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EEG involves the recording, analysis, and interpretation of voltages recorded on the human
scalp which originate from brain gray matter. EEG is one of the most popular methods of
studying and understanding the processes that underlie behavior. This is so, because EEG
is relatively cheap, easy to wear, light weight and has high temporal resolution. In terms of
behavior, this encompasses actions, such as movements that are performed in response
to the environment. However, there are methodological difficulties which can occur when
recording EEG during movement such as movement artifacts. Thus, most studies about
the human brain have examined activations during static conditions. This article attempts
to compile and describe relevant methodological solutions that emerged in order to
measure body and brain dynamics during motion. These descriptions cover suggestions
on how to avoid and reduce motion artifacts, hardware, software and techniques for
synchronously recording EEG, EMG, kinematics, kinetics, and eye movements during
motion. Additionally, we present various recording systems, EEG electrodes, caps and
methods for determinating real/custom electrode positions. In the end we will conclude
that it is possible to record and analyze synchronized brain and body dynamics related to
movement or exercise tasks.

Keywords: electroencephalography, methodology, hardware and software, movement and exercise, artifacts
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1. INTRODUCTION
Eighty-four years passed since Hans Berger recorded the first
human electroencephalogram, thus the creation of EEG (Berger,
1929; La Vaque, 1999). Methods and applications have come a
long way since then. Indeed, clinicians and researchers nowa-
days use EEG in the management of epilepsy, monitoring of
coma patients, investigation of stroke; sleep dysfunction stud-
ies, machine control, sports performance amongst others. This
method is often preferred to others because it is relatively cheap,
easy to wear, light weight and has a high temporal resolution. In
contrast, other methods such as functional Magnetic Resonance
Imaging (fMRI), have low temporal resolution, are more expen-
sive and are impossible for study ing participants whom wear
them while moving. Thus, EEG became one of the most used
methods for inspecting and understanding the processes from
which behavior originates.

Behavior includes all actions that beings perform in their envi-
ronment, and these include motion (Vanderwolf, 2007). Makeig
et al. (2009) proposed the development of methods for the inves-
tigation of brain dynamics during human motion in several
dimensions and the development of wearable mobile brain/body
imaging (MoBi) methodology. The authors additionally proposed
the creation of analysis methods that can model the relation-
ships between the recorded dimensions. The development of such
methods will enable researchers to investigate a person’s simul-
taneously recorded brain electric activity, muscle myoelectric

activity, movements in 3D space, video, and audio recordings;
thus enabling the simultaneous study of brain and body dynamics
interactions during motion and behavior.

The comprehension of brain-muscle interactions is benefi-
cial for assessing degenerative diseases, impairments of motion,
designing and optimizing neuro-rehabilitation therapies, human
brain machine control, human performance optimization and
other applications. However, clinicians and scientists considered
EEG excessively artifact prone, hence incapable of recording ana-
lyzable EEG recordings during motion. Consequently, researchers
avoided using EEG recordings in movement studies and preferred
indirect methods involving imagery or small limb movements to
study brain activity during motion (Salenius et al., 1997; Dobkin
et al., 2004; Schaal et al., 2004; Zehr and Duysens, 2004).

EEG recordings use either invasive electrodes (iEEG or ECoG)
or surface electrodes (sEEG). Owning to the fact that iEEG
involves direct contact with the brain, the signal to noise ratio is
much higher than with surface EEG. Nevertheless, iEEG involves
surgery (craniotomy) to place an electrode grid on a small por-
tion of the brain surface. This limits the information source
area that the system and experts can analyze. This can cause
post-surgery problems for the subject. Further, due to ethical con-
siderations the surgery must be indicated for the benefit of the
patient. Thus it nearly always involves preparation for surgery of
epileptic patients. Therefore, in general, iEEG is impractical for
EEG in motion research in most populations. Hence, this paper
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focuses on spatial resolution and high-density motion surface
EEG methodology. Consequently, we refer in this paper to sEEG
simply as EEG.

We found no compilation of methodological articles or guide-
lines for brain and body dynamics measurements. Therefore, this
paper aims to supply researchers with an overview on current
hardware, software and methods for this purpose. Accordingly, we
discuss issues that potentially impair the recording, analysis and
recent solutions developed to address these problems. These cover
suggestions of how to avoid motion artifacts, the use of custom
designed accessories for EEG recording during movement, the
possibility and advantages of using trans-impedance amplifiers,
determination of real/custom electrode positions, EEG electrode
types, the use of different EEG recording systems, artifact removal
and the integration of brain, motion capture (MOCAP) and EMG
recordings. As an introduction, we offer a short overview of EEG
principles.

2. PRINCIPLES OF EEG
The basic functional structure of the brain is the neuron and the
human brain contains about 1011 of them (Herculano-Houzel,
2009). Neurons are specialized cells that are able to manipulate
their membrane electric potentials in order to transmit electri-
cal signals from one to another. These electric signals, or action
potentials, are rapid, instantaneous electric events. They have an
amplitude of 100 mV, last 1 ms and are conducted through the
axon, at a speed that varies from 1 to 100 m/s. This is the method
that the brain utilizes for information exchange. This process
works rather well for fast communication because of the intri-
cate network, and amount of neurons that constitute the system
(Kandel, 2000).

In an all-or-nothing chain reaction, the signal propagates
throughout the network. The signal is transmitted in a wave-
like movement of activation across the excitable medium of the
brain which is composed of axons, synapses, dendritic mem-
branes and ionic channels. Following an axon depolarization
and the creation of an excitatory postsynaptic potential (EPSP)
at neighboring dendrites, cell membrane depolarization occurs.
Neurotransmitters in the excitatory synapses cause an influx of
positive ions at the postsynaptic membrane. This creates a neg-
ative charge at the apical dendrites of the postsynaptic neuron.
Thus a reorganization of ions ensues inside the cell. Ions move
from the apical dendrite to the cell body depolarizing the cell
body. This creates a positive charge on the extracellular side of the
cell body and basal dendrites. A movement of positively charged
ions from the cell body and the basal dendrites to the apical
dendrite generates extracellular potentials (Magee, 2000; Hallez
et al., 2007; Buzsáki et al., 2012). These events create two ver-
tically oriented dipoles of opposing polarity in pyramidal cells.
This is due to the arrangement of these cells. Pyramidal cells
are arranged with cell bodies in deeper laminae and dendritic
arbors directed upward to the surface. Neurons must be reg-
ularly arranged so that they amplify each other’s extracellular
potentials. For this reason neighboring pyramidal and surface
cells contribute the most to the EEG signal as their the axes
of their dendrite trees are parallel to each other (Hallez et al.,
2007).

The flow of current through the extracellular space and the
relationship between recordings at a distance of the source
is described by the volume conduction theory (Schaul, 1998;
Rutkove, 2007). This refers to the to the spread and conduction
of extracellular potentials through the biological tissue between
the source and the sensor. This bypasses the delicate wiring of the
brain but spreads according to standard laws of electrodynam-
ics through the tissue (Plonsey and Heppner, 1967; Hallez et al.,
2007). Volume conduction makes measurement of EEG possible
in the first place, yet makes separation and interpretation of EEG
signals difficult.

Common EEG recording techniques measure the difference of
the electric potential of a surface electrode with respect to a ref-
erence surface electrode. After the charges reach the electrodes,
they are transmitted through cables to a high impedance ampli-
fier. To resolve the high frequency content of EEG, the amplified
signal needs to be sampled by an analog to digital converter at a
high sampling rate. The sampling rate typically ranges from 250
to 2000 Hz and must be greater than twice the Nyquist frequency
to ensure an adequate sampling and to minimize aliasing. The
Nyquist frequency is the highest frequency that is of interest to
be detected. If the Nyquist frequency is 600 Hz, then the sampling
rate should be at least 1200 Hz to avoid aliasing. Here aliasing
refers to the effect of under-sampling when higher frequencies
are present. This results in the creation of lower frequencies in
the analog-to-digital converter (Sinclair et al., 2007). As an exam-
ple, Waterstraat et al. (2012) used a sample rate of 2000 Hz while
recording EEG with the purpose of investigating these frequencies
around 600 Hz. After recording, the data is stored on a com-
puter hard drive. Further signal processing and analytic processes
involve the removal of uninteresting signals and noise from the
raw data.

After filtering, the clean signal appears as waves that are
the product of the rhythmic activity of clusters of neuronal
cells. It was thought that brain rhythmicity was generated from
medial thalamic structures. It is now thought that neurons in
the nucleus reticular thalami are the pacemaker. These neurons
discharge rhythmically to the thalamocortical relay. This leads to
synchronous excitatory postsynaptic potentials (EPSPs) (Schaul,
1998). The brain’s rhythmic activity is defined by its occurrence
at each second, therefore frequency in Hertz (Hz).

