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The way new spatial information is encoded seems to be crucial in disentangling
the role of decisive regions within the spatial memory network (i.e., hippocampus,
parahippocampal, parietal, retrosplenial, . . . ). Several data sources converge to suggest
that the hippocampus is not always involved or indeed necessary for allocentric
processing. Hippocampal involvement in spatial coding could reflect the integration of
new information generated by “online” self-related changes. In this fMRI study, the
participants started by encoding several object locations in a virtual reality environment
and then performed a pointing task. Allocentric encoding was maximized by using a survey
perspective and an object-to-object pointing task. Two egocentric encoding conditions
were used, involving self-related changes processed under a first-person perspective
and implicating a self-to-object pointing task. The Egocentric-updating condition involved
navigation whereas the Egocentric with rotation only condition involved orientation
changes only. Conjunction analysis of spatial encoding conditions revealed a wide
activation of the occipito-parieto-frontal network and several medio-temporal structures.
Interestingly, only the cuneal areas were significantly more recruited by the allocentric
encoding in comparison to other spatial conditions. Moreover, the enhancement of
hippocampal activation was found during Egocentric-updating encoding whereas the
retrosplenial activation was observed during the Egocentric with rotation only condition.
Hence, in some circumstances, hippocampal and retrosplenial structures—known for
being involved in allocentric environmental coding—demonstrate preferential involvement
in the egocentric coding of space. These results indicate that the raw differentiation
between allocentric versus egocentric representation seems to no longer be sufficient
in understanding the complexity of the mechanisms involved during spatial encoding.
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INTRODUCTION
In order to interact with space, humans need to integrate spatial
information according to new objects encountered and/or new
motion information (e.g., object- or self-motion, Wolbers and
Hegarty, 2010). Encoding and storing spatial information is sup-
posed to rely on the activity of one of these two types of spatial
representation (Burgess, 2006): (a) egocentric, centered on the
subject, coding for self-to-object relations; (b) allocentric, cen-
tered on the environment, coding for object-to-object relations.
Various evidence sources, ranging from single neuron record-
ings in animals (O’Keefe and Dostrovsky, 1971; Andersen et al.,
1985) to fMRI and neuropsychological observations (Bisiach and
Luzzatti, 1978; Aguirre and D’Esposito, 1999; Holdstock et al.,
2000; Mellet et al., 2000; Spiers et al., 2001; Chokron, 2003;
Burgess et al., 2006; Fields and Shelton, 2006; Maguire et al., 2006;
Shrager et al., 2008), suggest that the two types of spatial repre-
sentations rely on the occipito-temporo-parietal cortices. Among

these regions, the posterior parietal cortex sustains egocentric
processing (Chokron, 2003) while the medio-temporal regions
are required for the allocentric processing (O’Keefe and Nadel,
1978; Holdstock et al., 2000; Milner and Goodale, 2008; Finke
et al., 2011).

The connection proposed between the allocentric processing
and the hippocampus is partly due to the strong relationship
between the “Place cells” firing and landmark sensory aspects
observed in animal studies (e.g., O’Keefe and Dostrovsky, 1971;
O’Keefe and Nadel, 1978; O’Keefe and Burgess, 1996). fMRI stud-
ies in humans during route navigation congruently revealed that
the activation of hippocampal and parahippocampal regions cor-
related with relevant landmark information (Janzen and Van
Turennout, 2004; Janzen and Weststeijn, 2007; Janzen et al.,
2007). However, several data sources suggest that the hippocam-
pus is not always involved or necessary for allocentric processing
(Aguirre et al., 1996; Bohbot et al., 1998; Galati et al., 2000;
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Committeri et al., 2004; Bastin et al., 2013). For instance, Bohbot
et al. (1998) reported, that the performance of patients suffer-
ing from unilateral hippocampal lesions in an adapted version of
the Morris water maze task (assessing landmark-based allocentric
representation) was similar to that of control subjects. Moreover,
as revealed by fMRI, some variants of allocentric processing seem
to be supported by a large network of regions including parietal,
retrosplenial, and parahippocampal cortices (e.g., Aguirre et al.,
1996; Vallar et al., 1999; Galati et al., 2000; Committeri et al., 2004;
Zhang and Ekstrom, 2013; for review Galati et al., 2010).

The observable discrepancy between these results and the
exclusive allocentric role proposed for the medio-temporal lobe
(O’Keefe and Dostrovsky, 1971; O’Keefe and Nadel, 1978) could
be due to the way spatial information is encoded. Specifically,
beyond the allocentric vs. egocentric distinction relative to the
type of spatial relation involved (object-to-object or self-to-
object, respectively), the presence or the absence of self-related
changes could be a decisive factor in the hippocampal involve-
ment. Using a short-term spatial task, Gomez et al. (2014, 2012)
disentangled different sources of information required during
encoding. The authors showed that patients suffering from bilat-
eral hippocampal atrophy were impaired for reproducing a trajec-
tory learned on the basis of self-motion information. However,
they performed similarly to controls when the trajectory was
learned without any self-related changes (i.e., observing the
experimenter producing the trajectory). This result is in-line with
the hypothesis that hippocampal activity may be observed when
self-related changes are required to build spatial representations.

Functional MRI evidence provides indirect support to this
last hypothesis. Studies manipulating the type of visual perspec-
tive during spatial encoding itself showed that hippocampal and
parahippocampal structures were more activated during route
navigation than during survey navigation (Shelton and Gabrieli,
2002; Shelton and Pippitt, 2007). Hence, despite previous behav-
ioral reports of a strong connection between survey perspective
and allocentric representation formation (Thorndyke and Hayes-
Roth, 1982; Allen, 1999), such processing seems less tightly
related to hippocampal activity than during route navigation.
The enhanced activation of hippocampal and parahippocam-
pal structures for route navigation may reflect the integration
of new information generated by self-related changes during the
egocentric spatial processing (Shelton and Pippitt, 2007).

Beyond the type of visual perspective during spatial encod-
ing, the participants’ spatial processing during each encoding
condition should be further controlled to insure that the differ-
ential hippocampal activity is related to new self-related changes.
Actually, the foreseen retrievals tasks can modulate the strategies
(allocentric vs. egocentric) used by participants during encoding
itself (Shelton and Gabrieli, 2004). From a methodological point
of view, this control can be achieved by warning participants that
they will have to perform an object-to-object relation retrieval
of the spatial information before they enter the survey perspec-
tive encoding. On the contrary, participants can be instructed
to encode spatial information to subsequently perform a self-
to-object relation retrieval task which will insure that the two
tasks will in fact differ on the integration (or not) of self-related
changes.

