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INTRODUCTION

Decimal fractions comply with the base-10 notational system of natural Arabic numbers.
Nevertheless, recent research suggested that decimal fractions may be represented
differently than natural numbers because two number processing effects (i.e., semantic
interference and compatibility effects) differed in their size between decimal fractions and
natural numbers. In the present study, we examined whether these differences indeed indi-
cate that decimal fractions are represented differently from natural numbers. Therefore, we
provided an alternative explanation for the semantic congruity effect, namely a string length
congruity effect. Moreover, we suggest that the smaller compatibility effect for decimal
fractions compared to natural numbers was driven by differences in processing strategy
(sequential vs. parallel). To evaluate this claim, we manipulated the tenth and hundredth
digits in a magnitude comparison task with participants’ eye movements recorded, while
the unit digits remained identical. In addition, we evaluated whether our empirical findings
could be simulated by an extended version of our computational model originally developed
to simulate magnitude comparisons of two-digit natural numbers. In the eye-tracking studly,
we found evidence that participants processed decimal fractions more sequentially than
natural numbers because of the identical leading digit. Importantly, our model was able to
account for the smaller compatibility effect found for decimal fractions. Moreover, string
length congruity was an alternative account for the prolonged reaction times for incongruent
decimal pairs. Consequently, we suggest that representations of natural numbers and
decimal fractions do not differ.

Keywords: number comparison, decimal fractions, compatibility effect, string length congruity effect, computa-
tional modeling, artificial neural network

than zero, separated from the components with integer expo-

In recent years, there was increased research interest in the cogni-
tive mechanisms underlying multi-digit number processing (see
Nuerk etal., 2011 for a review). Nevertheless, while considerable
progress has been accomplished in understanding the processing
of natural multi-digit numbers and also fractions, the cognitive
mechanisms involved when processing decimal fractions have
largely been neglected so far. This is particularly noteworthy
because decimal fractions — just like multi-digit natural num-
bers — comply with the general base-10 place-value structure of
the Arabic number system: the numerical value of each individ-
ual digit in a multi-digit Arabic number is determined by its
position within the respective digit string (i.e., units, 10, 100,
etc.). Any number can thus be written as a linear combina-
tion of powers of 10, each weighted with one from the set of
10 symbols (ie., the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9). For
instance, 639 can be expressed as 6 x 102 + 3 x 10! + 9 x 10°.
Different from natural numbers, decimal fractions are also com-
posed of weighted powers of 10 with integer exponents smaller

nents larger than or equal to zero by the so-called decimal point!
(e.g, 639 = 6 x 10" + 3 x 10° + 9 x 107!). Decimal
fractions may thus be considered just an extension of natural
numbers.

Despite these structural similarities there are at least two
important differences when individuals have to process decimal
fractions, for instance in a number magnitude comparison task:
(1) different from natural numbers the mere number of digits is not
an indicator for the overall magnitude of decimal fractions (e.g.,
2.45 is larger than 1.532, although 2.45 is the shorter digit string).
(ii) The role of zeros in decimal fractions differs from their role
in natural numbers: while zeros to the right of the decimal point
with one or more non-zero digits further to the right (e.g., 6.07) do
change the value of a decimal fraction, adding one or more zeroes
at the right end of a decimal fraction does not change its magnitude

!Please note that different cultures use different symbols for the decimal mark. The

w»

two most common decimal marks are a dot “.” and a comma .
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(e.g., 6.0 = 6.00, but 60 < 600). Importantly, these differences
lead to characteristic errors observed in numerical development.
Desmet etal. (2010) investigated misconceptions about decimal
fractions in children from grade 3 to 6 using a number magni-
tude comparison task. Younger children, in particular, tended to
overgeneralize their previously acquired knowledge about natu-
ral numbers and assumed systematically (but mistakenly) that the
more digits a number has, the larger its value. Moreover, children
assigned zero the same role as in natural numbers: on the one hand,
they implied that adding a zero at the end of a decimal fraction
would make it larger. On the other hand, they assumed that adding
a zero at the tenths position would not change a decimal fraction’s
value.