Brain rhythms can occupy several frequencies. Here we
attempt to summarize and give brief examples about brain
rhythms and their functioning. The lowest frequency band is
the delta (δ) band. It ranges from approximately 0.3 to 4 Hz.
This band is predominant during sleep and in infant children.
Its manifestation in adults is associated with learning and atten-
tion deficits (Clarke et al., 2001). The next frequency band in the
spectrum is the theta (θ) band. It occupies the frequencies from
4 to 8 Hz. Theta waves are associated with repression or inhi-
bition of behavioral activities, drowsiness and with creative or
spontaneous states. Occupying the next frequency band from 8
to 13 Hz are the alpha (α) waves. These were the first observed by
Hans Berger and therefore called alpha. Alpha waves occur during
relaxation and closed eyes state and are associated with the inhi-
bition of certain functions in the brain (Goldman et al., 2002).
Beta (β) waves occur in the frequency range from 13 to 30 Hz.

Frontiers in Human Neuroscience www.frontiersin.org March 2014 | Volume 8 | Article 156 | 2

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Reis et al. Measuring EEG and body dynamics

Beta activity is related with anxiety, irritability, agitation, sleep
disturbances and addictions (Prichep and John, 1992). Gamma
(γ ) waves constitute the remaining frequency ranges from 30 to
100 Hz. This spectrum band is thought to be relevant for sen-
sory and cognitive related brain functions. Gamma waves are
thus involved in the complex activities of information process-
ing (Colgin et al., 2009). They may also be related to motor visual
processing and facial features expression (Muthukumaraswamy,
2010; Tang et al., 2011). Activity at higher frequencies are also
present in the central nervous system. For example, frequen-
cies situated around 600 Hz. These oscillations consist of a brief
burst of activity, labeled often labeled as sigma-burst (σ -burst).
The previous mentioned frequencies are considered to be gen-
erated by post synaptic activity. However higher frequencies, at
around 600 Hz, are thought to originate from spiking activity.
That is, the added-activity from single neuron cell spiking activ-
ity. Alterations in the amplitude and latency of the sigma-burst
were observed under, reduced attention, general anesthesia and
different stimulation paradigms (Waterstraat et al., 2012).

Specifically regarding movement, EEG activity is used as an
indicator of movement initiation, prediction of its direction and
even the limb that could be active during motion (Ahmadian
et al., 2013). Human EEG is synchronized with muscle contrac-
tion (Salenius et al., 1996, 1997; Schoffelen et al., 2008) and is
coupled with gait phase (Gwin et al., 2011). EEG rhythm changes
before movement occurs for example as the Bereitschaftspotential
or alpha and beta event related desynchronization (ERD). The
bereitschaftspotential is a negative cortical potential which occurs
around 1.5 to 1 s before the onset of a voluntary movement
(Kornhuber and Deecke, 1965; Shibasaki and Hallett, 2006).
ERDs are a short lasting decrease of frequency power in the
alpha and beta bands that appear about 2 s before movement
(Pfurtscheller and Neuper, 2003). As a practical example, these
signals are used to decode a subject’s movement intentions and
provide control of an exoskeleton which aids the subject during
locomotion (Kilicarslan et al., 2013).

2.1. EEG ARTIFACTS
Inherent with the measurement of brain activity are noise and
artifacts. During recording, several sources of artifacts exist and
therefore several kinds of noise contaminate the raw signal. The
first most evident artifact, that occurs in recordings during move-
ment are muscle activity artifacts. Muscle artifacts have their ori-
gin in the head and neck musculature which become active during
head movement or stabilization during motion tasks (Gwin et al.,
2011). Electromyographic (EMG) artifacts are the most difficult
to deal with due to the fact that their spectrum overlaps with EEG
activity, mainly with beta and gamma waves (Brown, 2000).

Other artifacts arise from sweat bridges, electrodes and cables
movements, cardiac activity such as ballistocardiographic arti-
facts and eye movement. Sweat bridges occur when the person
sweats and the salt and water form a contact bridge between two
or more electrodes or simply alter the impedance of the elec-
trodes. The electrolytes produced by the sweat glands create a
battery effect causing a low frequency artifact. Eye movement
and blink artifacts are also a source for EEG noise. In case of
the use of a common average reference, they tend to affect the

frontal electrodes causing a typical effect easy to identify in the
raw data and in a topographic plot of the scalp. In the case of
a nose reference they influence all electrodes. Electrode move-
ment artifacts occur when the contact of the electrode with the
scalp is disturbed, which results in a rapid change of impedance.
Ballistocardiographic and cardiac activity artifacts happen when
the pumped blood causes a mechanical movement on an elec-
trode that lays on top of a blood vessel or is contaminated with
heart electric activity. These are also easy to spot artifacts because
they are rhythmic and with a much higher amplitude than EEG
(Tyner et al., 1983). In sections, 3.5 and 4.2 we will present sugges-
tions for the reduction of artifacts during recordings and during
analysis.

3. RECORDING HARDWARE, SOFTWARE, AND TECHNIQUES
In this section, we present hardware, software, and techniques to
deal with the previously described artifact issues and the record-
ings of body and brain dynamics during movement, with an
emphasis on spatial resolution.

3.1. AMPLIFIERS, ELECTRODES, AND CAP TYPES
3.1.1. Amplifiers
Over the past decades amplifiers have been optimized to improve
input impedance. Today’s amplifiers do not therefore alter the
surface potentials. However, the surface potential is a result of
the brain activity but not necessary for the brain activity itself.
von Tscharner et al. (2013) has recently shown, by a model
computation, that because of the relatively low inter electrode
resistance, lateral currents between electrodes cause signals from
neighboring electrodes to record mixed signals. Thus, signals con-
tain information from both locations. Therefore, high impedance
potential amplifiers do not allow optimal spatial resolution. The
authors have shown this for EMG signals but this is most likely
also the case for EEG signals. As an alternative, researchers may
use trans-impedance amplifiers (electric current amplifiers). A
trans-impedance amplifier removes or injects charges to keep the
electrodes at ground or reference potential at all times. It yields
a measurable voltage output proportional to these currents and
thus to the EEG signal. von Tscharner et al. (2013) demonstrated
that the trans-impedance amplifier significantly improves spatial
resolution of EMG recordings because the inter-electrode cross
talk is reduced. Hence, this method can perhaps improve the
spatial resolution for the EEG signals.

3.1.2. Electrodes
Traditionally, the most use kind of electrodes type are wet elec-
trodes, that is, an electrode that uses an electrolyte gel, or other
means, to convey the signal from the person’s scalp to the elec-
trode pin that is coated with Ag-AgCl. This coating is used to
obtain a low resistivity between the skin and the electrode and the
conductive gel minimizes the electrochemical contact potential.
Nevertheless, these electrodes require a time consuming prepara-
tion, especially while using a high number of electrodes for source
analysis studies. After the measurements, the subjects also have to
wash their head to remove the conductive gel. In addition, during
longer data collection sessions, the gel may dry impairing signal
conductivity. This limits the study of behavior, the development
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of brain computer interface for every day use, long term EEG
studies or measurements in extreme conditions such as in space.
In order to address these issues, researchers in recent years have
developed dry electrodes.

A review by Liao et al. (2012) explores several solutions
for dry electrodes alternatives. Most dry electrodes are of three
types: dry micro-electromechanical system sensors (MEMS), dry
fabric-based sensors and hybrid dry sensors. Additionally, a tech-
nology mentioned by Liao et al. (2012), are Photrodes™. These
are a NASA spinoff in collaboration with the company Srico,
Inc (Sawbury Blvd Columbus, OH 43235-4579, USA). A Mach-
Zehnder interferometer measures the electric activity via the
electro-optic effect that modulates a light beam. Just like other dry
sensors, these also do not require skin preparation (Kingsley et al.,
2004). In terms of performance, Estepp et al. (2009) showed that
the correlation between wet and dry electrodes ranged from 0.45
to 0.82 depending on the electrode position on the participant’s
head. Additionally, Grozea et al. (2011) tested bristle-sensors
against wet sensors and verified that the average coherence of the
bristle-sensor/gel-based pair was above 80% of the average coher-
ence of the two employed gel-based electrodes, from 7 to 44 Hz.
In addition to that, in the frequency range around 10 Hz, the aver-
age coherence between dry and wet electrodes reached 90% of the
wet-wet average coherence. For dry non-contact electrodes, Chi
et al. (2012) reports a correlation between dry non-contact and
wet electrodes, above 0.8 for half of the participants and for dry
contact electrodes, a correlations of 0.9. Chi et al. (2012) explain
that the lower signal correlation seen with non-contact electrodes
and contact electrodes is due to signal degradation and suscep-
tibility to movement artifacts when using the electrodes through
hair. In summation, most of these sensors performed well, how-
ever there is no single study that tested these different devices with
the same condition. In addition, the MEMS may cause injury or
skin irritation due to friction of the contact surfaces with the scalp
skin. Thus, researchers are advised to take this into account and
judge the trade-off between technologies and take into account
which conditions these perform better when designing studies
(Liao et al., 2012).