If the presence/absence of self-related change is indeed crucial,
the information about how the self-related changes are generated
could be relevant in providing a thorough understanding of the
mechanisms responsible for the different involvements in the spa-
tial memory network. Specifically, given areas could be involved
when a change in head direction modifies orientation cues with-
out updating the observer’s location. On the reverse, different
ones could be involved when both a change in orientation cues
and an update in the observer’s position occur.

Regarding the head orientation, studies on single cell record-
ings in animals revealed that several cells fired selectively when
the animal oriented its head in a given direction. Cells’ localiza-
tion was first described in post-subiculum (Ranck, 1984), limbic
system (Taube, 1998; Robertson et al., 1999) including the retros-
plenial cortex (Cho and Sharp, 2001), and hippocampus (Leutgeb
et al., 2000) of animals. In humans, heading disorientation was
observed after lesion of the retrosplenial cortex (Aguirre and
D’Esposito, 1999). More recently, using single-neuron record-
ings, Jacobs et al. (2010) showed that human entorhinal cortex
could contain path cells encoding in a clockwise or counterclock-
wise route direction during navigation in circular environments.
Functional MRI studies have revealed that retrosplenial activ-
ity was modulated by previously learnt variations of the head
direction (Baumann and Mattingley, 2010).

Farrell and Robertson (1998) defined as the egocentric-
updating processing, changes related to both head orientation
(i.e., head direction changes) and observer’s spatial position.
Several animal studies and models of spatial neuronal networks
have involved hippocampal “Place cells” during such spatial
changes. In fact, based on neuronal recordings in animals, these
models indicate that place cell firing is also related to path inte-
gration (Mittelstaedt and Mittelstaedt, 1982), which refers to the
ability to return directly to a starting point from any location
relying mainly on idiothetic cues (i.e., self-motion cues). Path
integration can be considered as a subtype of the general process
of egocentric-updating where objects are updated relative to the
individual (Burgess, 2008). These models emphasized the need to
combine landmark sensory aspects and idiothetic cues to build a
place code (e.g., Redish and Touretzky, 1997; McNaughton et al.,
2006).

These various approaches suggest that the retrosplenial cortex
may be crucial in processing heading changes within egocentric
referencing, while the hippocampus may be related to egocentric-
updating. No fMRI evidence in humans has clearly disentangled
the underlying network subtending these two types of processing.

In the present fMRI study, we aim to characterize the neu-
ral substrate of spatial memory encoding. Beyond an allocen-
tric (object-to-object) vs. egocentric (self-to-object) distinction,
we further disentangled the egocentric information by varying
the types of self-related changes during encoding (egocentric-
updating vs. rotation only). As such, we defined three spa-
tial encoding conditions: Allocentric, Egocentric-updating, and
Egocentric with rotation only.

One hypothesis is that the cerebral organization evolution
of cognitive functions from animals to humans could lead to
a different neural specialization of spatial memory encoding in
specific areas such as the hippocampal and retrosplenial areas.
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Alternatively, given the neuropsychological evidence, we expect
that spatial cognitive functions share similar structures in ani-
mals and humans. Therefore, we can expect that the egocentric-
updating condition reveals additional activity in the hippocampal
structure compared to the allocentric condition. This supports
the idea that the human hippocampal area could also code
for self-related changes. Additionally, compared to egocentric-
updating, the egocentric with rotation only condition should
involve retrosplenial activation, supporting the idea that the
human retrosplenial cortex codes specifically for orientation
changes.

MATERIALS AND METHODS
The experiment consisted of two phases: a training phase per-
formed outside the MR magnet and a testing phase performed
during the MR examination. The training phase had three objec-
tives: (1) familiarization with the virtual presentation via free
navigation in the environment, (2) instructions on how to
perform each task, (3) task execution with performance feed-
back. During the testing phase, three spatial encoding conditions
and a control condition were performed during a block-design
paradigm.

PARTICIPANTS
Eighteen adults (age range 17–30, average age 23.5 SD 2.5,
13 males) took part in the experiment. All participants were
right-handed according to the Edinburgh Handedness Inventory
(Oldfield, 1971). They had normal or corrected-to-normal vision
and no history of neurological or psychiatric disorders. They gave
their informed written consent for the experiment and the study
was approved by the local ethic committee (CPP n◦08-CHUG-10,
20/05/2008).

SPATIAL ENVIRONMENT, SPATIAL LAYOUTS, AND ENCODING FILMS
A Virtual Reality Markup Language (VRML) was used to create
the spatial environment. This virtual environment was a 9 × 9×
3 m room with stone walls. Tile flooring for the southern half and
wood flooring for the northern half provided easy orientation in
the environment. Each environment contained 6 objects. Twenty
different spatial layouts were created by randomly changing the
6 objects’ positions. Spatial layouts presenting familiar config-
urations such as lined-up objects were removed. An in-house
VRML-Prime software was created (http://webu2.upmf-greno-
ble.fr/LPNC/membre_eric_guinet) with the following character-
istics: (1) joystick-navigation in the environment, (2) online
joystick data recording, and (3) joystick-data-based feedback. To
control what the participants see, the VRML-Prime was used to
create films of the pre-determined layouts. VRML-Prime made it
possible to switch independently between: (1) the visual perspec-
tive of the environment (aerial or ground-level) and (2) the type
of camera movement in the environment (i.e., rotation only, route
navigation, or sequential map presentation).

Three visual spatial encoding conditions were created (See
Figure 1): Allocentric (A), Egocentric-updating (EU), and
Egocentric with Rotation Only (ERO). For the A films (See
Video 1, Gomez, 2014a, http://figshare.com/articles/Allocentric_
video_example/902846), a survey perspective (i.e., a bird’s eye

perspective, looking straight down, with 15% of the environment
visible at any moment) was adopted; the camera scanned the map
of the environment with an unchanging orientation. This view-
point was selected to allow the average amount of environment
visible at any given point to be equivalent to the ground-level
condition. In addition, pilot studies have indicated that this view-
point induced participants to spontaneously perceive this as “the
map” condition. For the EU films (See Video 2, Gomez, 2014b,
http://figshare.com/articles/Egocentric_updating_video_example/
902847), a ground-level 1st person perspective was adopted;
the camera movement was used to simulate the view of an
observer walking through the environment. For ERO films (See
Video 3, Gomez, 2014c, http://figshare.com/articles/Egocentric_
with_Head_rotation_video_example/902848), a ground-level 1st
person-perspective (i.e., looking straight from the perspective
of a 1 m 80 tall observer) was adopted; the camera movement
offered a rotation of 180◦, from a fixed location (i.e., one side of
the room). Each one of the 20 spatial layouts, resulted in three
encoding films that lasted 17700 ms. A fourth control category
of films was created using a mix of the ERO, EU, and A films:
about 6 s of each of the three films were selected and pooled
together in a random order, thus resulting in a 17700 ms control
film. The camera movement simulated a path of about 20 m with
one or two direction changes. Given that self-motion perception
in virtual environments is most accurate when displacement
velocity resembles natural locomotion, we adopted a speed of a
moderately paced walk (approximately 1.5 m/s). The path and
speed for the aerial and ground films were the same. The layout
configuration presented in each movie was always different and
contained an average of 5 objects (range 4–6, as all 6 objects from
an environment were not visible in each movie). The encoding
conditions for a given spatial layout were randomly assigned for
each participant.