The processing of decimal fractions in adults has only recently
been examined in cognitive psychology. Based on the observation
that the numerical distance effect (i.e., faster and less error-prone
responses when comparing relatively distant numbers, e.g., 1 vs. 9
as compared to close numbers, e.g., 4 vs. 5, Moyer and Landauer,
1967) did not differ between natural numbers and decimal frac-
tions, Dewolf etal. (2013) concluded that decimal fractions are
processed similar to natural numbers. This corroborates the natu-
ral number conversion hypothesis (Dewolf etal., 2013) assuming
that whenever participants have to compare the magnitude of deci-
mal fractions they might convert the decimal fractions into natural
number expressions by simply ignoring the decimal points and
then comparing the corresponding natural number.

In contrast to this view, Varma and Karl (2013) suggested that
participants do not resort to natural numbers. The authors inves-
tigated differences between decimal fraction and natural number
processing, proposing two effects other than the distance effect:
(i) a syntactic interference effect and (ii) a semantic interfer-
ence effect. The syntactic interference effect is just another label,
introduced by Varma and Karl (2013), for the processing prop-
erty described by unit-decade compatibility of two-digit numbers
(Nuerk etal., 2001). The unit-decade compatibility effect states
that magnitude comparisons of unit-decade-compatible natural
number pairs (e.g., 42 vs. 57, with 4 < 5 and 2 < 7) are executed
faster and less error-prone than comparisons of unit-decade-
incompatible pairs (e.g., 47 vs. 62, with 4 < 6,but 7 > 2). Thereby,
the unit-decade compatibility effect designates an influence of
decision-irrelevant units on the comparison process of the whole
numbers. This suggests that the numerical magnitude of a number
is represented componentially via the magnitudes of units, 10, 100,
etc., complying with the base-10 place-value structure of the Ara-
bic number system (cf. Nuerk etal., 2011 for a review). Varma and
Karl (2013) compared this compatibility effect for two-digit num-
bers with a similar compatibility effect for tenths and hundredths
of decimal fractions (e.g., compatible: 0.42 vs. 0.57 and incompat-
ible: 0.47 vs. 0.62). The authors found that the compatibility effect
was smaller for two-digit decimal fractions than for two-digit nat-
ural numbers and interpreted this finding to imply that different
representations are used for decimal fraction and natural number
comparison.

Additionally, Varma and Karl (2013) also observed a semantic
interference effect: response times for comparisons with congruent
numerical magnitude relations between pairs of decimal frac-
tions, respectively natural numbers (e.g., 0.2 vs. 0.53; 0.2 < 0.53

and 2 < 53), were faster than comparisons for incongruent pairs
(e.g., 0.23 vs. 0.5; 0.23 < 0.5, but 23 > 5). The authors inter-
preted this semantic interference effect as a consequence of parallel
access to the individual digits, implying that decimal fractions
also activate natural number representations in addition to deci-
mal fraction representations. Interestingly, Varma and Karl (2013)
compared the semantic interference effect in decimal fractions
with the semantic interference effect in natural numbers by con-
verting the decimal fractions into natural numbers by deleting
the leading zero and attaching it to the right end of the num-
ber (e.g., 0.23 was converted to 23.0). The semantic interference
effect was larger in decimal fractions, supporting their hypothe-
sis that decimal fractions are represented differently than natural
numbers.

Taken together, recent research seems to suggest that decimal
fraction representations are accessed exclusively when comparing
decimal fractions with an identical number of digits in the digital
string, whereas natural number representations seem to interfere
in case of decimal fractions with an unequal number of digits to
the right of the decimal point.