To address the problem of movement noise and other sig-
nal interference, it is recommended to use active electrodes and
shielded cables (Metting van Rijn et al., 1990, 1996). Active elec-
trodes amplify the signal at the source, have a high input and
low output impedance thus reducing the noise created by stray
potentials and cable movements (Metting van Rijn et al., 1996).
Grozea et al. (2011) and Chi et al. (2012) elaborated on solutions
for active, dry electrodes. One commercial product of a MEMS
electrode is the g.SAHARA by g.tec medical engineering (g.tec
medical engineering GmbH, Sierningstrasse 14, 4521 Schiedlberg,
Austria). Cognionics (Cognionics, Inc., San Diego, CA 92121)
proposes a different approach to active dry electrodes, with their
Flex Sensors in Figure 1. This approach provides a solution to
the hair interference problem which became evident when using
other previous dry electrodes (Chi et al., 2012). The electrodes
are made from a 3D printed nylon material and are provided
with a set of angled appendages, similar to legs, which when
under pressure deform and flatten. This brushes the hair away
and increases contact with the scalp surface while reducing hair

FIGURE 1 | Schematic of Cognionics active dry Flex sensor. Top:
deformation of the sensor brushing hair aside. Bottom: Top view of the
sensor spreading over a surface. The sensor has 15.24 mm in diameter and
11.43 mm in height. Picture courtesy of Cognionics. (Cognionics, Inc., San
Diego, CA 92121).

interference. When compared to dry electrodes these show a cor-
relation of about 0.9 between the wet and dry signals (Chi et al.,
2013). However these electrodes can only be used 20 to 30 times.
Nonetheless, wet active and shielded electrode solutions exist, just
like the actiCAP electrodes, distributed by Brain Products (Brain
Products GmbH, 82205 Gilching, Germany).

3.1.3. Caps
The number and spatial distribution of EEG electrodes in an EEG
electrode holder cap influences the spatial resolution and accurate
source localization. Junghöfer et al. (1999) and Gutberlet et al.
(2009) recommend a minimum of 64 channels with equidistant
positions covering the lower areas of the head to record activity
from these areas of the brain. A significant number of electrodes
are recommended for independent component analysis (ICA)
based artifact removal methods (Michel and Brandeis, 2010).
For instance, Lau et al. (2012) showed that up to 125 electrode
channels improve the ICA decomposition. On the other hand,
it is possible to localize the two most robust sources with only
35 electrodes (Lau et al., 2012). Therefore, the number of chan-
nels may depend on the study objectives. Higher resolution may
be necessary when measuring EEG activity during motion and
correlating the EEG signals to EMG signals from specific mus-
cles. The general view that for the localization of more sources,
more electrodes are required may be misleading because the inter-
electrode resistivity drops with shorter inter-electrode distances
and thus crosstalk among electrodes limits the spatial resolution
(von Tscharner et al., 2013). Future research may therefore take
advantage of combining measurements using trans-impedance
amplifiers (mentioned above). However, the main limiting fac-
tor for analyzing EEG activity acquired during motion is most
likely noise and movement induced artifacts. This will affect
source localization. Thus the maximal appropriate number of
electrodes will depend on how well one can control the mechan-
ical influences and the inter electrode cross talk. Nonetheless, as
signal acquisition and pre-processing techniques improve, one is
approaching a technology that provides sufficient resolution and

Frontiers in Human Neuroscience www.frontiersin.org March 2014 | Volume 8 | Article 156 | 4

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Reis et al. Measuring EEG and body dynamics

stability to obtain movement and behavior related information
from the EEG.

Double-layered caps prevent cables from moving by restrain-
ing the cables between the layers. Thus eliminating a source
of artifacts. The most commonly used ones are the BrainWave
cap (Medi Factory BV, Buizerdstraat 3a, 6414 VT Heerlen, The
Netherlands) or the WaveGuard™ (ANT-Neuro, Colosseum 22,
7521 PT Enschede, Netherlands). Alternatively, researchers can
combine two of their present caps and accommodate the wires
between the layers. This works particularly well with the actiCAP
from Brain Products as seen in Figure 2.

Cognionics provides a high-density dry electrode EEG head-
set system which supports up to 64 channels (Chi et al., 2013),
illustrated in Figure 3. This system integrates the Cognionics Flex
Sensors described just above, and Cognionics version of the wire-
less acquisition unit, described in section 3.3.2. This design is
important in order to keep adequate pressure on the sensors
and thus ensures contact between sensor and scalp. The headset
has concealed and restrained electrode cables; eliminating cable

FIGURE 2 | Schematics of the adapted double layered actiCap. Left:
Cap with an electrode whose wire enters into the cap layer. The black cable
is on the surface and it is depicted as a dashed line as it enters into the first
layer of the cap. It leaves the cap at the bottom. Right: Close-up of a
transverse view of an electrode inserted in the cap. A, Electrode; B, Plastic
electrode holder; C, Upper cap layer. D, Lower cap layer. The green plastic
electrode holder helps to fix both layers and the electrode. The cable
passes trough the first layer to be fixed between both layers.

FIGURE 3 | Left: Subject wearing the headset. Reference electrodes are
allocated on the side of the neck. Middle: View from the interior part of the
headset with the structure that holds the electrodes. Right: Headset
maintains its shape when not utilized. Picture, courtesy of Cognionics
(Cognionics, Inc., San Diego, CA 92121).

movement and thus cable noise. Additionally, it seems to require
minimal preparation and only small adjustments on pressure to
ensure adequate signal collection.

3.2. SPATIAL LOCALIZATION OF ELECTRODES
Source localization techniques attempt to determine the genera-
tors in the brain that gave rise to a given scalp potential map. This
is done by combining the EEG data with MRI images, thus pro-
viding a 3D representation of the possible cortex electric activity
sources. However the accuracy of source localizations is influ-
enced by the precision of the spatial localization of the electrodes
in a 3D volume (Wang and Gotman, 2001). The information
about electrode positions allows for the co-registration of the
sampled EEG data with the study participant’s own anatomy.
(Michel et al., 2004). Three steps are necessary to obtain EEG sen-
sors localizations: digitization of the electrode positions, electrode
labeling and finally coregistration of the labeled 3D positions on
the on the headmodel (Koessler et al., 2010). For more details on
EEG source imaging readers can consult other studies (Grave de
Peralta-Menendez and Gonzalez-Andino, 1998; Pascual-Marqui,
1999; Michel et al., 2004; Hallez et al., 2007).

Several methods exist to determine the electrode positions.
The first and most described method is the 10–20 system, in
which the electrode distances between adjacent electrodes are
either 10 or 20% of the total front-back or right-left distance of
the skull (Jasper, 1958). This system is limited, because the place-
ment of electrodes is user dependent, therefore prone to inherit
error of subjectivity. It also does not account for small inter
electrode positioning differences and the subject’s own anatomy.
Furthermore, many of todays EEG electrode systems are imple-
mented on elastic caps or some other kind of structure that allows
a faster placement of electrodes on the head. Electrodes integrated
in this kind of structure have a roughly pre-determined position,
which adapts to the person’s head (Michel et al., 2004).

To address these problems, researchers have several options
that digitize positions of each electrode: The ELPOS sys-
tem (Zebris Medical GmbH, Max-Eyth-Weg 43, D-88316 Isny,
Germany) and the FastTrack system (Polhemus Inc, 40 Hercules
Dr, Colchester, VT 05446, United States of America) can be used
for this purpose. These systems automatically label each electrode.
However, the digitalizations take about 20–40 min or more when
multiple electrodes systems are employed and are user depen-
dent, as the user must touch each electrode in order to acquire it’s
position. A study from Engels et al. (2010) further exposes some
limitations and factors that influence the precision of systems
such as FastTrack.