EXPERIMENTAL CONDITIONS: THE SPATIAL TASKS
Each spatial task trial was composed of an encoding and an
immediate test phase (See Figure 1).

In the encoding phase, a film (one of the four types A, EU,
ERO, and control, C) was presented to the participants and they
were asked to encode and update with the sequential presentation
the objects’ positions of the objects in the environment. The A
film presented a survey perspective of the environment, the ERO
movie presented a 1st person rotation from an unchanged loca-
tion, the EU movie presented a 1st person perspective navigation
in the environment and the C movie was a mixture of the three
spatial movies which made the control for purely visual stimu-
lations possible. The film presentation was preceded by a 300 ms
fixation point included in the “encoding phase.” Participants’ spa-
tial knowledge was then tested to control for attention and spatial
processing during the encoding phase.

In the test phase, participants were instructed to locate the
direction of an object, and to point in its direction with the joy-
stick when prompted. To enhance each type of spatial processing
during the encoding phase, participants were told beforehand
which test will follow. In the A condition, the A referencing was
maximized by asking participants to point in the direction of an
object relative to another object in the fixed referencing of the
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FIGURE 1 | A trial of each experimental condition performed during

the experimental phase inside the MR imager is presented. Each of
the four conditions, A, Allocentric; EU, Egocentric-updating; ERO,
Egocentric with Rotation Only; and C, Control; was divided into an
encoding phase and a test phase. In the encoding phase, participants
saw a presentation of the environment’s layout: (A) from a survey

perspective, (EU) from a 1-st person ground level perspective with
navigation, (ERO) from a 1-st person ground level perspective with a
rotation only (C) with a mix of perspectives. In the test phase,
participants had to point in the direction of an object using a joystick: (A)
from the location of another object, (EU and ERO) from their body
position; in condition C, they pointed straightforward.

environment (i.e., object-to-object pointing relative to the fixed
orientation of the map). Participants were instructed to imag-
ine that they were sketching the direction on the map of the
environment. The egocentric referencing was maximized by ask-
ing participants to point in the direction of an object relative to
their position (i.e., self-to-object pointing), in the EU and ERO
conditions.

Each test phase of a trial lasted 9 s: first a question screen was
presented during 6 s, and then a joystick picture was presented
during 3 s. The joystick picture (320 × 256 pixels) presented on
a black screen, served to prompt the participants’ response and
to collect behavioral performance. The question screen presented
(1) the origin of the spatial referencing and (2) the object-to-
be-pointed-to on a black background. The origin of the spatial
referencing was presented by a 1st person point of view of the
environment in the egocentric referencing. The participant could
thus simulate its position in the environment from the perspec-
tive seen (the point of view was extracted from the previous film).
In the A referencing, the point of view was replaced by the pre-
sentation of a second object with contextual information from
the background. Both the origin and the object-to-be pointed-to
were selected from the first and second half of the film respec-
tively, and separated by a minimum of 9 s in the film presentation.
They were presented centered on a black background, with the
origin at the top (896 × 670 pixels picture), and the object-
to-be-pointed-to at the bottom (512 × 410 pixels picture). For
condition C, the test was aimed to control for motor preparation,
and participants were asked to point straight in front of them (i.e.,
0◦ angle).

EXPERIMENTAL PROCEDURE
As mentioned previously, the experimental procedure was com-
posed of two phases: a training phase outside the magnet and an
experimental phase during fMRI.

Training phase outside the MR imager
Participants were first asked to navigate freely within an environ-
ment designed for this phase using the VRML-prime software.
The purpose of this step of the training procedure was to famil-
iarize participants with the use of the joystick, the virtual desktop
presentation and the 6 objects.

Then, participants were trained in the experimental conditions
previously described. An example of each spatial task was pre-
sented (A, EU, ERO, and C), and participants were instructed
how to perform each of the four tasks. During the training phase,
the test phase of a trial was completed by a visual feedback on
the pointing response (from online data recording). In the feed-
back of the A training condition, the feedback screen displayed the
entire map of the environment, with (1) a green arrow (i.e., cor-
rect answer) pointing from the origin object toward the expected
target object and (2) a blue arrow (i.e., given answer) pointing
from the origin object toward the given direction. The error-angle
was thus shown as the angle between each of these arrows. The
smaller the angle, the more precise the response. This feedback
procedure proved successful since all participants were subse-
quently able to perform the tasks with relatively low pointing
errors. In the feedback of the EU and ERO training conditions,
a 1st-person perspective video was presented, showing a rota-
tion from a fixed location. The camera was placed on the original
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location facing the given answer direction. It then rotated until
it was in line with the direction of the expected answer. It thus
provided an angular distance between the correct and the given
answer. Thus, the bigger the error-angle was, the greater the video
rotation. We performed training to eliminate learning and habit-
uation effects. Participants were trained using 10 trials of each
spatial task.

Experimental phase inside the MR imager
Procedure. The participants were told that they had to perform
the same tasks as before but in the scanner. The trials were dis-
played using E-prime software (E-prime Psychology Software
Tools Inc., Pittsburgh, PA, USA) synchronized via the signals from
the scanner. A back-projection screen, received the images, and
a mirror, attached to the head coil, allowed the participant to
view the screen. After being positioned within the magnet, partic-
ipants were shown an example of each trial performed during the
training phase without concurrent fMRI recording to familiar-
ize them with performing the task while in a horizontal position.
Participants indicated their response on an MR-compatible joy-
stick that was positioned on the upper part of the right leg.
Participants moved the joystick with the right hand and pushed
a button with the left hand when the joystick was oriented in
the desired direction. Angle errors were recorded during the test
phase using VRML-prime. Participants were not given any feed-
back about their performance. All participants were presented
with the spatial tasks in the same block order as in the training
phase (e.g., A, ERO, EU, and C, counterbalanced across partic-
ipants). When grouping the encoding and test phase, each trial
lasted 27 s with an inter-trial interval of 3 s. Participants under-
went two functional scans (of four blocks each) with five trials
of each conditions. The duration of the functional scan was thus
9 min, following a brief period during which the scanner reached
equilibrium. In this phase, five trials of each condition were con-
secutively presented in a random order and formed a block. The
order of the blocks was repeated twice for each participant. The
block order was counterbalanced across participants. For each
functional scan, 200 functional volumes were acquired.