In the present study, we will point out that the rejection of the
natural number conversion hypothesis by Varma and Karl (2013)
might be premature by offering an alternative explanation for their
findings of a reduced compatibility effect and an increased seman-
tic interference effect. First, Varma and Karl (2013) suggested other
explanations for the smaller compatibility effect for decimal frac-
tions than natural numbers. One of these accounts was that in
their experiment the position of the decision-relevant digits was
confounded with whether natural numbers or decimal fractions
had to be compared with respect to overall number magnitude.
Thus, the smaller compatibility effect can also be explained by the
difference between natural numbers and decimal fractions regard-
ing the position of the digits decisive for the number magnitude
comparison process. For natural numbers the first (leftmost) digit
is (primarily) decisive (e.g., in 21 vs. 87, 2 and 8 are relevant),
whereas for decimal fractions (<1) the second digit is decisive
(e.g., in 0.21 vs. 0.87, 0 is irrelevant, but 2 and 8 are relevant).
Thus, we argue that the important difference between natural
numbers and decimal fractions is notational. We suggest that
padded natural numbers (like 021 vs. 087) should be processed
similarly to decimal numbers (0.21 vs. 0.87) and when leading
zeros of decimal numbers are omitted, these should be processed
similarly to positive numbers. However, it has not been shown
yet that there are similar compatibility effects, when three digit
natural numbers — either with differing first digits or with iden-
tical first digits but differing second digits — have to be compared
(see Nuerk etal., 2011; Klein etal., 2013 for reviews). Hence, we
suggest that the observed difference in compatibility effects by
Varma and Karl (2013) might be due to different notations used to
examine the compatibility effect in natural numbers and decimal
fractions.

Second, we also propose an alternative account for the seman-
tic interference effect. In particular, we suggest that the semantic
interference effect might alternatively be explained in terms of a

2Please note that all decimal fractions in the study of Varma and Karl (2013) were
smaller than 1 and had 0 as the leading digit.
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congruity effect between the numerical magnitude of the single
digits constituting the respective number and the number of dig-
its constituting the digital string. Henceforth referred to as string
length congruity effect: the comparison of the decisive digits of two
decimal fractions can be either congruent (e.g., 2.7 vs. 2.91 with
7 < 9 and 2 vs. 3 digits) or incongruent with the comparison of
the string lengths (e.g., 7.14 vs. 7.6 with 1 < 6, but 3 vs. 2 dig-
its). Importantly, first evidence on a somewhat similar effect has
already been reported in previous studies. Naparstek and Henik
(2010, 2012) and Pansky and Algom (2002) observed that — at
least for circular or matrix presentation — the number of digits
interfered with the numerical value of the digit. In the numeri-
cal value block of Naparstek and Henik (2010), participants had
to compare the magnitude of a digit out of a set composed of a
varying number of identical digits (e.g., 333) and letter fillers to
the standard five. Although the number of digits was irrelevant,
participants processed congruent items (number of digits and
numerical value being the same: e.g., 333) faster than incongruent
items (number of digits and numerical value different: e.g., 3333).
Hence, this finding suggests that the number of digits interfered
with the processing of the numerical value of a digit. Moreover,
in numerical cognition, a common assumption is that numer-
ical and physical magnitudes are not processed independently
(e.g., Walsh, 2003; Bueti and Walsh, 2009). Because incongruent
items differ from congruent items also in their physical magnitude
(i.e., continuous magnitude dimensions such as total surface area,
and total “white” color over black background, see Leibovich and
Henik, 2013), not only the number of digits, but also their phys-
ical magnitude might interfere with processing of the numerical
magnitude.

Thus, prolonged reaction times for length incongruent decimal
fractions (e.g.,7.14 vs. 7.6 with 1 < 6, but 3 digits vs. 2 digits; Varma
and Karl, 2013) might also be explained in terms of interference
between the numerical magnitude of the digits constituting the
number and the string length of the number. As a consequence,
the semantic interference effect observed by Varma and Karl (2013)
might be caused by a purely structural difference between natural
numbers and decimal fractions, which cannot be matched across
item types: as argued above, the mere number of digits is not a
valid indicator for the overall magnitude of decimals, whereas it
is always a valid indicator for natural numbers. Varma and Karl
(2013) tried to account for different visual aspects by adding a zero
at the end of natural numbers, but, nevertheless, this difference
cannot be controlled for (e.g., 3 < 15 and 3.0 < 15). Therefore, we
suggest that the semantic interference effects observed for natural
numbers and decimal fractions might have different origins. In
the case of natural numbers, numbers with more digits are always
larger than numbers with fewer digits, even when the magnitude of
the single digits constituting the number with fewer digits is larger
than the magnitude of the digits constituting the number with
more digits. For instance, when comparing “9 vs. 27,” “27” con-
tains more digits indicating that it is larger than “9.” However, “9”is
larger than “2” and “7” and therefore, a componential comparison
of 9with “2” or “7” suggests that “9” should be larger resulting in the
proposed semantic interference effect for natural numbers (Varma
and Karl, 2013). Thus, for natural numbers, the numerical mag-
nitudes of the single digits interfere with each other. In contrast,