A less user dependent method for acquiring electrodes posi-
tions was described in the patent EP 2 561 810 A1 by Engels et al.
(2011). This method uses at least 14 cameras that are arranged
around the subject to determine the positions of reflective mark-
ers attached to the electrodes. The system detects and labels the
electrodes automatically. However this method also needs an MRI
scan of the person’s head and a laser digitized scan of part of the
person face and head, which is time consuming, impractical and
expensive.

Russell et al. (2005) describes a photogrammetry system. This
device shows reliable results and seems easy to use. A limitation
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may be that this system only works with a geodesic electrode
array from Electrical Geodesics (Electrical Geodesics Inc., Eugene,
Oregon, United States of America).

Ettl et al. (2013) demonstrate another optic system for the
spatial detection of electrodes. This system is user independent,
highly accurate and fast. It uses a hand-held, motion-robust, opti-
cal sensor based on Flying Triangulation (Ettl et al., 2012). The
measurement occurs when a single-shot sensor acquires images
yielding sparse 3D data. Afterwards, the data is aligned and the
current measurement process is visualized in real time. Then, a
dense 3D model of the object is obtained (Ettl et al., 2013). This
system shows promise, although, it still does not detect and label
electrodes automatically.

3.3. WIRED AND WIRELESS EEG SYSTEMS
Brain activity may be recorded by means of wired or wireless
EEG systems. Nevertheless, study possibilities differ substantially,
according to the systems’ characteristics and as subjects are more
restrained with a cable system than with a wireless system. Here
we describe some of these systems and propose some means for
allowing the recording of EEG during motion with wired systems.
Additionally we review wireless systems that show promise for
recording EEG during motion. Finally, we present suggestions on
how to decrease motion related artifacts and suggest software for
recording brain and body dynamics during movement.

3.3.1. Wired EEG Systems
With wired EEG systems the subject must remain constrained to
a location and move only in that area. However, some solutions
for the use of cable based EEG system during movement exist:

Most EEGs recorded while moving were performed using a
cycle ergometer. The reason for this is that cycling does not
create stepping impacts that provoke strong neck muscle con-
tractions and electrode movements. Typical examples of studies
that employed this methodology and successfully filtered the data
to remove most artifacts are Brummer et al. (2011), Hilty et al.
(2011), and Schneider et al. (2013). A strategy used by Jain et al.
(2013) can further help with artifact reduction during cycling.
Jain et al. (2013) used a recumbent cycle ergometer in an attempt
to decrease neck muscle contractions, electrode movements and
other motion-induced artifacts.

For other tasks, such as running or walking, we may look at
the examples of Gramann et al. (2010), Gwin et al. (2010, 2011),
and De Sanctis et al. (2012). They used a customized wired EEG
system that allowed the subject to run on a treadmill. The elec-
trodes cables were attached to the amplifier mounted above the
head as seen in Figure 4. However, the subject’s movements were
restricted due to the limited cable length. This method allows
the recording of EEG during walking or running, although cable
movements induce extra noise to the data (Gwin et al., 2010). This
showed how important it is to restrain the cables and make use of
solutions like the ones shown in section 3.1.3.

Researchers may also utilize a modified overhead crane in a
large room, as shown in Figure 5. The overhead crane carries the
amplifier and a pre-recording system above the subject’s head,
which in turn is connected by cables to the computer that records
the data. This system allows the subjects to move around the

FIGURE 4 | Schematic of an over head holder for EEG amplifiers.

A, Amplifier; B, Arm holding the amplifier; C, Subject running on a
treadmill (D).

designated large space. The overhead crane movements can be
controlled by a feedback loop mechanism using proximity sen-
sors, information from a MOCAP system or simply by manual
control. Additionally, the overhead crane movements can be con-
trolled by a passive system that consists of a cable attached to
a body harness or vest, worn by the subject and each time the
person moves, it induces it to move along.

3.3.2. Mobile EEG systems
Recently, developers have optimized wireless EEG systems that
facilitate mobile recordings of brain activity. These offer an
advantage compared to wired systems because the person is less
restricted in movement range and types. The electronics are much
smaller than in the conventional devices and allow the replace-
ment of cables that transmit the data from the EEG cap to the
computer.

The MOVE system, in Figure 6, replaces the cables between the
electrodes system and the amplifier. After connecting the trans-
mitter to the electrode control box, the data is transmitted via
radio signals to the receiver which then sends the data to the
amplifier. The transmitter pre-amplifies and digitizes the raw sig-
nals from the electrodes. The receiver then converts the signal
back to an analog signal. This system can be used in addition
to wet active electrodes system, such as the actiCAP from Brain
Products. Moreover, the MOVE system works with several types
of EEG amplifiers.
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FIGURE 5 | Concept and schematics of the adapted overhead crane. In
this figure we can see the relative position of the subject and the overhead
crane. A, Wall mounted lateral rails; B, Movable central beam; C, Amplifier

can be moved along the central beam; D, Data cable between EEG cap and
the amplifier. The subject (E) can move freely in the measurement volume
that is covered by the overhead crane.

FIGURE 6 | MOVE wireless EEG acquisition system with amplifier. Left:
Transmitter, which is carried by the subject. Right, top to bottom: (1)
Receiver with a small battery inserted, (2) Battery pack, (3) Amplifier. These
are the static parts of the system. Picture, courtesy of Brain Products (Brain
Products GmbH, 82205 Gilching, Germany).

A study by Bulea et al. (2013) demonstrates the use of the wire-
less system MOVE. The video part of this study can be found via
the link http://www.jove.com/video/50602/. In this study the sub-
jects perform a series of exercises during data acquisition such
as walking through a predetermined course in a large room, sit
to stand and treadmill walking. Kilicarslan et al. (2013) used the
MOVE system to acquire the brain activity of a paraplegic patient
who controlled an exoskeleton with his thoughts.

Each MOVE unit can host a maximum of 64 electrodes.
However, up to 5 units can be used at the same time in parallel for
additional channels, or testing more than one subject at the same
time. This receiver works best when it is less than 6 m distance
from the transmitter. Whenever the connection is interrupted,
the receiver sends a TTL marker to the amplifier and a second
one when the connection is reestablished and stable. This allows
the user, during the analysis phase, to know when the problem
occurred. This may be a limitation, as it requires close proximity
to the receiver or spatial dislocation of the receiver. All compo-
nents, including the electrodes system, are powered by small long
life lithium batteries, which hold the system functional for about
9 h. The manufacturer also specifies that the system has 16 bit
resolution and operates at a maximal sampling rate of 954 Hz.

Another available system that allows high-density EEG record-
ings is the eegosports™ from ANT-Neuro. In an innovative
project, much like Kilicarslan et al. (2013), researchers utilize this
system to create a brain controlled exoskeleton, with the pur-
pose of optimizing the rehabilitation of paraplegic patients. The
MINDWALKER Project (Gancet et al., 2012) can be accessed
under https://mindwalker-project.eu.

The eegosports wireless system uses a different approach:
it uses a small amplifier and a VAIO™ Ultrabook® (Sony
Corporation, Konan, Minato-ku, Tokyo 108-0075, Japan) laptop
worn in a small backpack. EEG signals enter the device at the
connectors and are pre-amplified. Afterwards, they are sampled
in an A/D converter located in the amplifier case. The signals
are amplified and pre-recorded locally. The computer sends the
data wirelessly to the remote computer where it is stored. This
approach allows for the temporarily store data during unstable
connections. The risk of lost data is thus minimized. The sys-
tem has the maximum capacity of 64 EEG electrodes and part of
these can be used as EMG bipolar electrodes. Furthermore, this
system works with the ANT 64 EEG electrode array WaveGuard
cap. As described in section 3.1.3, the two layers of fabric fix
the electrode cables, thus potentially reducing cable movement
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FIGURE 7 | ANT-Neuro eegosports™ wireless EEG system. Left: Posterior view: A study participant wearing the EEGOSPORTS WaveGuard EEG cap. The
cap cable goes inside the backpack where it connects to the amplifier and Ultrabook. Right: Lateral view.

artifacts created during motion. However, this cap utilizes passive
electrodes with all disadvantages compared to active electrodes
systems, even though these are shielded electrodes. Nevertheless
the data obtained in a mobile setting is of sufficient quality for
use in sophisticated analysis (Ehinger et al., 2014). The ampli-
fier weights around 500 g. The whole system is light and small
enough for a person to transport it (Figure 7). No cables restrict
the person to any location. One issue is the temperature gen-
erated by the laptop, which may become uncomfortable and
change the subject’s body temperature. This increase in body
temperature is undesirable as it may cause the subject to sweat.
An advantage of this system is a maximum sampling rate of
2048 Hz and a resolution of 24 bit. Similarly, the eegosports
is powered by integrated batteries with an operating time of
up to 6 h.

