a potential alternative to fMRI for use with clinical and pediatric populations, it
remains unclear whether fNIRS has the necessary sensitivity to serve as a replacement
for fMRI. The present study set out to examine whether fNIRS has the sensitivity to
detect linear changes in activation and functional connectivity in response to cognitive
load, and functional connectivity changes when transitioning from a task-free resting
state to a task. Sixteen young adult subjects were scanned with a continuous-wave
fNIRS system during a 10-min resting-state scan followed by a letter n-back task with
three load conditions. Five optical probes were placed over frontal and parietal cortices,
covering bilateral dorsolateral PFC (dlPFC), bilateral ventrolateral PFC (vlPFC), frontopolar
cortex (FP), and bilateral parietal cortex. Activation was found to scale linearly with
working memory load in bilateral prefrontal cortex. Functional connectivity increased with
increasing n-back loads for fronto-parietal, interhemispheric dlPFC, and local connections.
Functional connectivity differed between the resting state scan and the n-back scan,
with fronto-parietal connectivity greater during the n-back, and interhemispheric vlPFC
connectivity greater during rest. These results demonstrate that fNIRS is sensitive to
both cognitive load and state, suggesting that fNIRS is well-suited to explore the full
complement of neuroimaging research questions and will serve as a viable alternative
to fMRI.
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INTRODUCTION
Unprecedented technical advances in the past 20 years have made
functional magnetic resonance imaging (fMRI) the primary neu-
roimaging modality for cognitive neuroscience. However, there
are some notable drawbacks to fMRI that limit its utility in imag-
ing young children and those with developmental disorders. First,
head motion leads to substantial artifacts due to its relatively low
temporal resolution and minimal constraint on head mobility in
the scanning apparatus. Offline motion correction algorithms are
effective for small movements, but larger movements necessitate
subject exclusion, requiring oversampling as high as 30% in chil-
dren with disorders such as Autism Spectrum Disorders (ASD),
Attention Deficit Hyperactivity Disorder (ADHD), and Epilepsy
(Yerys et al., 2009). In healthy young children (e.g., 4–6 years) who
can comply with task instructions, the exclusion rate due to head
motion was up to 40% (Yerys et al., 2009). Excessive head motion
poses even more of a limitation for examining functional con-
nectivity, the temporal co-activation of multiple brain regions,
because even very small movements (e.g., <1 mm) introduce a
systematic bias toward underestimating functional connectivity
between distant regions (Power et al., 2012; Van Dijk et al., 2012).
As the primary working hypothesis of some developmental disor-
ders (e.g., ASD) is reduced long-distant functional connectivity,
use of fMRI for those populations is particularly limiting. Second,

the MR scanning environment is intimidating for many children.
The enclosed nature of the scanning apparatus often produces
feelings of claustrophobia, and the loud noise is fear-inducing
for young children and autistic children with sensory hypersen-
sitivity. Thus, despite its robust properties as a neuroimaging
modality, fMRI is poorly suited for a large subset of pediatric
and clinical populations. Thus, it is imperative to develop alter-
nate neuroimaging modalities for investigating task-based and
functional connectivity research questions.

Functional near-infrared spectroscopy (fNIRS) is an emerg-
ing non-invasive brain imaging modality for recording cortical
hemodynamic activity. The method projects near-infrared light
through the scalp and records optical density fluctuations result-
ing from metabolic changes within the brain. Similar to fMRI,
cerebral blood flow is used as a proxy for neuronal activity. Both
the spatial resolution and penetration depth of fNIRS are depen-
dent upon the distances between light sources and detectors. The
result is that the spatial resolution of fNIRS is on the order of 2.5–
3 cm and is capable of imaging depths of 1–2 cm (McCormick
et al., 1992), making it well-suited for imaging cortical regions.
This technique is particularly resilient to contamination from
head motion since the optodes are affixed to the head and thus
move with the subject. The silent operation and unenclosed scan-
ning environment make fNIRS more amenable to subjects that
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have sensory hypersensitivity or claustrophobia. These qualities of
fNIRS make it particularly suitable for use with pediatric popula-
tions, including those with developmental disorders. While fNIRS
has been used in functional neuroimaging for almost 30 years
(Ferrari et al., 1985), it remains unclear whether fNIRS has the
requisite sensitivity to serve as an alternative to fMRI. To that
end, it is important that fNIRS be validated against cognitive phe-
nomena with known neural bases. While fNIRS has potential for
use with developmental and clinical populations, it is necessary
to first validate its sensitivity for cognitive processes in healthy
adults. Furthermore, in order for fNIRS to be considered as a
viable alternative to fMRI for examining developmental disorders,
it is vitally important that its sensitivity be validated on cogni-
tive processes commonly affected in those disorders. The present
study examines the sensitivity of fNIRS to changes in cognitive
state (e.g., resting to task) and task load during working mem-
ory, a component process of higher cognition that is disrupted in
numerous developmental and psychiatric disorders.