MR acquisition. The experiment was performed in a whole-body
3T MR scanner (Bruker MedSpec S300) with 40 mT/m gradi-
ent strength. For functional scans, the manufacturer-provided
gradient-echo/T2∗ weighted EPI method was used. Thirty-nine
adjacent axial slices parallel to the bi-commissural plane were
acquired in the interleaved mode. Slice thickness was 3.5 mm. The
in-plane voxel size was 3 × 3 mm (216 × 216 mm field of view
acquired with a 72 × 72 pixels data matrix; reconstructed with
zero filling to 128 × 128 pixels). The main sequence parameters
were: TR = 3 s, TE = 30 ms, flip angle = 77◦. To correct images
for geometric distortions induced by local B0-inhomogeneity,
a B0 fieldmap was obtained from two gradient echo data
sets acquired with a standard 3D FLASH sequence (�TE =
9.1 ms). The fieldmap was subsequently used during data pro-
cessing. Finally, a T1-weighted high-resolution three-dimensional
anatomical volume was acquired, by using a 3D Modified
Driven Equilibrium Fourier Transform (MDEFT) sequence (field
of view = 256 × 224 × 176 mm; resolution: 1.333 × 1.750 ×

1.375 mm; acquisition matrix: 192 × 128 × 128 pixels; recon-
struction matrix: 256 × 128 × 128 pixels).

Data processing. Data analysis was performed by using the
general linear model as implemented in SPM5 (Welcome
Department of Imaging Neuroscience, London, UK, www.fil.ion.

ucl.ac.uk/spm) where each event was modeled using a hemo-
dynamic function model. Data analysis started with the spatial
pre-processing steps. First, the functional volumes were time-
corrected (slice timing) with the 19th slice as the reference, in
order to correct for effects induced by the different acquisition
time of each slice within the functional volume. Subsequently, all
volumes were realigned to correct for head motion using rigid
body transformations. After discarding the first four slices, while
the scanner reached equilibrium, the first volume of the first ER-
fMRI session was taken as the reference volume (i.e., this volume
was originally the fifth volume). Unwarping was performed by
using the individually acquired fieldmaps, to correct for interac-
tion between head movements and EPI distortions. T1-weighted
anatomical volume was co-registered to mean images created by
the realignment procedure and was normalized to the MNI space
using a trilinear interpolation. The anatomical normalization
parameters were subsequently used for the normalization of func-
tional volumes. Finally, each functional volume was smoothed by
an 8-mm FWHM (Full Width at Half Maximum) Gaussian ker-
nel to improve differences in intersubject localization. Time series
for each voxel were high-pass filtered (1/128 Hz cutoff) to remove
low frequency noise and signal drift.

Statistical analysis of neuroimaging data. After spatial pre-
processing steps, the statistical analysis was first performed sep-
arately on the functional images acquired for each task during the
first 18 s of each trial (reflecting the encoding phase of a trial).
The cerebral activity during the test phase of each trial was not
included in the present study, thus, the functional images from
the test phase were discarded from the analysis. The conditions of
interest (A, EU, ERO, and C) were modeled as 4 regressors con-
volved with a canonical hemodynamic response function (HRF).
The movement parameters derived from the realignment correc-
tions (3 translations and 3 rotations) were also entered in the
design matrix as additional factors. The trial performance (i.e.,
error angle) was entered as a parametric modulator of each trial.
The general linear model was then used to generate the param-
eter estimates of the activity for each voxel, each condition and
each participant. Statistical parametric maps were generated from
linear contrasts between the HRF parameter estimates for the
different experimental conditions. The spatial resolution of the
statistical parametric maps was the same as the spatial resolu-
tion of the functional MR acquisition (3 × 3 × 3.5 mm). Several
statistical analysis have been performed as follows: Approximate
AR(1) autocorrelation model estimated at omnibus F-significant
voxels (p < 0.001), was used over the whole brain. Specific effects
were tested with the appropriate linear contrasts of the param-
eter estimations, and the corresponding contrast images were
subsequently entered into a random effects analysis.

Group analysis was performed with the contrast images pro-
vided by the individual analyses (Friston et al., 1998). The random
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effects analysis at the group level can be divided as follows
depending on the theoretical question underlying the analysis:

• Global spatial encoding network
First, the main contrasts assessed the correlates of spatial
encoding for each spatial condition A, EU, ERO vs. the C
condition. Then, the conjunction analysis assessed the neu-
ral correlates common to all spatial encoding tasks. For this
purpose, we applied an inclusive masking for all three main
contrasts (Friston et al., 2005).

• Differenciating neural correlates of spatial encoding conditions
First, the main contrasts assessed the questions of interest
in this study. EU vs. A provides cerebral substrate engaged
by egocentric referencing and due to self-motion informa-
tion (i.e., idiothetic). A vs. EU provides information about
landmark-based information (i.e., allothetic). ERO vs. EU pro-
vides information related to the cerebral substrate of rotation
processing while EU vs. ERO reveals cerebral network of the
egocentric-updating due to self-motion information. We also
calculated the contrasts: ERO vs. A and A vs. ERO.

Subsequently, a multiple regression analysis was performed.
Specifically, we included individual contrast images (one image
per participant) reflecting the mean activation for each previously
mentioned contrasts.

Moreover, we also performed a correlation analysis to assess
the task-specific regions modulated by the performance. For this
purpose, we calculated correlations between the BOLD signal
in task-specific regions and the performance of task-execution.
This analysis is supposed to reflect the regions which were
closely related to spatial processing (Maguire et al., 1998; Wolbers
and Buchel, 2005; Wolbers et al., 2007, 2008; Baumann et al.,
2010). The evaluated performance was the average angle error
size (i.e., difference between the expected pointing direction
and the observed pointing direction). The average error size for
each participant in each condition was the variable included
in a multiple regression analysis. As the correct performance
is reflected by the small size of the angle error, the regions
showing anti-correlation between BOLD and performance, were
considered specifically related to the achievement of spatial
processing.

For all our analyses, we used an extent threshold of 10 contigu-
ous voxels, and a voxel-level height threshold of p < 0.001, uncor-
rected for contrasts (height threshold: T = 3.55). The extended
threshold of 10 voxels was determined empirically and then
used for all contrasts. However, as advised by Bennett et al.
(2009) FDR threshold are provided in the Tables to provide
corrected values detailing the prevalence of false positives. An
in-house modification of the “spm_list.m” file, including a non-
linear transform of MNI to Talairach (http://imaging.mrc-cbu.

cam.ac.uk/imaging/MniTalairach), allowed us to visualize both
MNI and Talairach coordinate in the SPM result. From the
displayed Talairach coordinate, anatomical locations were deter-
mined using Talairach Daemon software (http://www.talairach.

org/, see also Lancaster et al., 2000), and checked with the
Talairach and Tournoux paper atlas (Talairach and Tournoux,
1988).