The last wireless system we would like to describe is the
Cognionics wireless EEG acquisition unit with 64 channels with a
maximum sampling rate of 300 Hz. This unit encloses the digitiz-
ers, amplifier, micro controller and wireless transmitter as shown
in Figure 8. This system uses standard 1.5 mm touchproof lead
wires, thus is compatible with any device that utilizes touch-
proof connectors. The data is wirelessly transmitted via Bluetooth
within a range of about 10 m. The system is also compatible
with any computer, tablet or phone supporting the Bluetooth
RFCOMM/Serial Port profile. The amplifier has a built in wire-
less trigger receiver. Therefore, it can work with transmitters such
as the ones mentioned in section 3.5.3. Two AAA ( 44.5 mm
in length and 10.5 mm in diameter) batteries can feed the sys-
tem for about 6 h of data streaming. Table 1 summarizes the
characteristics of the described systems.

Other wireless systems solutions are g.tec (g.tec medical engi-
neering GmbH, Sierningstrasse 14, 4521 Schiedlberg, Austria)
and Mindo (National Chiao Tung University Brain Research
Center, 1001 Ta-Hsueh Rd., Hsinchu 30010, Taiwan). It is beyond
the scope of this paper to explore every system and their capa-
bilities in detail. We exposed the main features of some systems
and we advise researchers to choose the system that suits their
needs best.

3.4. RECORDING BODY DYNAMICS
MOCAP and Electromyography (EMG) can be recorded simul-
taneously and synchronously combined with EEG recordings in
order to obtain body spatial and muscular dynamics, correspond-
ing to the specific brain activities occurring in a time window
(Makeig et al., 2009; Gwin et al., 2011; Bulea et al., 2013).

3.4.1. Motion Capture
MOCAP is the digital acquisition of movement through the use
of computers. There are a few methods for the acquisition of
movement:

• Mechanical means: the person wears a kind of exoskeleton and
when moving, sensors detect changes in position (Calvert et al.,
1982; Sharma et al., 2013).

• Electromagnetic methods: The subject wears magnetic
receivers (markers), which track the location relative to an
immobile magnetic transmitter (Sharma et al., 2013).

• Inertial sensor methods: Inertial sensors such as accelerometers
and gyroscopes as well as magnetometers attached to a subject’s
body build up a body sensor network. Through a combination
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FIGURE 8 | Cognionics wireless EEG acquisition unit. This unit holds the
digitizers, amplifier, micro controller and wireless receiver. It is designed to
work with standard 1.5 mm touchproof lead wires. Picture, courtesy of
Cognionics (Cognionics, Inc., San Diego, CA 92121).

of the information, one can obtain joint angles and acceler-
ations (Cooper et al., 2009; Fong and Chan, 2010; Sabatini,
2011).

• Optical methods: A person wears light reflective (passive)
or emitting (active) markers (Sulivan et al., 2006; Tobon,
2010). Cameras track these markers and the system calculates
their location through triangulation methods. There are also
markerless methods based on computer vision (Gavrila, 1999;
Poppe, 2007).

Motion related studies predominantly utilize infrared MOCAP
methods because of its reliability and accuracy. Thus we explain
here this method in more detail. Most MOCAP systems use reflec-
tive markers. Dedicated software combines the acquired images
from different positions and by triangulation techniques it tracks
the marker’s positions in space. By repeating the acquisition over
time, during a movement, the system is capable of describing
the trajectory of an object. Systems, such as the ones provided
by Vicon (Vicon Motion Systems Ltd., Oxford, United Kingdom)
and systems from Qualysis (Qualisys AB, Gothenburg, Sweden)
use such methodology.

The cameras’ set-up is important, as at least 2 cameras must
see each reflector marker to allow for triangulation. Whenever a
marker is not visible by a camera, it is called an occluded marker.
The addition of extra cameras may solve this problem during
motion. A camera set-up of eight units is in general sufficient
to capture body dynamics while walking or running. The space
where the markers can be visualized by the cameras is called
volume. The larger the volume, the more cameras with will be T
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required thus allowing that 2 or more cameras can track the
markers at all times (Tobon, 2010).

When recording body dynamics, the placement of the
reflective markers is important for data interpretation and
movement modeling. Marker positions can differ amongst
manufacturers and laboratories, which can sometimes create
difficulties when comparing results. C-Motion’s (C-Motion,
Inc., Germantown, MD, United States of America) suggestion
for markers placement can be found at the following location:
http://www.c-motion.com/v3dwiki/index.php?title=Marker_Set_
Guidelines#cite_ref-Serge_0-0. This suggestion from C-Motion
also includes a well known markers placement guideline known
has the Helen Hayes markers set (Kadaba et al., 1990). In order
to place the markers on a person’s body, C-Motion recommends
to follow palpation guidelines of skeletal landmarks according to
van Sint Jan (2007).

For MOCAP of locomotion over long distances and natu-
ral environment, i.e., field tests, Ojeda et al. (2013) developed a
MOCAP mobile platform. The device consists of a wheeled plat-
form that moves along with the walking subject. The cart position
must be known in order to determine the subject’s position. The
authors present several methods and conclude that these meth-
ods are practical to be implemented with present-day sensors
that grant accuracy of better than 1% over arbitrary distances.
Therefore, researchers can possibly realize full body and brain
dynamics recordings in an outside environment.

3.4.2. Surface electromyography
There are two kinds of electromyography (EMG): sEMG (surface
EMG) and intramuscular EMG, which is an invasive technique
involving needles. In this paper, we only address sEMG. In its
essence sEMG is a technique that allows the evaluation of mus-
cle activity by recording the electric activity produced by mus-
cles. sEMG signals are the superimposed motor unit potentials
(MUAPs) from several motor units. sEMG is recorded similarly
to EEG, i.e., by placing an electrode in contact with the skin.

Researchers and clinicians use sEMG in applications for the
non-invasive assessment of the neuromuscular structure func-
tions. Areas of application of sEMG methods include sport
science, neurophysiology and rehabilitation. From the sEMG
recordings, researchers and clinicians can monitor muscle activa-
tion patterns in order to identify pathologies or evaluate therapies
and sports performance (Rainoldi et al., 2004).

sEMG acquisition is performed by placing a bipolar electrode
in contact with the skin above the targeted muscle of inter-
est. The positioning of the electrodes, condition of the skin and
electrode type, are important factors for adequate signal acquisi-
tion. Therefore, guidelines for EMG acquisition and EMG data
analysis and reporting, were developed by the project Surface
ElectroMyoGraphy for the Non-Invasive Assessment of Muscles
(SENIAM) (Hermens and Freriks, 1999; Hermens et al., 2000)
http://www.seniam.org and the Society of Electrophysiology and
Kinesiology (ISEK) (Merletti and Di Torino, 1999) http://www.

isek-online.org.
SENIAM offers guidelines for sensor types, placement and

location. However, we suggest that researchers use sensor loca-
tion references that best suit their experiments. Examples of other

references for sensor positioning are Rainoldi et al. (2004) for
lower limb muscles and Forsberg and Hellsing (1985); Schüldt
et al. (1987) for electrode locations on the face, head and neck
muscles.

Developments in wireless devices help reduce cable movement
artifacts and increase the freedom of movement. Wireless EMG
use is therefore a good choice when brain and body recordings
take place in a mobile setting. EMG wireless systems offered by
Noraxon (Noraxon USA Inc., Scottsdale, Arizona, USA) such as
the Desktop Direct Transmission System (DTS) can hold up to
16 channels and sample at a rate up to 3000 Hz. This system
utilizes small lightweight probes attached to the electrodes, pre-
amplify the signal and transmit it wirelessly over a distance of up
to 20 m. The DTS can also utilize other biomechanical sensors like
goniometers, inclinometers, foot switches and can be combined
with MOCAP.

Another wireless EMG system is the Trigno™ Wireless system
(Delsys Inc. Massachusetts, USA), which uses dry EMG elec-
trodes. The sensors include integrated triaxial accelerometers with
motion artifact suppression and can be synchronized with motion
capture. The Trigno Wireless supports 16 EMG channels, 48
accelerometer channels, a sampling rate of 2000 Hz and a trans-
mission range of 40 m. Similarly to EEG systems, the literature is
lacking in studies that compare EMG acquisition systems and the
signal quality obtained.