Working memory is a temporary buffer for active maintenance
and manipulation of goal-relevant information that critically
depends upon the integrity of prefrontal cortex and its connec-
tions with posterior brain regions (Miller and Cohen, 2001).
fMRI studies have consistently shown activation within the dor-
solateral prefrontal cortex (dlPFC) and posterior parietal cortex,
with significant left-hemisphere lateralization in prefrontal cortex
for verbal working memory tasks (for a meta-analysis, see Owen
et al., 2005). More specifically, studies have shown that activation
in left dlPFC scales linearly with working memory load (Braver
et al., 1997; Jansma et al., 2000; Veltman et al., 2003), indicating
load-dependent recruitment of dlPFC. Common manipulations
of load in verbal working memory tasks involve linear increases
in the size or temporal lag of to-be-remembered information.
For example, on the n-back task, letters are presented serially
with instructions to detect target letters that repeat, successively
(low load, termed 1-back) or with 2 or 3 intervening trials
(higher load, termed 2-back, and 3-back, respectively). Working
memory capacity predicts higher cognitive ability indexed by
general intelligence (Kane et al., 2005; Oberauer et al., 2005)
and reasoning (Süß et al., 2002). It increases during develop-
ment (Gathercole et al., 2004) and those age-related increases
relate to frontal-parietal white-matter maturation (Nagy et al.,
2004) and activation (Olesen et al., 2003). Working memory
is impaired in several developmental disorders (Alloway et al.,
2009) and its training improves higher cognition, such as rea-
soning (Jaeggi et al., 2008) and attention in ADHD (Klingberg
et al., 2005). Further, training-related changes are reflected in
frontal and parietal activation (Olesen et al., 2004). Thus, work-
ing memory is an optimal candidate for validation of fNIRS as it
is crucial for higher cognition, sensitive to developmental pathol-
ogy and intervention, and depends upon prefrontal and parietal
cortices.

A number of fNIRS studies have examined the effect of varying
working memory load on activation. The studies have gener-
ally found that higher working memory load tends to produce
greater activation within dlPFC (Hoshi et al., 2003; Li et al.,
2010; Ayaz et al., 2012; Molteni et al., 2012). Further, fNIRS
has demonstrated sensitivity to group differences in activation

during working memory, based on gender (Li et al., 2010), ADHD
diagnosis (Ehlis et al., 2008), schizophrenia diagnosis (Lee et al.,
2008), dopamine receptor genotype (Herrmann et al., 2007), and
mild cognitive impairment in the elderly (Niu et al., 2013b).
However, no fNIRS study has demonstrated dlPFC activation that
scales linearly with working memory load. As the utility of fNIRS
is contingent upon its robustness as an imaging modality, it is
important to demonstrate that fNIRS is sensitive enough to detect
the linear relationship between prefrontal activation and work-
ing memory load that has been documented with fMRI (Braver
et al., 1997; Jansma et al., 2000; Veltman et al., 2003). Additionally,
no study has examined functional connectivity during work-
ing memory with fNIRS. Thus, it is unknown whether fNIRS is
capable of detecting working memory load-dependent changes
in functional connectivity. Task-evoked functional connectivity
measurement by fNIRS, is itself novel with only a handful of stud-
ies to date (Chaudhary et al., 2011; Medvedev et al., 2011; Hall
et al., 2013).

It is presently not known whether fNIRS is sensitive to changes
in cognitive state. Sensitivity to changes in cognitive state from
drowsy to wakeful to cognitively engaged can be detected reli-
ably with scalp-based electroencephalography (Schomer and Da
Silva, 2010). Recent fMRI studies have shown how cortical func-
tional networks change as subjects transition from resting/awake
to cognitively engaged states (Gordon et al., 2012a,b). Specifically,
functional connectivity was greater during working memory than
rest between dlPFC and inferior parietal cortex (Gordon et al.,
2012b). State-dependent changes are important to understand as
they depend upon genetic factors (Gordon et al., 2012b) and can
reflect consolidation associated with learning (Lewis et al., 2009).
Further, task-free resting state, itself, is sensitive to individual vari-
ation in a variety of affective and behavioral traits (Vaidya and
Gordon, 2013). Thus, demonstrating that fNIRS is sensitive to
cognitive state is important to establish its versatility as a tool
that is as suitable for the full complement of research questions
as other neuroimaging modalities.

Previous investigations have found that resting-state networks
can be detected with fNIRS (White et al., 2009; Lu et al., 2010;
Mesquita et al., 2010; Zhang et al., 2010a,b), and are stable across
testing sessions (Zhang et al., 2011). Resting-state networks have
been shown to be segregated within different frequency bands
(Sasai et al., 2011) and correlate with networks detected by simul-
taneous fMRI (Sasai et al., 2012). Graph theory approaches have
also been successfully applied to resting-state fNIRS (Niu et al.,
2012), demonstrating its sensitivity to the topological organiza-
tion of resting-state networks and that these measurements are
stable across testing sessions (Niu et al., 2013a). However, no
studies have used fNIRS to investigate functional connectivity
differences between the resting state and a cognitive task.

The present study addressed two questions: First, is fNIRS
sensitive to load-dependent working memory changes in activa-
tion and functional connectivity in prefrontal-parietal regions?
Second, is fNIRS sensitive to functional connectivity differences
between working memory and a task-free resting state? Healthy
young adult subjects were imaged during a 10-min task-free rest-
ing state followed immediately by a verbal n-back task, with
three loads, 1-back, 2-back, and 3-back. We hypothesized that:
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(1) activation within prefrontal cortex would scale with n-back
load, (2) fronto-parietal functional connectivity would scale with
n-back load, and, (3) fronto-parietal functional connectivity
would be greater during task than rest.