Analyses were also performed with small volume correction
(SVC) for multiple comparisons (P < 0.05, corrected) in ROIs.
In this study, we were particularly interested in the role of
the hippocampus and retrosplenial areas. Therefore, predefined
anatomic labels (WFU PickAtlas Tool, http://www.fmri.wfubmc.
edu/download.htm) were applied to identify each of the follow-
ing ROI: hippocampus (left and right) and Brodmann area 30, 31
(left and right).

RESULTS
BEHAVIORAL RESULTS
Table 1 summarizes the performance values obtained for each
condition. An ANOVA conducted on the angular error with con-
ditions as a within-subject variable (A, EU, ERO, C) showed a
main effect for experimental conditions [F(3, 51) = 35.2, MSE =
121.64, partial η2 = 0.67, p < 0.001]. Specific contrast of inter-
est A vs. EU, EU vs. ERO, and ERO vs. A were not statistically sig-
nificant [F(1, 17) = 1.76, MSE = 98.63. p = 0.20, and F(1, 17) =
3.60, MSE = 186.9. p = 0.07, and F(1, 17) = 1.15, MSE =
143.06. p = 0.30, respectively]. Post-hoc Bonferroni comparisons
only showed that smaller pointing errors were made in the C con-
dition (mean = 3.4◦, SD = 3.5◦) compared to all other spatial
conditions (mean = 33.4◦, SD = 13.5◦, ps < 0.001, all other ps
are non-significant).

A correlation matrix of spatial performance for each spatial
condition revealed a significant correlation between performance
values in A and EU conditions (r = 0.5, p < 0.05). Participants
who performed well in the A condition were also good perform-
ers in the EU condition. However, the ERO performance was not
significantly correlated with A or with EU performance which
suggests that those who performed well in the A or EU condition
did not necessarily perform well in the ERO condition.

fMRI RESULTS
Global spatial encoding network
Allocentric (A) encoding. As illustrated in the Supplementary
Material file—Table S1, the contrast A vs. C revealed a large clus-
ter of 4128 activated voxels with an activation peak located within
the left cuneus (BA 17). The activation included the bilateral tem-
poral lobe, the bilateral hippocampus, the bilateral parietal lobe
(superior parietal lobule, BA 7 and inferior parietal lobule, BA
40), frontal areas (BA 4), and the cerebellum.

Table 1 | Average angle size error (with standard deviations in

parentheses) in the object pointing task for each condition.

BEHAVIORAL PERFORMANCE

Condition Average error angle size (standard deviation)

Allocentric 33.34 (12.01)

Egocentric

Updating 37.73 (15.48)

Rotation only 29.08 (11.95)

Control 3.36 (3.37)

The A condition (with an object-to-object task), the EU and the ERO conditions

(with a self-to-object task), and the C condition (with a straightforward pointing

task).
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Egocentric-updating (EU) encoding. As illustrated in the
Supplementary Material file—Table S2, the contrast EU vs. C
revealed a large cluster of 4086 activated voxels with an activa-
tion peak within the left hippocampus. Other activations were
observed in the bilateral parietal lobe (superior parietal lobule,
BA 7 and inferior parietal lobule, BA 40), cingulate gyrus (BA 31),
the right frontal area (BA 4), and the cerebellum.

Egocentric with Rotation Only (ERO) encoding. As illustrated in
the Supplementary Material file—Table S3, the contrast ERO vs. C
revealed a large cluster of 5381 activated voxels with an activation
peak located within the left cuneus (BA 17), extending within the
bilateral temporal lobe. Other activations were observed in the
bilateral parietal lobe (precentral gyrus, BA 4; gyrus-post-central,
BA 2, 3), the frontal areas (BA 4, 6), and the cerebellum.

Conjunction analysis. The conjunction analysis identified the
common activation (Table 2) of spatial encoding. They were

located in the right cuneus, BA 18, right hippocampus and left
superior parietal lobule, BA 7.

Differenciating neural correlates of spatial encoding conditions
The following contrasts revealed activation for the spatial condi-
tion, without considering the retrieval performance of subjects.

Egocentric-updating compared to Allocentric condition (Table 3,
Figure 2). EU vs. A revealed activation in bilateral frontal regions
(such as the superior and middle frontal gyri, BA 6, 8, 9, 32,
46), left thalamus, and bilateral cerebellum. More importantly, we
observed that the right hippocampus was specifically activated for
EU vs. A.

A vs. EU revealed an activation of the bilateral cuneus
(BA 18, 19).

We then tested our a-priori hypotheses about a differen-
tial hippocampal activation pattern for both conditions (FDR
small-volume corrected, p < 0.05) and observed that the right
hippocampus was activated in the EU condition (Table 6).

Table 2 | Activated regions for spatial encoding commonly activated for A, EU, ERO, vs. C (Conjunction analysis, statistical threshold:

uncorrected p < 0.001, cluster extent: k ≥ 10 voxels).

Cerebral activated regions Side BA k Talairach coordinates (x, y, z) T -value FDR corrected threshold

OCCIPITAL CORTEX

Cuneus R BA 18 3062 18 −96 11 6.31 0.000

TEMPORAL CORTEX

Hippocampus R – 125 18 −32 5 5.86 0.001

PARIETAL CORTEX

Superior parietal lobule L BA 7 108 −27 −55 58 4.56 0.001

The Talairach coordinates (x, y, z) are indicated for each voxel. The side, Right (R) and Left (L), gyri and Brodmann areas (BA) are mentioned. Abbreviation: A,

Allocentric; EU, Egocentric-updating; ERO, Egocentric with Rotation Only; C, Control. FDR corrected threshold provides corrected values detailing the prevalence of

false positives in the analysis.

Table 3 | Activated regions due to self-related changes in location and orientation during spatial encoding, provided by the contrast: (1) EU vs.

A for the upper part of the table; (2) A vs. EU for the lower part of the table (random-effect analysis, uncorrected p < 0.001, k ≥ 10 voxels).