in the case of decimal fractions, string length may interfere with
numerical magnitude. For instance, when comparing “0.9” with
“0.27” and “0.9” is larger than “0.27,” because “9” is larger than “2.”
However, the number “0.27” contains more digits than the number
“0.9,” which in case of natural numbers would indicate the larger
number - and thus, interferes with the decision-relevant compari-
son of “9” and “2” resulting in the proposed string length congruity
effect.

The alternative accounts regarding the reduced compatibility
effect for decimal fractions as well as the semantic interference
effect observed by Varma and Karl (2013) rely heavily on the
notion of componential processing of the individual digits of any
multi-digit number as, for instance, indicated by the (unit-decade)
compatibility effect (e.g., Nuerk et al., 2001). We want to argue that
the processing of decimal fractions may well be integrated into the
model of componential number processing. In the present study,
we will corroborate this claim by means of a combined empiri-
cal and computational modeling approach. In a first step, we will
appraise participants’ eye-fixation behavior, while engaged in a
number magnitude comparison task involving decimal fractions
(e.g., 2.91 vs. 2.43; see also Table 1 for an overview of differ-
ent decimal fraction types employed in the present study). This
method is used because the registration of eye movements allows
for a more fine-grained online evaluation of the comparison pro-
cess itself. According to the eye-mind hypothesis, the location of
eye-fixations and their duration are valid and reliable indicators
of what part of a stimulus (i.e., which digit) is processed at a given
moment in time and how long this processing lasts (e.g., Rayner
and Pollatsek, 1989; Rayner, 1998). In a second step, we aimed
at evaluating whether an adapted version of our computational
model for multi-digit natural number comparison (Huber etal,,
2013a) can also account for the processing of decimal fractions.
Thus, the main focus of the present study lies on the computational
model, with which we want to show that the findings of Varma and
Karl (2013) can be explained by the natural number conversion
hypothesis.

More specifically, the aim of the eye-tracking experiment was
threefold: first, we wanted to explore why the compatibility effect
in the study of Varma and Karl (2013) was smaller for decimal
fractions than for natural numbers. A recent study by Huber
etal. (2013a) showed that in two-digit number comparison the
size of the unit-decade compatibility effect increased with the
percentage of within-decade filler items (e.g., 43 vs. 47) relative
to between-decade critical items. Correspondingly, the authors
found that fixations on the irrelevant unit relative to the rel-
evant 10 digits increased, the more within-decade fillers were
included. Similarly, the number (and duration) of fixations on
irrelevant digits might be indicative of the size of the compat-
ibility effect. Transferring these findings to the case of decimal
fraction processing, the smaller compatibility effect for decimal
fractions should be associated with fewer fixations on the non-
decisive hundredth digits. Such a fixation pattern would indicate
that participants process decimal fractions with identical first dig-
its more sequentially than natural numbers with differing first
digits. A sequential processing strategy can be identified, when
most fixations are on relevant digits and only few fixations on
irrelevant digits. Conversely, when participants process digits in
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Table 1 | Examples for compatible and incompatible and congruent and incongruent decimal fraction pairs for decimal types a.0c, a.b0, a.bc,

and a.b, respectively.

Decimal type Compatible Incompatible

Numbers Tenth digit Hundredth digit Numbers Tenth digit Hundredth digit
a.0c 9.07 vs. 9.39 0<3 7<9 1.09 vs. 1.51 0<5b 9>1
a.b0 8.10 vs. 8.97 1<9 0<9 6.54 vs. 6.90 5<9 4>0
a.bc 4.25vs. 4.69 2<6 5<9 3.29 vs. 3.67 2<6 9>7

Congruent Incongruent

Numbers Tenth digit Number of digits Numbers Tenth digit Number of digits

a.b 2.7 vs. 2.91 7<9 2 vs. 3 digits 714 vs. 76 1<6 3 vs. 2 digits

parallel, the number of fixations on relevant and irrelevant digits
would be more balanced (Moeller etal., 2009). A combination of
sequential and parallel processing strategies was already observed
for multi-digit number comparison beyond the two-digit number
range (Meyerhoff et al., 2012) and therefore, might also be present
when comparing decimals. Accordingly, we would expect the tenth
digits to be fixated much longer than the hundredth digits as mea-
sured by total reading time (TRT; i.e., the time spent fixating a
digit).