METHOD
SUBJECTS
Sixteen Georgetown University undergraduates (6 male; 1 left-
handed) ages 18–24 years (Mean ± SD = 20.3 ± 1.7) par-
ticipated in the study for payment. Participants were not
using psychotropic medication (e.g., stimulants, anti-depressants,
anxiolytics) and had no history of neurological injury or dis-
ease, seizure disorder, or psychiatric diagnosis. All partici-
pants provided informed consent according to guidelines of
the Georgetown University Institutional Review Board, which
approved the protocol.

TASK PROCEDURE
fNIRS sessions consisted of a 10-min resting-state run in which
the subjects were instructed to close their eyes and remain awake,
followed by a 6.5 min n-back task. The sequence of rest and task
was not counter-balanced due to previous research showing that
task-induced changes in functional connectivity persist after task
completion (Evers et al., 2012; Gordon et al., 2012a; Harmelech
et al., 2013). During the n-back task, participants were presented
with a series of single consonant letters and instructed to press
a button with their dominant hand when the presented letter was
the same as the one presented n letters ago. Subjects were tested on
three blocks of each of the three load conditions: 1-back, 2-back,
and 3-back. The load condition order was pseudorandomized
using a modified Latin square. Each block consisted of 9 trials,
each lasting 3000 ms, with the letter exposed for 500 ms followed
by a lag of 2500 ms. Each 27-s block was followed by a 14-s inter-
val of fixation to allow the hemodynamic response to return to
baseline. Subjects practiced the n-back task prior to the scanning
session.

IMAGING PROCEDURE
Optical signals were recorded on a two-wavelength (690 and
830 nm) continuous-wave CW5 imaging system (TechEn, Inc.,
Milford, MA). Data were collected from detectors in parallel at
a sampling rate of 41.7 kHz, with each laser modulated at a dif-
ferent frequency to allow subsequent offline demodulation and
separation of source-detector pairs (i.e., channels). The 40 opti-
cal channels were comprised of 12 sources and 29 detectors,
arranged into 5 probes, covering bilateral parietal cortex, bilat-
eral prefrontal cortex, and frontal pole. Participants were fitted
with a 128-channel HydroCel EEG cap (Electrical Geodesics, Inc.,
Eugene, OR) prior to probe placement. The cap provided a con-
sistent frame of reference for positioning optical probes. Optode
coordinates (provided in Table 1) in 10–20 reference space were
estimated by triangulation with the three nearest EEG electrodes,
using the electrode coordinates provided by the manufacturer.
The NFRI software package (Singh et al., 2005) was then used to
generate interpolation kernels for projection of channel data onto
the brain surface, with interpolation only taking place between
channels on the same probe (Figure 1).

Table 1 | Optode positions computed from distances to neighboring

EEG electrodes.

Region Optode X Y Z

Left dl/vlPFC S01 −5.5848916 5.9299802 0.8992566

Left dl/vlPFC S02 −6.5386068 3.5896627 2.5317016

Left dl/vlPFC S03 −6.8767829 1.4968671 3.1051698

Right dl/vlPFC S04 5.5848916 5.9299802 0.8992566

Right dl/vlPFC S05 6.5386068 3.5896627 2.5317016

Right dl/vlPFC S06 6.8767829 1.4968671 3.1051698

Left parietal S07 −3.2937507 −3.5253026 7.6092289

Left parietal S08 −6.8859022 −2.4269973 3.9041052

Right parietal S09 3.2937507 −3.5253026 7.6092289

Right parietal S10 6.8859022 −2.4269973 3.9041052

Frontal pole S11 1.9829266 9.1819183 0.0705624

Frontal pole S12 −1.9829266 9.1819183 0.0705624

Left dlPFC D01 −4.0697039 7.8642451 0.0136511

Left vlPFC D02 −5.0047896 6.7598403 −1.9661292

Left dlPFC D03 −4.7733352 6.5438124 2.9521678

Left vlPFC D04 −6.2841462 4.3467260 −1.6610823

Left dlPFC D05 −5.2295352 5.2107974 3.9431675

Left vlPFC D06 −7.0997050 1.3796777 −0.0546826

Left dlPFC D07 −5.9805701 2.8239378 4.6847051

Right dlPFC D08 4.0697039 7.8642451 0.0136511

Right vlPFC D09 5.0047896 6.7598403 −1.9661292

Right dlPFC D10 4.7733352 6.5438124 2.9521678

Right vlPFC D11 6.2841462 4.3467260 −1.6610823

Right dlPFC D12 5.2295352 5.2107974 3.9431675

Right vlPFC D13 7.0997050 1.3796777 −0.0546826

Right dlPFC D14 5.9805701 2.8239378 4.6847051

Left parietal D15 −2.0340789 −1.3669953 8.4747830

Left parietal D16 −2.8070659 −5.1200481 7.0390415

Left parietal D17 −5.5694535 −2.8568375 6.1385888

Left parietal D18 3.6944529 7.0014432 −2.6781789

Left parietal D19 −7.1484855 −0.3844012 3.3718455

Right parietal D20 −6.4584192 −4.8154434 0.8565472

Right parietal D21 2.8070659 −5.1200481 7.0390415

Right parietal D22 2.0340789 −1.3669953 8.4747830

Right parietal D23 5.5694535 −2.8568375 6.1385888

Right parietal D24 3.3304629 8.0217702 2.7577466

Frontal pole D25 6.4584192 −4.8154434 0.8565472

Frontal pole D26 7.1484855 −0.3844012 3.3718455

Frontal pole D27 0.0000000 9.1241807 0.6243727

Frontal pole D28 −3.6944529 7.0014432 −2.6781789

Frontal pole D29 −3.3304629 8.0217702 2.7577466

Source optodes are denoted with S, and detector optodes are denoted with D.