Contrasts Cerebral regions Side BA k Talairach coordinates (x, y, z) T -value FDR corrected threshold

[EU > A] Temporal cortex

Hippocampus R – 11 33 −23 −8 7.08 0.137

Frontal cortex

Superior frontal gyrus L BA 6 11 −24 −11 68 5.85 0.137

Middle frontal gyrus R BA 6 14 50 2 42 4.82 0.134

Diencephalic and cerebellic structures

Uvula R – 13 33 −62 −23 6.67 0.134

Declive L – 25 −12 −77 −29 5.46 0.058

Thalamus L – 21 −3 −3 3 6.42 0.058

[A > EU] Occipital cortex

Cuneus L, R BA 19 105 0 −89 33 4.63 0.000

Cuneus R BA 18 17 15 −78 20 3.52 0.015

The right hippocampal activation in the EU condition is highlighted. The Talairach coordinates (x, y, z) are indicated for each voxel. The side, Right (R) and Left (L),

gyri and Brodmann areas (BA) are mentioned. Regions reported in both contrasts are highlighted. FDR corrected threshold provides corrected values detailing the

prevalence of false positives in the analysis.
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FIGURE 2 | Shows regions reported in Table 3 projected onto 3D

anatomical template (random-effect analysis, statistical threshold:

uncorrected p < 0.001, cluster extent: k ≥ 10 voxels). Activations are
provided by a random effect analysis, for (1) EU spatial encoding when

contrasted with the A condition (on the left), and (2) A spatial encoding when
contrasted with EU (on the right). Clusters are projected on 2D anatomical
slices (T1-template image) in neurological convention. L is left hemisphere.
The color scale represents the t-value of activation.

Egocentric with Rotation only compared to Egocentric-updating
condition (Table 4, Figure 3). ERO vs. EU activated the right
retrosplenial cortex (BA 30), superior parietal lobule (BA 7).
Supplementary activity was observed in the bilateral middle and
medial frontal gyrus (BA6, 32), right thalamus, and bilateral
cerebellum.

EU vs. ERO revealed an activation of the right hippocampus (8
voxels), left superior parietal lobule (BA 5), and right middle and
superior temporal gyrus (BA 21, 22). Supplementary activity was
observed in the bilateral precentral gyrus (BA 4) and cerebellum.

We then tested our a-priori hypotheses about a differential
retrosplenial and hippocampal activation pattern for both condi-
tions (FDR small-volume corrected, p < 0.05). We observed that
the right Brodmann area 30 was activated in the ERO condition
while the right hippocampus was activated in the EU condition
(Table 6).

Allocentric compared to Egocentric with Rotation only condition
(Table 5, Figure 4). A vs. ERO also revealed activation of the
bilateral cuneus (BA 18, 19). Supplementary activations were
observed in the left superior temporal gyrus (BA 34, 38), right
superior (BA 5) and inferior (BA 40) parietal lobule, bilateral
frontal (pre-central gyrus, BA 4), and right cerebellum.

ERO vs. A revealed specific activation in the right retrosple-
nial cortex (BA 30) extended to the bilateral posterior cingulate
(BA 31) and left inferior parietal lobule (BA 40). Supplementary
activities were observed in the bilateral frontal regions (superior
and middle frontal gyri, BA 6, 8, 9, 32, 46), left thalamus, and
bilateral cerebellum.

We then tested our a-priori hypotheses about a differen-
tial retrosplenial activation pattern for both conditions (FDR
small-volume corrected, p < 0.05). We observed that the right

Brodmann area 30 and Brodmann area 31 were activated in the
ERO condition (Table 6).

Correlation analysis. Among the A-specific regions, no regions
were anticorrelated with the pointing errors. Among the EU-
specific regions, only the junction between the right hippocampus
and caudate nucleus (peak coordinates: 21, −40, 8, T = 5.47,
see Figure S1 from Supplementary Material) was significantly
anticorrelated with the pointing errors (r = −0.87). A small-
volume correction analysis (FWE corrected, p < 0.05) on the
right hippocampus confirmed that the right hippocampus was
significantly correlated (peak coordinates: 16, −33, 11). Finally,
among the ERO-specific regions, no regions were anticorrelated
with the pointing errors.

DISCUSSION
Our results confirmed the activation of a large occipito-parieto-
temporal network common for spatial encoding conditions (e.g.,
Ghaem et al., 1997). Beyond the classical allocentric-egocentric
distinction, the type of referencing induced by the visual perspec-
tive during encoding and the task-demand, allowed the identi-
fication of essential regions within the spatial memory network.
The major result was the specific involvement of two areas during
the self-related conditions, which were the retrosplenial cortex for
orientation changes, and the right hippocampus for self-location
changes.

The first crucial result of the study reveals an enhanced ret-
rosplenial activity when contrasting ERO to EU. Encoding new
spatial information during the ERO condition only relied on
rotation changes, while, during the EU condition, the weight of
rotation information during the integration of new spatial infor-
mation was weakened by the concomitant change of location.
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Table 4 | Activated regions for differential effects within two types of Egocentric spatial encoding, rotation changes vs. orientation and

location changes.

Contrasts Cerebral activated regions Side BA k Talairach coordinates (x, y, z) T -value FDR corrected threshold

[ERO > EU] Temporal cortex

Retrosplenial cortex R BA 30 53 27 −52 4 5.76 0.000

Parietal cortex

Superior parietal lobule R BA 7 14 6 −60 62 4.77 0.052

Frontal cortex

Middle frontal gyrus L BA 6 54 −18 0 52 6.59 0.000

Middle frontal gyrus R BA 32 10 9 14 44 6.53 0.095

Diencephalic and cerebellic structures

Declive L – 40 −39 −59 −21 10.48 0.001

Culmen R – 16 39 −57 −24 6.61 0.042

Thalamus R – 10 9 9 13 5.81 0.095

[EU > ERO] Temporal cortex

Hippocarnpus R – 8* 27 −29 −4 6.99 0.101

Middle temporal gyrus R BA 21 68 59 −12 −8 7.85 0.000

Middle temporal gyrus R BA 21 37 39 −15 −11 6.71 0.001

Superior temporal gyrus R BA 22 178 56 −34 11 12.35 0.000

Superior temporal gyrus R BA 22 15 48 −49 15 6.2 0.027

Parietal cortex

Superior parietal lobule L BA 5 279 0 −26 53 12.41 0.000

Precentral gyrus R BA 4 50 18 −23 69 7.29 0.000

Precentral gyrus L BA 4 26 −53 −8 23 7.24 0.005

Cerebellic structures

Culmen L – 22 3 −50 −18 6.74 0.007

Inferior serni-lunar lobule L, R – 23 0 −63 −35 5.45 0.007

They were provided by the contrast: (1) ERO vs. EU for the upper part of the table. (2) EU vs. ERO for the lower part of the table (random-effect analysis, uncorrected

p < 0.001, k ≥ 10 voxels, * for the hippocampus k = 8). The Talairach coordinates (x, y, z) are indicated for each voxel. The side, Right (R) and Left (L), gyri and

Brodmann areas (BA) are mentioned. FDR corrected threshold provides corrected values detailing the prevalence of false positives in the analysis.