3.4.3. Force plates, IMUs, and eye tracking
As researchers are not only interested in investigating the kine-
matics but also the kinetics of a subject’s movements, force plates
play an essential role in biomechanics. Usually composed of a
plate with integrated piezoelectric sensors or strain gauges, force
plates provide information about the forces exerted on the ground
and equivalently the ground reaction forces acting on the body.
Inverse dynamics algorithms can then be applied to determine
the forces and moments acting on the body and joints during
dynamic movements such as gait, running, cutting movements
etc. (Robertson et al., 2004).

As single force plates can pose problems with acquiring valid
data due to bad foot placement which in turn requires a high
number of trials (Oggero et al., 1998), a more and more common
way to acquire kinetics during gait and running are instrumented
treadmills. For measuring each foot separately during gait with
double limb support phases, split-belt instrumented treadmills
are used. The advantage of using instrumented treadmills is that
data can be recorded continuously allowing measurements with a
high number of strides in less time. Nevertheless, the gap in split-
belt instrumented treadmills might affect kinematics and kinetics
as the base of support is increased (Lee and Hidler, 2008; Altman
et al., 2012) and familiarization is advised (Zeni and Higginson,
2010).

The measurement of forces acting directly on the body dur-
ing cycling is possible through force measuring pedals that act as
mobile force platforms. Strain gauges attached to a pedal spin-
dle in a Wheatstone bridge configuration allow for measuring the
tangential and normal forces in the sagittal plane (Reiser et al.,
2003). Furthermore, in order to assess human sensorimotor inter-
actions during cycling, the seat as well as grip forces and torques
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may be measured with sensors attached to the seat supporting rod
and the stem or handle bars (Zhang et al., 2012).

Inertial measurement units (IMUs) such as accelerometers,
gyroscopes, and magnetometers allow subjects to move unre-
stricted of a MOCAP system’s measuring volume. IMUs attached
to the subjects body measure its kinematics. The combination
of these body sensors can then be fused to estimate joint angles
(Cooper et al., 2009; Sabatini, 2011; Tadano et al., 2013). Further
advantages are the low costs and the small size that makes mea-
surements unobtrusive and implementable in realistic everyday
measurements. Wireless synchronization can ensure the synchro-
nization with other hardware components mentioned before.
When not using internal storage on data storage devices, the qual-
ity of wireless communication links must be ensured to guarantee
transmission to a data recording station (Hanson et al., 2009).
Specialized calibration procedures or other reference systems are
required for the correct alignment of the sensors to the body and
angle estimation (Favre et al., 2009). The gold standard for mea-
suring joint angles, especially during highly dynamic movement
is therefore still a marker based MOCAP system.

Because there is a close relationship between vision and move-
ment control, the synchronous analysis of gaze and motion
plays an important role in current research (Ketcham et al.,
2006; Heinen et al., 2012; Causer et al., 2013). Recently, Essig
et al. (2012) presented a modular approach to combine infrared
MOCAP systems and mobile eye trackers for the analysis of the
3D gaze vector within the 3D MOCAP volume, while traditional
eye trackers relate the gaze only to 2D video positions. One step
calibration procedures can ensure the coherence between the gaze
direction and the MOCAP system. The integral approach allows
studying gaze during dynamic movement tasks whereas tradi-
tional studies were usually carried out under artificial laboratory
conditions. Researchers are thus able to investigate perception,
attention and eye-body-environmental interaction in realistic 3D
environments and during realistic tasks in a integral approach.

The libGaze library presents an open-source framework to
combine eye tracking with MOCAP systems for real-time track-
ing of gaze and the observer’s positions (Herholz et al., 2008).

As commercial solution, the Vicon MOCAP system and the
Ergoneers Dikablis Eye Tracking Solution represent a closed
approach in Vicon Nexus analysis software to track the body’s
position and the 3D gaze vector. Version 2.9 of the Qualisys Oqus
camera system also supports the Ergoneers Dikablis eye and 3D
gaze vector tracking.

3.5. DATA RECORDING
3.5.1. Reducing artifacts during data recording
In order to deal with artifacts mentioned in section 2.1 during
data recording, we present some recommendations.

To deal with salt and sweat bridges short exercise tasks with
resting intervals in an air conditioned room are recommended.
To further maintain body temperature, subjects can wear a cool-
ing ventilation vest during exercise (Pohr and Vogler, 2007). A
modified version of this vest can accommodate parts of the EEG
system as depicted in Figure 9. The vest opens completely and is
only attached to itself in the middle section. A study by Barwood
et al. (2009) shows that subjects wearing a cooling vest exercised
for 18% longer time, required less rest and maintained a skin
temperature lower than in control subjects. Thus, a ventilator
vest can perhaps compensate for the increased heat, created by
wearing EEG equipment during motion, and improve subject’s
performance.

To avoid electric artifacts, the recording area should be free
of sources of electric interference like engines or radiation emit-
ting devices. Mains hum create an electrical artifact at 50 or
60 Hz frequencies, for Europe and USA respectively. Notch fil-
ters can reject this artifact during post recording analysis. Further,
ensuring a qualitatively good connection and online impedance
check are essential in order to obtain a good signal. Finally,
cables active shielding implementation help to reduce electrical
noise. Solutions presented in section 3.1 reduce electrodes and
cable movements. As mentioned previously, the use of a doubled
layered cap effectively holds the electrodes and cables, thus min-
imizing this kind of artifact. In addition, researchers can use low
impedance output active electrodes that pre-amplify the signal at
scalp level.

FIGURE 9 | Schematics of the modified cooling vest. Left: Front of the
vest. Right: Back of the vest. A, Hook and loop strap bands for vest size
adjustment and fitting; B, Strap bands for cable holding; C, Integrated cooling

unit; D, Strap bands for holding EEG equipment, such as electrode boxes or
transmitters. Blue arrows indicate the flow of cool air which enter the vest.
Red arrows indicate the flow of hot air, which leave the vest.
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Muscle activity creates a major source of noise during record-
ings. EMG has amplitudes from 100 to 1000 μV at frequencies
from about 5 to 450 Hz. Brain activity also occupies this frequency
range, raging from 0 to 100 μV. EMG artifacts dominant ampli-
tude is in the 50 to 150 Hz band while about 90% of the EEG
spectral power is present in the 1 to 30 Hz band. Therefore, when
muscle activity is present, it affects much of the EEG (Shackman
et al., 2009).

Due to these aspects, EMG artifacts reduction is conducted
during the signal pre-processing phase by computational meth-
ods, for instance ICA (Bell and Sejnowski, 1995; Makeig et al.,
1996). In this category eye blinks, cardiac and other arti-
facts of electromyogenic nature are also reduced during the
pre-processing phase. However, adequate signal acquisition is
required for better results when using ICA methods. In section 4.2
we describe some computational methods for dealing with these
artifacts and reducing their presence in the recorded data. Other
suggestions during recording to avoid muscle artifacts include the
instruction and training of the participants to swallow and eye
blink during the intervals of short recordings and avoid severe
face and head muscle contractions during exercise such as weight
lifting.

3.5.2. Data acquisition settings recommendations
The data acquisition settings are an important step in the study
design. Adequate data sampling allows successful artifact reduc-
tion using ICA methods and provides better results. Also for body
dynamics recording, adequate sampling rates and the numbers of
samples are necessary, depending on the hardware and analysis
methods.

In infrared MOCAP, an adequate sample rate is required to
allow to capture movements. For running a sample rate between
120 and 250 fps should be sufficient. For instance, Gwin et al.
(2010, 2011) used a sample rate of 120 fps for running speed of
1.9 m\s. De Sanctis et al. (2012) utilized a capture rate of 100 fps
for a speed of 1.39 m\s. For faster movements though, such as
throwing or hitting, an increased sampling rate might be required.

For EMG sampling, a minimum of 1000 Hz sample rate is
recommended by SENIAM and ISEK. This is based on the sig-
nal ranges since the significant EMG activity happens between 5
and 450 Hz. We also advise the use of standard consensual EMG
sensor locations and follow recommendations of the SENIAM or
ISEK. These may perhaps not be the ideal for every muscle group
but it offers a base of comparison for researchers between stud-
ies. This way studies are easier to be compared (Viitasalo and
Komi, 1977; Komi and Tesch, 1979; De Luca, 1997; Merletti and
Di Torino, 1999; van Boxtel, 2001).