Source optodes in PFC were located along the boundary between dlPFC and

vlPFC, with detector optodes above and below giving rise to dlPFC and vlPFC

channels, respectively.

BEHAVIORAL DATA ANALYSIS
Behavioral data were lost for 2 subjects due to computer malfunc-
tion. Subject accuracy was computed for each load condition by
taking the mean percentage of correct trials. Reaction time was
computed by taking the mean across correct trials within each
load condition. Repeated-measures ANOVAs and paired t-tests
were performed for both accuracy and reaction time.
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FIGURE 1 | NIRS probe configuration. Upper left panel shows the right
parietal and right frontal probes and the upper right panel shows the medial
frontal probe. Bottom panel is a rendering of estimated channel positions
on a template brain. Colors indicate the channel sets used for interpolation.

fNIRS PREPROCESSING
Data were low-pass filtered with a high-order (400) FIR filter at
0.8 Hz and downsampled to 20 Hz. Raw optical density signals
were converted to hemoglobin concentration changes using the
modified Beer–Lambert law (Cope and Delpy, 1988) with the
HOMer software package (Huppert et al., 2009). The oxy-Hb sig-
nal has previously been shown to correlate with blood flow better
than the deoxygenated signal (Hoshi et al., 2001), thus interpre-
tations focus on the oxygenated signal. Results for deoxygenated
data are provided in the supplementary materials.

fNIRS ANALYSIS—ACTIVATION
Channel timecourses were modeled with a general linear model
(GLM) in NIRS-SPM (Ye et al., 2009). Regressors were gener-
ated by convolving the weighted task boxcar function with the
canonical hemodynamic response function provided by SPM8
(Friston et al., 1994). Data were corrected for low frequency
drift by detrending using the wavelet-MDL algorithm (Jang et al.,
2009) and corrected for serial correlations, such as those pro-
duced by physiological noise sources, using the HRF precolor-
ing method (Worsley and Friston, 1995) implemented within
NIRS-SPM (Ye et al., 2009). In order to separate the effects of
load-dependent and load-independent activation, two regressors
were generated: (1) a load-independent regressor in which all
n-back blocks were weighted equally, and (2) a load-dependent
regressor in which each n-back block was weighted by its load
(i.e., 1, 2, or 3). Channel-wise beta values were compared across
subjects for outliers. Subjects that had two or more adjacent chan-
nels with beta values over 3 standard deviations from the group
mean were excluded from further analysis. Three subjects were
excluded in this manner, thus reported results are from N = 13.
The channel-wise beta values from the remaining subjects were
then interpolated into voxel space. T-contrasts were then used
to generate statistical parametric maps of activation for each
regressor. A p-value correction was applied to control the family-
wise error rate using the Lipschitz-Killing curvature-based Euler

characteristic (EC) approach (Li et al., 2012). Activation maps
were thresholded at a corrected threshold of p < 0.05.

fNIRS ANALYSIS—FUNCTIONAL CONNECTIVITY
As fMRI studies have primarily found functional resting-state
networks in the 0.01–0.10 Hz frequency range, both the resting-
state data and n-back data were filtered around this range. This
step also prevented high-frequency physiological artifacts from
biasing the results. To this end, a band-pass Fourier filter was
applied using the publicly available iFilter script for Matlab (Filter
parameters: center = 0.035 Hz, width = 0.04 Hz, shape = 10;
corresponding to a pass-band of approximately 0.009–0.09 Hz).

Load-dependent
For each n-back load, the individual block timecourses were
concatenated and the Pearson correlation coefficient was com-
puted between all channel-pairs. A Fisher’s r-to-Z transformation
was then applied to normalize the variance of the correlation
values. For each channel-pair, the transformed correlation val-
ues were regressed against the corresponding n-back load. The
t-statistic of the estimated beta value (i.e., the beta value divided
by its standard error) was used in a one-sample t-test across sub-
jects. Channels were grouped into 7 anatomical regions: left/right
parietal (P), left/right ventrolateral PFC (vlPFC), left/right dorso-
lateral PFC (dlPFC), and frontal pole (FP). For each region-pair,
a one-sample t-test was performed on the channel-wise t-statistic
against the null hypothesis that the mean channel-wise t-statistic
was less than the corresponding critical value at p < 0.05. A
Bonferroni correction was applied to the region-wise p-values to
control for multiple comparisons. The final significance threshold
was set at p < 0.05.