This result therefore provides evidence that the retrosplenial cor-
tex in humans specifically processes changes in head direction.
Moreover, although the performances for A and EU conditions
were correlated, the ERO performance was not correlated with the
allocentric or the egocentric-updated performance. Therefore,
participants that were good at processing head direction changes
were not necessarily good at processing location changes or allo-
centric landmark-based information. This supports the idea that
relatively independent cognitive mechanisms are at play in those
tasks.

Although the retrosplenial cortex (BA 30) is known to con-
tain head-direction cells in rodents (Cho and Sharp, 2001; Sharp
et al., 2001; Wiener and Taube, 2005), only limited experimen-
tal evidence was reported in humans. Concerning clinical evi-
dence, it has been suggested that right retrosplenial lesions lead
to pure topographical disorientations (Valenstein et al., 1987;
Yasuda et al., 1997; Aguirre and D’Esposito, 1999; Maguire,
2001; Vann and Aggleton, 2004; Vann et al., 2009), reflect-
ing a type of heading disorientation (i.e., an inability to rep-
resent the orientation direction with respect to the external
environment).

Functional MRI studies have provided evidence suggesting
that the retrosplenial cortex was strongly activated during scene
viewing, scene imagery, and scene memory (Epstein et al., 2007).
Moreover, a meta-analysis of navigation fMRI studies reported
bilateral involvement of BA 30 in humans (Maguire, 2001; for an
extensive review see Vann et al., 2009). Congruently, we report
a common spatial encoding network encompassing the bilat-
eral retrosplenial cortex (when compared to control condition).
Overall, these results make it possible to pinpoint the implication
of the retrosplenial region in spatial processing.

However, with regards to head-direction, only one fMRI study
aimed at identifying neural correlates of orientation This study
reported a region situated close to the anatomically defined retro-
splenial cortex (BA 30, see Maguire, 2001, for a review), in BA 31
(Baumann and Mattingley, 2010). In our current study we report
for the first time the activation of the right retrosplenial cortex
(BA 30) for the rotation. This result is in agreement with animal
studies of spatial encoding. Additionally, we observed the BA 30
activation during ERO vs. A contrast, next to the bilateral pos-
terior cingulate (BA 31), in line with Baumann and Mattingley
(2010)’s findings.
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FIGURE 3 | Shows regions reported in Table 4 projected onto a 3D

anatomical template (random-effect analysis, statistical threshold:

uncorrected p < 0.001, cluster extent: k ≥ 10 voxels). On the left, ERO is
contrasted to EU; on the right, EU is contrasted to ERO. The retrosplenial
activity, along with the superior parietal gyrus activations are highlighted for

the right contrast. The right hippocampal activity (cluster extent k = 8 voxels),
along with the superior and inferior temporal gyrus activations are highlighted
on the right contrast. These clusters are projected onto 2D anatomical slices
(T1-template image) in neurological convention. L is left hemisphere. The
color scale represents the t-value of activation.

FIGURE 4 | Shows regions reported in Table 3 projected onto a 3D

anatomical template (random-effect analysis, statistical threshold:

uncorrected p < 0.001, cluster extent: k ≥ 10 voxels). Activations are
provided by a random effect analysis, for the A spatial encoding when
contrasted (1) with the EU condition (on the left), and (2) with the

ERO condition (on the right). Occipital activity in the cuneus which is
observed in both contrasts is highlighted. These clusters are projected
onto 2D anatomical slices (T1-template image) in neurological
convention. L is left hemisphere. The color scale represents the
t-value of activation.

An influential model of spatial memory proposes that the ret-
rosplenial cortex supports, in humans, stimulus conversion from
an egocentric reference frame (in the parietal cortex) to an allo-
centric reference frame (in the medial temporal regions) and
vice versa (Burgess et al., 2001a,b; Burgess, 2008; Vann et al.,

2009). However, with regards to retrosplenial function, this model
was mainly based on animal studies evidence. Few fMRI stud-
ies have reported retrosplenial activity congruent with this model
(Lambrey et al., 2012; Zhang et al., 2012). Our result supports the
hypothesis of retrosplenial cortex encompassing cells activated
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Table 5 | Activated regions provided by the contrast: (1) A vs. ERO for the upper part of the table; (2) ERO vs. A for the lower part of the table

(random-effect analysis, uncorrected p < 0.001, k ≥ 10 voxels).

Contrasts Cerebral activated regions Side BA k Talairach coordinates (x, y, z) T -value FDR corrected threshold

[A > ERO] Occipital cortex

Cuneus L, R BA 18, 19 86 −3 −92 30 7.9 0.000

Cuneus L, R BA 17, 18 26 0 −78 7 6.3 0.010

Temporal cortex

Superior temporal gyrus L BA 34, 38 19 −33 2 −12 5.84 0.023

Parietal cortex

Superior parietal lobule R BA 5 65 24 −40 73 8.51 0.000

Inferior parietal lobule R BA 40 24 39 −25 21 5.24 0.011

Frontal cortex

Precentral gyrus R BA 4 31 6 −26 59 6.3 0.005

Precentral gyrus L BA 4 42 −15 −29 63 5.78 0.001

Cerebellum

Uvula, nodule, cerebellar tonsile R – 12 3 −60 −38 6.17 0.081

[ERO > A] Temporal cortex

Retrosplenial cortex R BA 30 11 30 −49 2 5.05 0.051

Parietal cortex

Posterior cingulate R BA 31 114 27 −60 19 9.56 0.000

Posterior cingulate L BA 31 36 −21 −66 23 6.09 0.001

Inferior parietal lobule L BA 40 58 −30 −39 34 5.42 0.000

Frontal cortex

Middle frontal gyrus L BA 6 194 −33 −6 52 9.42 0.000

Middle frontal gyrus R BA 8 107 30 14 41 8.33 0.000

Middle frontal gyrus L BA 9 13 −45 31 27 5.3 0.036

Middle frontal gyrus R BA 32 25 9 14 44 5.2 0.005

Middle frontal gyrus L BA 6 19 −9 0 55 5.02 0.013

Middle frontal gyrus R BA 46 13 42 30 21 4.83 0.036

Diencephalic and cerebellic structures

Pyramis R – 128 12 −68 −26 7.3 0.000

Declive L – 45 −24 −71 −17 6.01 0.000

Thalamus L – 95 −15 −5 16 5.76 0.000

The Talairach coordinates (x, y, z) are indicated for each voxel. The Hemisphere, Right (R) and Left (L), gyri and Brodmann areas (BA) are mentioned. Regions reported

in both contrasts are highlighted. FDR corrected threshold provides corrected values detailing the prevalence of false positives in the analysis.