Second, Varma and Karl (2013) observed that decimal fractions
with zeros at the rightmost position (e.g., “0.30”) were responded
to faster than other decimals. However, the authors did not inves-
tigate whether processing of decimal fractions with zeros directly
to the right of the decimal point (e.g., “0.03”) might also be pro-
cessed faster, providing further support for a privileged role of the
digit zero in the comparison of decimal fractions. Similar to faster
response times, we would expect that the total fixation time for
decimal fractions containing at least one zero will be shorter than
for decimal fractions without a zero.

Third, we used the proportion of fixations on tenth and hun-
dredth digits obtained from the empirical study for attentional
weighting of the respective digits in the computational model. In
the computational model, relevance of the respective digits has to
be prespecified in a task demand layer. In principle, two heuris-
tics are possible to obtain suitable values: (i) a trial-and-error
approach using starting random values and (ii) an approach using
proportions of digits as starting values and adjusting them such
that error rates of the simulated data corresponded to the error
rates of the empirical data. As we had available proportions of
fixations on tenth and hundredth digits from the empirical study,
we employed the second approach. Finally, we used reaction times
and error rates from the eye-tracking experiment to validate our
computational model.

The particular aim of the computational modeling study was to
examine whether an extended version of our model for two-digit
number comparison (Moeller etal., 2011; Huber etal., 2013¢) can
account for the findings of the eye-tracking study, which would
corroborate the natural number conversion hypothesis for decimal
fractions. Therefore, we adapted the existing model to specifically
account for the effects observed by Varma and Karl (2013). Most

importantly, we extended the network such that three-digit num-
bers could be compared (as it was already done in the study of
Huber etal., 2013b) in order to consider the string lengths of the
numbers to be compared. With these measures, a general model
of multi-digit number processing encompassing natural as well as
decimal fractions can be developed and tested empirically, as done
in the current study.

EMPIRICAL STUDY

METHODS

Participants

Twenty five students of the University of Tuebingen participated in
the study (15 female, 10 male) for course credits. Average age was
24.8 years with a standard deviation (SD) of 2.67 years (range 21—
33 years). All participants reported normal or corrected-to-normal
vision. The study was approved by the local ethics committee of
the Medical Faculty of the Eberhard Karls University of Tuebingen.
All participants gave their written informed consent.

Apparatus

Eye-fixation behavior was recorded by an EyeLink 1000 tracking
device (SR-Research, Kanata, ON, Canada). Following 9-point
calibration at the start of the experiment as well as drift correc-
tions before each trial, the spatial resolution of the eye-tracking
device was less than 0.5 degrees of visual angle at a sampling rate of
1000 Hz. A 20” monitor set at a resolution of 1024 x 768 pixels and
driven at a refresh rate of 120 Hz was used to present stimuli. View-
ing distance was about 60 cm. The experiment was programmed
using the Experimental Builder software (SR-Research, Kanata,
ON, Canada).

Stimuli and design

We created 320 pairs of decimal fractions. Decimal fractions were
either two- or three-digit numbers ranging from 1.04 to 9.96. Unit
digits were identical for number pairs and ranged from 1 to 9.
Digits at the tenth and hundredth position ranged from 0 to 9.
Participants had to compare four different types of decimal frac-
tion pairs (i.e., 80 decimal fraction pairs for each type). Whereas
one of the decimal fractions always consisted of non-zero digits
(e.g.,2.91), the other one was generated considering the following
constraints: the decimal fraction involved (i) a zero at the tenth

Frontiers in Human Neuroscience

www.frontiersin.org

April 2014 | Volume 8 | Article 172 | 4


http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive

Huber etal.