State-dependent
To determine the contribution of cognitive state to functional
connectivity, the resting-state and n-back scans were compared.
Beginning and ending sections of the resting-state scan were
removed to match the duration of the n-back task. In order
to mitigate the influence of activation on the state-wise func-
tional connectivity comparison, activation was regressed from the
n-back fNIRS data. A GLM was created in NIRS-SPM with each
load-level as a separate regressor. This GLM was necessary in
order to remove non-linear load effects that would not be cap-
tured by the linear GLM used in the activation analyses. The
residuals from the estimation were then used in the connectiv-
ity analyses. The results from the connectivity analyses without
this regression step are provided in Supplementary Figures 4, 5.
Regression of activation was not applied in the load-dependent
functional connectivity analysis, as different n-back loads are
directly comparable and make an interpretable contribution to
load-dependent changes in functional connectivity. The Pearson
correlation was computed between all pairs of channels and
Fisher’s r-to-Z transformation was applied. For each channel-pair,
a paired t-test (n-back > rest) was computed across subjects.
For each region-pair, a one-sample t-test was performed on the
channel-wise t-statistic. A Bonferroni correction was applied to
the region-wise p-values to control for multiple comparisons. The
p-value threshold was set at p < 0.05.
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RESULTS
TASK PERFORMANCE
One-Way repeated-measures ANOVA with Greenhouse-
Geisser correction revealed a main effect of load on accuracy
[F(1.768, 17.677) = 4.043, p < 0.05]. Paired t-tests indicated
that mean accuracy for 1-back (98.7 ± 1.9%) and 2-back
(98.3 ± 3.0%) were near ceiling and did not differ (Figure 2A).
Accuracy for the 3-back (94.6 ± 4.8%) condition was significantly
lower than the 1-back [t(10) = 2.292, p < 0.05] and the 2-back
[t(10) = 2.236, p < 0.05].

One-Way repeated-measures ANOVA with Greenhouse-
Geisser correction revealed a main effect of load on reaction
time [F(1.272, 12.722) = 7.697, p < 0.05]. Paired t-tests indicated
that 1-back (559 ± 106 ms) was performed faster than the
2-back (665 ± 218 ms), t(10) = 2.423, p < 0.05, and the 3-back
(800 ± 207 ms), t(10) = 4.513, p < 0.005, while the 2-back and
3-back did not differ (Figure 2B).

LOAD-DEPENDENT ACTIVATION
Load-dependent oxy-Hb activation was significant in bilateral
dlPFC (Figure 3), showing that the engagement of these regions
increased linearly as working memory load increased from 1-back

to 3-back trials on the verbal n-back task. Activation for the load-
independent regressor, in which all blocks were weighted equally,
did not survive correction.

LOAD-DEPENDENT FUNCTIONAL CONNECTIVITY
Oxy-Hb functional connectivity increased with increasing n-back
loads: (1) between hemispheres for parietal cortex, L-Par—
R-Par, and prefrontal cortex, L-vlPFC—R-vlPFC, L-dlPFC—R-
dlPFC, L-vlPFC—R-dlPFC; (2) between frontal and parietal
regions within the left (L-Par—L-dlPFC) and right (R-Par—R-
dlPFC) hemispheres, across hemispheres (L-Par—R-dlPFC), and
between parietal and frontopolar cortex (R-Par—FP, L-Par—
FP); (3) between adjacent regions in frontal cortex, L-vlPFC—
L-dlPFC, R-vlPFC—R-dlPFC, FP—L-dlPFC, FP—R-dlPFC; and
(4) within all regions: L-Par, R-Par, L-vlPFC, R-vlPFC, L-dlPFC,
R-dlPFC, FP (Figures 4A,B).

STATE-DEPENDENT FUNCTIONAL CONNECTIVITY
Oxy-Hb functional connectivity increased from the resting-state
run to n-back task: (1) between frontal and parietal regions,
L-Par—R-vlPFC, R-Par—R-vlPFC; (2) between adjacent frontal
regions, L-dlPFC—FP, R-dlPFC—FP; and (3) within bilateral

FIGURE 2 | Effect of n-back load on accuracy (A) and reaction time (B). The 3-back load condition had significantly lower accuracy than 1-back and 2-back
conditions (A). Reaction times for the 1-back condition were significantly faster than 2-back and 3-back (B).

FIGURE 3 | Increases in activation with increasing working memory load. Load-dependent activation is seen in bilateral prefrontal cortex. p < 0.05,
EC-corrected.
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FIGURE 4 | Channel-wise (A) and region-wise (B) load-dependent

functional connectivity matrices. Warm colors denote a load-dependent
increase in functional connectivity, while cool colors denote load-dependent

decrease in functional connectivity. Abbreviations: Par, Parietal; vlPFC,
ventrolateral prefrontal cortex; dlPFC, dorsolateral prefrontal cortex; FP,
frontal pole.

FIGURE 5 | Channel-wise (A) and region-wise (B) state-dependent

functional connectivity matrices. Warm colors denote connections where
functional connectivity was greater during the n-back than at rest, while cool

colors denote greater connectivity at rest. Abbreviations: Par, Parietal; vlPFC,
ventrolateral prefrontal cortex; dlPFC, dorsolateral prefrontal cortex; FP,
frontal pole.

dlPFC, R-dlPFC, L-dlPFC (Figure 5). In contrast, functional
connectivity decreased from the resting-state run to the n-back
task: (1) between homologous frontal regions: L-vlPFC—R-
vlPFC, L-dlPFC—R-vlPFC. Thus, task-engagement resulted in
an increase of functional connectivity between right vlPFC and
bilateral parietal cortex, within bilateral dlPFC, and between
bilateral dlPFC and FP. Functional connectivity decreased
from rest to task between right vlPFC and left PFC (vlPFC
and dlPFC).