When using ICA based methods for EMG artifact removal, it
is necessary to acquire enough data for the algorithms to work
adequately. With Adaptive Mixture of Independent Component
Analyzers (AMICA), 10,000 muscle samples may be enough find
to the muscle components (Palmer et al., 2011; Delorme et al.,
2012). Also when using ICA based methods, it is debatable how
many data samples are necessary to find the different compo-
nents. The EEGLAB FAQs web page http://sccn.ucsd.edu/~scott/
tutorial/questions.html recommends to use at least the square of
the number of channels. In a paper from Makeig et al. (1999)

the authors used over six times the number of necessary input
points and ICA, which allowed for the identification of three spa-
tially fixed, temporally independent, behaviorally relevant, and
physiologically plausible components.

Furthermore, simultaneous direct acquisition of EMG signal
from the neck muscles that induce most artifact during move-
ment (Gramann et al., 2010), can help detecting noise compo-
nents and their subsequent exclusion. Thus, researchers can place
EMG or EEG electrodes below the nuchal line and above the C7
process to measure activity of the muscles that provide stability
to the head during motion. Also, sternocleidomaistoideus mus-
cles perform an important role in head stabilization. Due to this
stabilization function, these muscles activity, can induce artifacts.
Hence, their EMG should be recorded in order to facilitate artifact
removal. Researchers can consult Forsberg and Hellsing (1985),
Schüldt et al. (1987), and Leutheuser et al. (2013) for suggestions
of locations for these electrodes.

Subject’s safety is important when performing recordings of
exercises. The American College of Sports Medicine (ACSM) pro-
vides guidelines for exercise testing and prescription (Pescatello
et al., 2013). These guidelines give indications to clinicians and
scientists on how to perform exercise testing in healthy and
unhealthy subjects and termination criteria based on physical and
physiological signs. Lastly, the Borg scale of rates of perceived
exertion provide a measurement tool to monitor the partici-
pant’s performance and fatigue during exercise testing (Löllgen,
2004). The Borg scale measurements are correlated with oxygen
consumption and heart rate.

3.5.3. Brain and body data acquisitions synchronization
Synchronization of the measurement devices in the millisec-
ond range is necessary when investigating different modalities
(motion capture, force plates, EEG, EMG, etc.) simultaneously
during movement. Even slight time shifts between the single
devices potentially lead to a misinterpretation of the obtained
results. Synchronization is also important for real-time analy-
sis, since time shifts have immediate effects. The data from the
acquisition devices are usually asynchronous due to different
internal clocks, sampling rates, network and operating system
delays (Delorme et al., 2011). Delorme et al. (2011) proposed
a software approach for data streaming management with near
real-time synchronization capabilities.

This software approach has evolved into the open-source
project known as the lab streaming layer (LSL). This is a data
acquisition system developed by Christian Klothe from the Swartz
Center for Computational Neuroscience, Institute for Neural
Computation, University of California San Diego, USA. LSL
allows the exchange of time series between devices, programs and
computers. It’s a system for the unified collection of measurement
time series in research experiments. It consists of a core transport
library and a series of tools. These tools include a recording pro-
gram, online viewers, importers and acquisition software. These
acquisition programs can acquire data from various hardware
including EEG, eye tracking, motion capture, force plates, etc.,
from several manufacturers.

The built-in time synchronization in LSL relies on clock off-
set measurement and a timestamp for each sample which are
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collected alongside with each actual sample data. The recording
program included with LSL, the LabRecorder, collects the infor-
mation, including time stamps and clock offsets, for every stream
and stores it. Interested readers can consult the LSL google code
page at https://code.google.com/p/labstreaminglayer/ for details,
downloads and related documentation.

Another way to synchronize several devices is to use hard-
ware synchronization. This is usually achieved trough use of
TTL (transistor-transistor logic) signals, via coaxial trigger cables
with BNC connectors between the devices. This eliminates poten-
tial software synchronization delays. There are several possible
hardware synchronization implementations:

• To start the measurement, the system can use an initial syn-
chronization pulse by an external trigger. Possible trigger
devices are push buttons, optical systems such as photo sen-
sors or other sensors that sense an initial movement. This
method is only feasible for short measurements since a possible
time drift due to the different internal clock’s accuracies may
lead to cumulative desynchronization between the devices with
increasing measurement time.

• In order to avoid desynchronization, continuous synchroniza-
tion at a fixed frame rate can be implemented. This method
requires a master timebase, which regularly sends out syn-
chronization pulses to the attached devices. Nowadays camera
systems such as Qualisys Oqus system provide either exter-
nal frequency outputs or locking into external synchronization
input pulse sequences (Maidhof et al., 2013).

• Additionally, researchers can use wireless synchronization. The
custom-built system proposed by Kugler et al. (2012) for the
synchronization of wearable sensors with external devices is
also feasible for the synchronization of devices such as mobile
EEG with MOCAP cameras. Alternatively, researchers can use
commercial systems, such as the Cognionics wireless triggering
system http://cognionics.com/index.php/products/trigger.

4. DATA ANALYSIS SOFTWARE AND ARTIFACT REMOVAL
TECHNIQUES

4.1. SOFTWARE FOR DATA ANALYSIS AND VISUALIZATION
To visualize and analyze synchronously captured data some
options exist. Data acquired with the LSL software can be read
by the MoBILAB software package. This software contributes to
the Mobile Brain/Body imaging (MoBI) concepts put forward
by Makeig et al. (2009). MoBILAB is designed by Alejandro
Ojeda, also from the SCCN, with Nima Bigdley Shamlo and
Christian Kothe. Now, this package runs as a standalone, open
source, cross platform toolbox for Matlab (The MathWorks,
Inc., Natick, Massachusetts, USA). MoBILAB supports the anal-
ysis and visualization of synchronously recorded EEG data,
motion capture, EMG data and environmental data as seen in
Figure 10.

In the issue of this same paper, Alejandro Ojeda dedicates an
article to the MoBILAB software. Therefore, it is irrelevant to
further detail this software here. For details, readers are invited
to consult Ojeda et al. (2014) and the wiki page http://sccn.ucsd.

edu/wiki/Mobilabsoftware.

A further possibility is a subsequent usage of biomechanical
analysis and signal analysis software, such as Visual3D™ (C-
Motion, Inc., Germantown, MD, United States of America) and
EEGLab (Delorme and Makeig, 2004) or other signal analysis
software. Visual3D is a product for 3D MOCAP data analysis
and biomechanical modeling. It provides signal processing and
biomechanical analysis tools such as 6◦ of freedom modeling,
inverse kinematics and dynamics and can thus determine the
joint angles, powers, moments, forces, velocities and accelera-
tions during motion. Additionally, time series segmentation can
be conducted with Visual3D, for example for gait cycle segmen-
tation or any other movements using event detection based on
minimum/maximum search, thresholding or template compari-
son on any calculated biomechanical parameter. When exported
to EEGLab, the segmentation time stamps can be of further
use, provided synchronized measurements, brain and muscle
activity can thus be directly linked to the corresponding move-
ments. In EEGLab, the user can then proceed with the necessary
EEG signal analysis such as source localization for the specific
movement task.

4.2. ARTIFACT REMOVAL METHODS
Signal artifact reduction procedures combine various approaches
and routines to EEG artifact detection and removal. Overall, arti-
fact removal procedures can be divided into basic and advanced
processes. The basic stage of artifact removal focuses on environ-
mentally induced artifacts such as cable noise, power line noise
and impedance increase. These can be removed mostly by band
and notch filters. The advanced stage involves the removal of
EMG and other artifacts through methods such as ICA (Bell and
Sejnowski, 1995; Makeig et al., 1996). Here we suggest a compi-
lation of several artifact removal procedures. Figure 11 describes
the complete procedure.

We suggest the REMOV process as the first stage of data clean-
ing thoroughly described in Artoni et al. (2012). In this step,
most of the environmental artifacts are removed through filter-
ing and noise segments rejection using BCILAB tools (Kothe and
Makeig, 2013) available for download at http://sccn.ucsd.edu/
wiki/BCILAB. Application of band pass filters is the inclusion of
frequencies of interest and exclusion of other less interesting fre-
quencies and noise. The REMOV procedure includes the removal
of eye blinks but not the removal of EMG, heart and loose elec-
trodes artifacts. The combination of the REMOV process with
other procedures allows further reduction of artifacts.

For the removal of the remaining artifacts (heart beat, loose
electrodes, ocular movements, muscular activity), researchers can
use ICA methods and EEGLAB compatible tools for further
processing. As of today, there exists several variations of ICA algo-
rithms. We advise the use of the Adaptive Mixture of Independent
Component Analyzers (AMICA) (Palmer et al., 2011) as it out-
performs other algorithms in decomposing data (Delorme et al.,
2012) and at removing EMG artifacts (Leutheuser et al., 2013).
Also Gramann et al. (2010); Gwin et al. (2010, 2011) used AMICA
successfully to remove walking and running artifacts from EEG
data. AMICA source code is available at http://sccn.ucsd.edu/
~jason/amicaweb.html. After the data is decomposed by ICA,
noise inducing components must be selected. For the selection of
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FIGURE 10 | MoBILAB multi-stream browser screen shot. Upper Left: Data stream browser (EEG, EMG, etc.). Upper right: Master browser window. Lower
left: Motion capture browser. Lower right: Video stream browser. Picture, courtesy of the SCCN and Alejandro Ojeda. http://sccn.ucsd.edu/wiki/MoBI_Lab.