Table 6 | Hippocampal and retrosplenial activation in the FDR small-volume corrected analysis (p < 0.05) of spatial encoding conditions.

Contrasts Cerebral regions Side BA Talairach coordinates (x, y, z) T -value

[EU > A] Hippocampus R – 30 −23 −5 5.21

[ERO > EU] Retrosplenial cortex R BA 30 24 −52 0 5.69

[EU > ERO] Hippocampus R – 24 −29 −4 6.99

[ERO > A] Retrosplenial cortex R BA 30 15 −59 9 4.72
Retrosplenial cortex R BA 31 12 −68 21 5.68

The Talairach coordinates (x, y, z) are indicated for each voxel. The Hemisphere, Right (R) and Left (L), gyri and Brodmann areas (BA) are mentioned.
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for head-direction in humans. Neuronal electrical recordings in
humans are necessary to provide further direct support of the
retrosplenial involvement.

The second crucial activated region reported in this study is the
right hippocampal area. It was preferentially involved in spatial
encoding, which required an online integration of self-location
transformation in the spatial representation, rather than encod-
ing the schematic spatial relation amongst objects (O’Keefe and
Nadel, 1978). In fact, the contrast of the EU condition to the A
condition significantly enhanced the right hippocampal activity.
This result is in line with previous observations of right hip-
pocampal activation during path integration encoding in humans
(Wolbers et al., 2007). Nonetheless, during retrieval, the left hip-
pocampal structure might be further involved, as suggested by
Iglói et al. (2010). Moreover, this hippocampal activation is con-
gruent with Shelton and Gabrieli (2002)’s results which compared
cerebral activities during encoding from a route perspective and
a survey perspective. They observed bilateral hippocampal acti-
vation specific to the route condition. Differences in the type
of subsequent task-demand (recognition task vs. spatial self-to-
object pointing in this study) and the environment complexity
(large with multiple boundaries and 17 landmarks vs. medium
with an average of 5 landmarks in this study) can account for the
right lateralization of the hippocampal activation in the present
study.

Moreover, the modulation by between-subject retrieval per-
formance of a hippocampal-caudate cluster observed in the
correlation analysis indicates a critical role for these struc-
tures in the subsequent task-resolution. During encoding, good
egocentric-updating pointers showed stronger hippocampal acti-
vation (extending to caudate). The hippocampal activity has
previously been reported to correlate to accuracy of self-location
or self-orientation, in a path integration task (Wolbers et al., 2007,
using an egocentric pointing task) or during active navigation,
(Maguire et al., 1998; Hartley et al., 2003). We therefore interpret
this hippocampal activity in good memory performers as high-
lighting the importance of the right hippocampus for processing
self-location changes.

Because the EU vs. A contrast provides the neural substrate
engaged by the egocentric-updating and due to self-motion
information (i.e., idiothetic) rather than landmark-based infor-
mation, we suggest that the right hippocampal region may be
more specifically devoted to location related self-related changes.
Additionally, because allocentric processing such as landmarks
and room geometry processing were likely to occur in the EU
condition as well, it is possible that the hippocampal involve-
ment could also arise from the relative flexibility of the repre-
sentation constituted during the EU encoding compared to the
more schematic representation during the A encoding. In fact,
Zhang and Ekstrom (2013) have shown that such differences
in the use of an allocentric representation could be responsible
for a differential hippocampal involvement in favor of a flex-
ible representation. As this right hippocampal activity is also
observed when directly contrasting EU vs. ERO within egocen-
tric referencing, it is likely that self-motion location change in
the EU condition plays a crucial role in this hippocampal acti-
vation. This additional evidence supports the hypothesis that,

in humans, location self-related changes involve the right hip-
pocampal region.

This result is new and central, as a wide body of evidence from
animal literature, and in particular the discovery of place cells,
have led to the proposal that the hippocampal structure underlies
cognitive mapping in an allocentric reference frame (O’Keefe and
Dostrovsky, 1971; O’Keefe and Nadel, 1978; O’Keefe et al., 1998).
In humans, single cells neuron recordings have shown that place
cells exist in the human hippocampus (Ekstrom et al., 2003).

In the present experiment, we report substantial hippocampal
activation when participants must encode allocentric landmark-
based spatial information (there is a significant activation of
the hippocampus in the A encoding condition compared to
the C encoding condition). However, given previous neuropsy-
chological results, we expected that the hippocampal structure
could be enhanced when idiothetic self-location changes are
involved (Worsley et al., 2001; Philbeck et al., 2004; Gomez
et al., 2012). From a behavioral perspective, participants who per-
formed well in the EU condition also performed well in the A
condition. Together with the conjunction results, this observation
supports the hypothesis that a unique structure, the hippocam-
pus, may underlie different spatial processing, in the present
case, egocentric-updating and allocentric processing, which could
explain this correlational effect.

Overall, these findings support models emphasizing the need
to combine allocentric landmark sensory aspects to egocentric-
updating to form the place code of Place cells (e.g., Redish
and Touretzky, 1997). Several proposals have suggested that the
hippocampus might be involved in complementary types of spa-
tial processing such as path integration processing (Redish and
Touretzky, 1997; Whishaw et al., 1997, 2001; Worsley et al., 2001;
Wolbers et al., 2007). These models have underlined that the
hippocampal structure is well-suited to underlie such spatial pro-
cessing as it is interconnected to various structures making it
possible to represent, together, the body’s position: it receives
input from systems assumed to represent head-direction (such as
the retrosplenial cortex, and thalamus), and from systems pro-
cessing self-motion, such as the human motion complex (Redish
and Touretzky, 1997; Wiener and Taube, 2005).

In closing, our results refine previous findings on naviga-
tion in large-scale environments (Maguire et al., 1998; Ekstrom
et al., 2003; Hartley et al., 2003) by suggesting that hippocam-
pal activity should be extended to represent self-related loca-
tion transformations. In keeping with existing models (Burgess
et al., 2001a; Buzsaki, 2005), we suggest that, in humans, during
spatial encoding: (1) the retrosplenial cortex processes heading-
direction; (2) the hippocampus processes self-related location
transformations and combines it with landmark information to
allow place computations. Such a combination would allow for
correcting accumulated errors during egocentric-updating.

To conclude, this experiment highlighted that, in some cir-
cumstances determined by the experimental conditions, hip-
pocampal and retrosplenial structures known to be involved
in allocentric environmental coding (Galati et al., 2010) could
demonstrate a preferential involvement in an egocentric coding
of space. Consequently the differentiation between allocentric
vs. egocentric representation no longer seems to be sufficient in
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understanding the complexity of the mechanisms at play during
spatial encoding.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fnhum.
2014.00150/abstract
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