DISCUSSION
The present study addressed two questions: (1) whether fNIRS
is sensitive to load-dependent working memory changes in

activation and functional connectivity in prefrontal-parietal
regions, and (2) whether fNIRS is sensitive to functional con-
nectivity differences between a working memory task and a
task-free resting state. Activation was found to increase linearly
with working memory load in bilateral PFC. Functional con-
nectivity increased with working memory load between frontal
and parietal regions, between hemispheres for homologous
frontal and parietal regions, and locally (i.e., within regions and
between adjacent regions). Change in cognitive state, from rest-
ing to working memory, changed functional connectivity such
that it increased in fronto-parietal connections but decreased
in inter-hemispheric frontal connections. These results collec-
tively demonstrate that fNIRS detected functional neural changes
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associated with modulation of cognitive load and state in frontal
and parietal cortices.

Working memory load-dependent activation increased lin-
early in bilateral dorsolateral prefrontal cortex, with stronger
activation in the left hemisphere. This load-dependent prefrontal
activation is consistent with previous fMRI findings (Braver et al.,
1997; Jansma et al., 2000; Veltman et al., 2003). Braver et al.
(1997) used a verbal n-back with loads of 0-, 1-, 2-, and 3-back
and found load-dependent activation in bilateral dlPFC and left
vlPFC. Jansma et al. (2000) used a spatial n-back task with loads
0-, 1-, 2-, and 3-back and found load-dependent activation in
bilateral dlPFC and parietal cortex. Veltman et al. (2003) used
a verbal n-back with loads of 0-, 1-, 2-, and 3-back and found
load-dependent activation in bilateral dlPFC, left vlPFC, and left
parietal cortex. Although found in fMRI studies, parietal activa-
tion did not survive corrected threshold in the present study. It
has been shown that parietal regions have a longer scalp-to-brain
distance than frontal regions and that this increased distance
results in lower signal-to-noise ratio, as measured by correlation
with simultaneous fMRI (Cui et al., 2011). Thus, the increased
distance between scalp and brain may have impeded detection of
activation in parietal cortex. Most previous fNIRS studies using
a verbal n-back task examined load effects in a pairwise man-
ner: subtracting the mean signal change of 1-, 2-, and 3-back
each from 0-back (Hoshi et al., 2003), comparing mean signal
change of 1-, 2-, and 3-back in an ANOVA (Li et al., 2010), and
using a GLM to compare 1-, 2-, 3-back each with 0-back and
baseline (Molteni et al., 2012). Ayaz et al. (2012) used a repeated-
measures ANOVA to find a main effect of load on activation in
left PFC, though post-hoc analyses showed only that 3-back had
greater activation that 0- and 1-back. The present study is the
first to use fNIRS to test for linear increases of activation spanning
multiple working memory loads. As optode coverage was limited
to prefrontal, parietal, and frontal pole, it is unknown whether
other regions such as visual or temporal cortices were also sensi-
tive to load-related increase. Establishing the sensitivity of fNIRS
to prefrontal load-dependent modulation provides a useful tool
for detecting both immature and disordered functional anatomy
underlying higher order cognition. Working memory capacity
predicts a variety of higher cognitive functions including read-
ing ability (Swanson and Jerman, 2007), reasoning and problem
solving (Süß et al., 2002), and general intellectual function as
indexed by IQ (Kane et al., 2005; Oberauer et al., 2005). Prefrontal
response to working memory demands depends upon dopamin-
ergic activity (Aalto et al., 2005; McNab et al., 2009). Therefore,
a load-dependent working-memory fNIRS probe is likely to be
a useful tool in detecting disturbances in prefrontal functioning
supporting higher cognition.

Functional connectivity was found to increase with work-
ing memory load between frontal and parietal regions, between
hemispheres for homologous frontal and parietal regions, and
locally (i.e., within regions and between adjacent regions). This
finding supports the view that working memory is supported
in a load-dependent manner by communication between pre-
frontal and parietal cortices, as well as between hemispheres.
Notably, fronto-parietal functional connectivity increased with
load for dlPFC, but not vlPFC. These findings are in accord

with previous fMRI research showing load-dependent functional
connectivity between contralateral and ipsilateral prefrontal and
parietal regions, with stronger parietal connectivity with dlPFC
than with vlPFC (Narayanan et al., 2005). This is the first
demonstration of fNIRS sensitivity to functional connectivity
changes related to working memory load, establishing the util-
ity of fNIRS for probing task-evoked functional connectivity. It
is of particular importance that fNIRS be shown to have sensi-
tivity to load-related changes in functional connectivity, as this
may allow functional connectivity to serve as a proxy for struc-
tural connectivity in those who cannot be imaged with traditional
methods. Structural brain connectivity is typically assessed using
Diffusion Tensor Imaging (DTI), an MRI technique that esti-
mates the integrity of white-matter tracts. The reliance upon
MRI precludes its use with a large subset of the developmen-
tal and clinical populations. This is particularly troublesome for
developmental disorders such as ASD, which are associated with
disruptions in connectivity (Courchesne and Pierce, 2005; Just
et al., 2012). While fNIRS does not provide structural information
directly, functional connectivity may provide indirect structural
information. Functional connectivity depends, at least in part,
upon the quality of structural connections between regions, and
previous fMRI work has shown that functional connectivity pre-
dicts white matter integrity (Gordon et al., 2011). By measuring
the relative changes of functional connectivity across varying
task loads, the strength of the underlying structural connec-
tions may be estimated. In this way, fNIRS could prove to be
a valuable tool for assessment of brain connectivity in popula-
tions that cannot currently be reached by DTI. However, fNIRS
must first be capable of detecting connectivity differences across
workloads. The present demonstration that fNIRS is sensitive to
changes in functional connectivity resulting from working mem-
ory load provides further support for the potential of fNIRS in
this domain.