ICA components, researchers can choose an automatic or manual
approach.

Due to the typical problem of the subjective and time con-
suming selection of ICA components to exclude some researchers
created automatic component selection tools in an attempt to
reduce the user dependent factor. An is the Multiple Artifact
Rejection Algorithm (MARA) (Winkler et al., 2011), http://www.

user.tu-berlin.de/irene.winkler/artifacts/. This is a universal clas-
sifier of ICA components from EEG data. MARA can be used as
a plugin for EEGLAB. It is based on linear methods and can be
utilized with different electrode placements. This classifier was
trained by experts on large data during static and dynamic sit-
uations. This algorithm identifies components from muscle, eye
and electrode movements. This is an attempt to automatize the
time-consuming component selection process. However, we do
not know of any walking, running or sport related study that
used MARA. Therefore, its performance is somehow uncertain
with other movements than the one which the classifier was
trained with.

Thus, Gabsteiger et al. (2013) trained a classifier for the
selection of muscle activity independent components. It is

designed to cover a diverse selection of exercises that stimulate
the musculature that most interfere in EEG recordings dur-
ing movement: the Automatic Classification of Electromyogenic
ICA Components (ACEMIC). This selection of exercises
should produce similar artifact patterns as seen in most
exercises or movements. Evaluation of this classifier shows
a 93% sensitivity and 96% specificity. ACEMIC is imple-
mented as a plugin for EEGLab and can be downloaded
from http://www5.cs.fau.de/research/areas/digital-sports/automa
tic-classification-of-electromyogenic-ica-components/.

Users may opt for manual selection of ICA components.
For this purpose, we suggest users follow indications for data
decomposition of the EEGLAB manual http://sccn.ucsd.edu/
wiki/Chapter09:DecomposingDataUsingICA. EMG and other
artifact component selection directions, according to their spec-
tral and topographical characteristics, are given in Goncharova
et al. (2003) and McMenamin et al. (2010). Components that
exhibit high spectral power and that are located at the elec-
trodes of the periphery, are more likely to be myogenic activity.
Also, the shape of the dipole patters has to be considered. EEG
activity patterns are more likely to show smooth well-localized
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FIGURE 11 | Artifact removal process. The first node corresponds to the
REMOV process as in Artoni et al. (2012). The second node corresponds to
the data decomposition using AMICA which was used successfully for
removing movement related artifacts by Gramann et al. (2010); Gwin et al.
(2010, 2011); Leutheuser et al. (2013). AMICA is a ICA method and for EEG
data decomposition instructions exist at http://sccn.ucsd.edu/wiki/
Chapter_09:_Decomposing_Data_Using_ICA. After signal decomposition
components must be selected. Users can opt by manual selection or
automatic selection. Automatic selection with MARA (Winkler et al., 2011),
http://www.user.tu-berlin.de/irene.winkler/artifacts/ or ACEMIC (Gabsteiger
et al., 2013) available at http://www5.cs.fau.de/research/areas/digital-sports/
automatic-classification-of-electromyogenic-ica-components/. Criteria for
the manual selection of EMG and other noise components are described in
Goncharova et al. (2003); McMenamin et al. (2010). The next step is
component rejection. Components can be plotted and rejected for
example, using EEGLAB. Optionally, users can perform signal
decomposition once again. If so, as suggested by the EEGLAB manual for
ICA decomposition, to run ICA once again the data dimensions need to be
reduced to the number of remaining components. Thus, users should run
PCA, as instructed. After run AMICA once more and proceed again with the
previously described steps. We advise, running AMICA once, remove the
4–6 (dependent of number of channels) most noisy components, running
AMICA again and removing again noise components.

and defined patterns. With these propositions, researchers will
more accurately identify noise components that should be
removed.

It is important to remove artifact components to keep hold of
neuronal signals. Thus, Figure 12 gives an example of an EMG
component and an EEG component. The selected components
according to the criteria from the mentioned studies. The more
centrally localized component shows higher power in the lower
frequencies and a drastic reduction in power at frequencies above
30 Hz, which is consistent with brain activity components. The
posteriori localized component at the back of the head at the neck
has power above 30 Hz which is higher than usual for artifact free

EEG. This is consistent with EMG activity and should therefore
be rejected (Goncharova et al., 2003). The rejection of the com-
ponents can be realized with EEGLAB as well. Further, artifact
reduction techniques can be tested for overcorrection of the EEG
signals. Gwin et al. (2010) did so by computing the power spectral
density of the resulting signals and compared spectral power in
the 1.5- to 8.5-Hz frequency band before and after application of
AMICA as an artifact removal tool. There was no sign of removal
of EEG signal. The artifact cleaned recordings were also tested for
whether in the movement conditions it would be possible to iden-
tify a ERP time-locked to visual target (oddball) stimulus. These
were nearly identical to ERPs in the baseline condition (stand-
ing). For the running condition the ERP was only visible after
artifact reduction. Therefore with this methodology it is possible
to remove artifacts during running so that ERPs are identifiable
similarly to a baseline condition.

Another interesting and valuable approach is demonstrated by
Plöchl et al. (2012). This study attempted to remove eye move-
ment artifacts by simultaneously recording eye movements and
EEG during a guided eye movement paradigm. It resulted in
the creation of an algorithm, which uses eye movement infor-
mation to identify eye movement related ICA-components in an
automatically. Removing the detected ICs from the data resulted
in the suppression of ocular artifacts including microsaccadic
spike potentials, while the EEG signal remained unaffected Plöchl
et al. (2012). Ultimately, this study is an example of how record-
ing body dynamics simultaneously to EEG, can help to reduce
movement induced artifacts.

Similar to ICA, Canonical correlation analysis (CCA) is also a
blind source separation (BSS) method that can reduce the influ-
ence of EMG artifacts on EEG data (De Clercq et al., 2005,
2006). BSS-CCA assumes that the autocorrelation of sources
that are mostly influenced by electromyogenic activity are sig-
nificantly lower then the autocorrelation of brain sources. The
user therefore only has to decide how many sources, i.e., com-
ponents, to reject but not which ones. The toolbox is available
for download at: http://www.neurology-kuleuven.be/?id=210.
The BCILAB toolbox (Kothe and Makeig, 2013) includes differ-
ent filters to remove artifacts. The “clean peaks” filter projects
events with abnormally high power, e.g., EMG artifacts, out of
the data.

5. SUMMARY AND CONCLUSIONS
In this paper, we demonstrated methods and equipment that exist
today which allow the recordings of body and brain activity dur-
ing motion. Hardware, software and techniques were covered.
These methodologies open a wide range of research opportu-
nities into the cognition, motion, environment interaction and
therefore, behavior fields. In fact, recording and analyzing EEG
during motion remains a challenge and we hope that this paper
can help researchers who attempt to dwell in this field. It is
also an intention of this paper, to compile and give structure
to the amounts of new methods that emerged to offer solutions
for measuring and analyzing EEG and body dynamics during
motion. We also speculated about future technologies such as
using current amplifiers (trans-impedance amplifiers) that may
allow measuring EEG with higher spatial resolution. We focused
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FIGURE 12 | AMICA decomposition components. This figure shows two
components from an AMICA decomposition using EEGLAB for the plots.
Left: Centrally localized component shows higher power content in lower
frequencies and a drastic reduction at frequencies above 30 Hz. Right:

Component localized at the back of the head with high power content above
30 Hz which is consistent with EMG activity (Goncharova et al., 2003). This
component should be considered for rejection which can be realized with
EEGLab.

on high-density EEG and body dynamics, not addressing the field
of brain computer interfaces. In future studies it will be neces-
sary to compare different methods and hardware more often, for
instance, studies comparing the reliability of different electrodes
and of the recorded signal quality. If a higher spatial resolution
can be obtained then it is necessary to measure more accurately
and report the spatial localization of the electrodes. Generally,
today’s methods have reached a point where one can consider
measuring EEG, EMG, kinematics, and kinetics simultaneously
during motion. Thus, they open new possibilities in the field of
behavior and neuroscience.
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