The flexible engagement and disengagement of cognitive
resources for serving current goals is the hallmark of mature cog-
nition. Set-shifting, the ability to switch between response sets, is
a form of cognitive flexibility that continues developing through
early adulthood (Kalkut et al., 2009). Furthermore, set-shifting is
impaired in developmental disorders of executive function such
as ASD (Maes et al., 2011). Therefore, this form of flexibility is
a vulnerable component of executive function. We reasoned that
the simplest case of such flexibility is the transition from a rest-
ing to a task-performing state—the resting state can be thought
of as one of unconstrained attention (as subjects are told to not
think of anything in particular but to stay awake) when contrasted
with n-back performance where attention has to be constrained
to evaluating letters for n-back targets. fMRI studies show that
fronto-parietal functional connectivity becomes stronger as sub-
jects transition to a task from being at rest, and most impor-
tantly, individual variation in the magnitude of state-related
functional connectivity changes predicted attentional function
in everyday life (Gordon et al., 2012a,b). Here, we found that
increased fronto-parietal functional connectivity was accompa-
nied by reduced interhemispheric frontal connectivity, as subjects
transitioned from rest to the task. A task-related decrease in func-
tional connectivity between homologous prefrontal regions may
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be the result of a task-related increase of functional lateraliza-
tion. Activation is commonly found to be stronger in the left
hemisphere in verbal working memory paradigms (Owen et al.,
2005). It stands to reason that an unconstrained resting state
may have greater inter-hemispheric connectivity than a task that
places demands on functions that are strongly lateralized. These
changes were not driven by load-related variability in functional
connectivity, because loads were regressed out. In children with
connectivity abnormalities, such as those with ASD, state-related
changes in functional connectivity suggested lack of engagement
of task-selective circuitry and predicted variability on inattention
symptoms among school-aged children (You et al., 2013). Thus,
the availability of an accessible imaging modality that is sensi-
tive to state-related changes in functional communication will be
useful for investigation of both normal and disordered cognition.
This demonstration of the sensitivity of fNIRS to cognitive state
is an important step toward measuring cognitive flexibility.

The present findings need to be considered in the context
of the following methodological issues: First, while fNIRS has
excellent temporal resolution and resilience to artifacts arising
from head motion, the spatial resolution is inferior to fMRI.
Although fitted EEG caps were used to position NIRS probes in
reference to standard 10–20 coordinates, the location of channels
with respect to underlying brain regions could not be indepen-
dently verified. These factors make precise localization of fNIRS
signals particularly difficult. However, the spatial resolution of
fNIRS is low enough (2–3 cm) that these relatively small impre-
cisions should have only a minimal impact on the results. Second,
while the medial frontal channels are likely to overlap with fron-
topolar cortex, there is some difficulty in interpretation due to
greater depth of cortex as it approaches the medial longitudinal
fissure. Thus, medial frontal channels may have covered regions
where cortex was further from the scalp, potentially weakening
the signal relative to lateral prefrontal cortices. Third, while the
deoxygenated hemoglobin signal tended to show similar patterns
of activation (Supplementary Figure 1) and functional connec-
tivity (Supplementary Figures 2, 3) to the oxygenated signal, the
patterns were not identical. Given that task-evoked influx of oxy-
genated hemoglobin far outpaces oxygen metabolism, it is not
surprising that the oxygenated hemoglobin signal is more robust
than the deoxygenated signal. Further, deoxygenated hemoglobin
signal tends to have lower signal-to-noise ratio than oxygenated,
due in part to lesser tissue penetration of the short-wavelength
light associated with deoxygenated signal. Fourth, task perfor-
mance did not scale linearly with n-back load. This is not sur-
prising as performance is limited by the sensitivity of the task
to measure differences and is subject to ceiling and floor effects.
In addition, subjects are often able to accommodate increased
workloads without a significant change in performance simply
by increasing effort. In contrast, brain activation is closely linked
to effort and is thus expected to be more sensitive to changes
in workload than behavior. This is evidenced by studies show-
ing group differences in brain activation where performance does
not differ (Matsuo et al., 2006; Herrmann et al., 2007). Therefore
it is not necessary for task performance to scale with working
memory load. Despite the limitations, our findings show some
useful attributes of prefrontal-parietal functioning, specifically

sensitivity to working memory load and cognitive state. This
sensitivity makes fNIRS a useful imaging modality for a large seg-
ment of children and adults who cannot be reached by fMRI. As
this field matures, some consensus will emerge regarding data
processing steps and parameter choices that ought to make it
possible to compare results across studies more reliably.

In sum, this study demonstrates the utility of fNIRS for detec-
tion of activation and functional connectivity related to cognitive
load and state. These findings are particularly important as they
provide a basis for the use of fNIRS as an alternative to fMRI in
studies of executive function, particularly in pediatric and clini-
cal populations that are not amenable to fMRI. Working memory
is an important domain in this regard, as it develops over the
course of childhood and adolescence and is subverted in devel-
opmental disorders. This study is the first to show that fNIRS has
the requisite sensitivity to detect activation and functional con-
nectivity that increase linearly with increasing working memory
load, and one of the first to demonstrate that fNIRS can reliably
detect differences related to cognitive state (e.g., rest versus task).
In order for fNIRS to be adopted for widespread use, it is vital
to first demonstrate its sensitivity to activation and functional
connectivity during cognitive processes of interest.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fnhum.

2014.00076/abstract
Load-dependent Deoxy-Hb activation

Load-dependent activation for the deoxy-Hb signal did not
survive correction, but was patterned similarly to oxy-Hb
with bilateral frontal activation (Supplementary Figure 1). Load-
independent activation was not observed.
Load-dependent Deoxy-Hb functional connectivity

Load-dependent deoxy-Hb functional connectivity reached
corrected threshold in frontal cortex only, increasing with greater
n-back loads: for (1) fronto-parietal connections (FP-lP, FP-
rP); (2) frontal interhemispheric connections (lvlPFC-rvlPFC);
(3) parieto-parietal connections (lP-rP); and local connections
(rvlPFC-rdlPFC, lP, lvlPFC, ldlPFC, FP, rdlPFC, rvlPFC, rP;
Supplementary Figure 2).
State-dependent Deoxy-Hb functional connectivity

Deoxy-Hb functional connectivity was greater dur-
ing the n-back run than the resting state run between
(Supplementary Figure 3): (1) frontal and parietal regions
(FP-lP, rdlPFC-lP, rvlPFC-lP, rdlPFC-rP); (2) between parietal
regions (lP-rP); and within regions (rP, lP, rdlPFC). Functional
connectivity was greater for resting-state than n-back: (1) for all
significant connections with left frontal regions (lvlPFC-ldlPFC,
lvlPFC-FP, ldlPFC-FP, ldlPFC-rdlPFC, lvlPFC-rvlPFC, ldlPFC-
rvlPFC); (2) between frontal and parietal regions: rP-lvlPFC; and
(3) within frontal regions (ldlPFC, rvlPFC, FP).
State-dependent functional connectivity without task
regression

Oxy-Hb signal showed task-related functional connectivity
that was much more prominent than in the task-regression
case for: (1) fronto-parietal connections (lvlPFC-lP, ldlPFC-lP,
rdlPFC-lP, lvlPFC-rP, ldlPFC-rP, FP-rP, rdlPFC-rP); (2) between
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hemispheres for parietal (lP-rP); and (3) between bilateral dlPFC
and FP (ldlPFC-rdlPFC, ldlPFC-FP, rdlPFC-FP). Similarly, the
deoxygenated signal showed greater fronto-parietal (lvlPFC-lP,
ldlPFC-lP, FP-lP, rdlPFC-lP, FP-rP, rdlPFC-rP), parieto-parietal
(lP-rP, lP-lP, rP-rP), and fronto-frontal (vlPFC-FP, dlPFC-FP)
task-related functional connectivity (Supplementary Figure 5)
relative to the task-regressed results. The increase in task-related
functional connectivity is interpreted as the result of bias from the
presence of task-related activation.

Supplementary Figure 1 | Load-dependent activation from the

deoxygenated hemoglobin signal shared a similar pattern with the

oxygenated signal, but did not reach significance. p < 0.05, uncorrected.

Supplementary Figure 2 | Channel-wise (A) and region-wise (B)

load-dependent functional connectivity matrices for the deoxygenated

signal. Warm colors denote a load-dependent increase in functional

connectivity, while cool colors denote load-dependent decrease in

functional connectivity. Abbreviations: Par, Parietal; vlPFC, ventrolateral

prefrontal cortex; dlPFC, dorsolateral prefrontal cortex; FP, frontal pole.

Supplementary Figure 3 | Channel-wise (A) and region-wise (B)

state-dependent functional connectivity matrices from deoxygenated

hemoglobin signal. Warm colors denote connections where functional

connectivity was greater during the n-back than at rest, while cool colors

denote greater connectivity at rest. Abbreviations: Par, Parietal; vlPFC,

ventrolateral prefrontal cortex; dlPFC, dorsolateral prefrontal cortex; FP,

frontal pole.

Supplementary Figure 4 | Channel-wise (A) and region-wise (B)

state-dependent functional connectivity matrices without performing

regression on the task data (oxygenated hemoglobin signal). Warm colors

denote connections where functional connectivity was greater during the

n-back than at rest, while cool colors denote greater connectivity at rest.

Abbreviations: Par, Parietal; vlPFC, ventrolateral prefrontal cortex; dlPFC,

dorsolateral prefrontal cortex; FP, frontal pole.

Supplementary Figure 5 | Channel-wise (A) and region-wise (B)

state-dependent functional connectivity matrices without performing

regression on the task data (deoxygenated hemoglobin signal). Warm

colors denote connections where functional connectivity was greater

during the n-back than at rest, while cool colors denote greater

connectivity at rest. Abbreviations: Par, Parietal; vlPFC, ventrolateral

prefrontal cortex; dlPFC, dorsolateral prefrontal cortex; FP, frontal pole.
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