Decimal fraction and natural number representations

position (a.0c; e.g., 2.04), (ii) a zero at the hundredth position
(a.b0; e.g., 2.40), (iii) no digit at the hundredth position (a.b;
e.g., 2.4), and (iv) no zeros at all (a.bc; e.g., 2.43). Furthermore,
we manipulated compatibility and string length congruity (see
Table 1). To increase the relevance of the hundredth digit, we fur-
ther included 120 filler number pairs with identical digits at the
tenth position (e.g.,7.91 vs. 7.98 or 2.83 vs. 2.8) which resulted in a
total of 440 items. Moreover, all digits except for units differed for
decimal fraction pairs. Importantly, we balanced overall distance,
tenth distance and hundredth distance across all stimulus groups
and problem size across all stimulus groups except stimuli with
zero at the hundredth position, which had to have a lower over-
all problem size than the other groups because of its definitional
properties.

Stimuli were displayed as white digits on a black background in
Courier New (size: 48, style: bold). By using this non-proportional
font we ensured that all digits had the same width. X/Y coordi-
nates of decimal fraction pairs were 496/384 and 528/649 pixels
or 528/384 and 496/649 pixels, such that leading digits were
not presented above each other in order to prevent column-wise
processing (see Meyerhoff etal., 2012 for a similar layout). The
coordinates of the fixation cross were 512/150 pixels. Decimal
fractions consisting of three digits extended to a visual angle of
4.8, horizontally, and 1.2, vertically.

Procedure

Participants were assessed individually in a dimly lit room. Instruc-
tions requested participants to indicate the larger of two decimal
fractions as accurately and fast as possible. When the larger
decimal fraction was at the top of the screen, the upper but-
ton on a gamepad had to be pressed with the right thumb.
Otherwise, when the larger decimal fraction was at the bot-
tom of the screen, the lower button had to press with the left
thumb. The position of the larger decimal fraction was counter-
balanced for each type of decimal fraction pairs. Each participant
completed five practice trials to become familiar with task require-
ments. Trial order was pseudo-randomized ensuring that the
same button was not pressed more than three times in a row.

After fixation of the fixation point had been checked by the
experimenter, the next item was presented until the participant
pressed one of the response buttons, which was immediately
followed by the presentation of the fixation point for the next
trial.

Analysis

Unfortunately, because of a programming error only 320 of the
440 items were presented. These items were randomly drawn from
all 440 items such that each participant worked on a different
subset of the 440 items. About 85.5 (SD = 3.76) items of the 320
number pairs were filler items (i.e., about 27% like in the original
set). Moreover, since the items were a random subset of all items,
matching was not affected substantially (see Table 2).

Three participants exhibited error rates higher than 25% (50%
guessing rate) in the string length incongruent condition and were
excluded. All subsequent analyses were run on the data of the
remaining 22 participants. Additionally, we only included tri-
als followed by a correct answer with response latencies longer
than 200 ms and within £3 standard deviations from the indi-
vidual mean RT. This trimming procedure resulted in a loss of
6.52% of the data. Only items considered in the RT analysis were
also included in the analysis of the eye-fixation data. Moreover,
error rates were subjected to an inverse sine transformation before
analysis to approximate their binomial distribution with a normal
distribution (see e.g., Kirk, 2013, p. 103).

For the analysis of participants’ eye fixation behavior interest
areas around each digit and the decimal point were defined with
a height of 120 pixels and a width of 39 pixels. We defined the
interest areas to be quite narrow, such that the interest areas of
each digit and decimal mark were of equal size and interest areas
did not overlap. Therefore, it might be possible that participants
processed the tenth digit parafoveally while fixating the decimal
mark. We exclusively analyzed TRT on the relevant digits (i.e.,
tenth and hundredth digit) and on critical decimal fractions. Thus,
we included only critical decimal fractions with either a zero at the
tenth position (e.g.,2.04), a zero at the hundredth place (e.g., 2.40)
or only two-digit decimal fractions (e.g., 2.4), respectively, whereas

Table 2 | Mean (SD in parentheses) overall distance, tenth distance, hundredth distance, problem size, and number of items for
compatible/congruent and incompatible/incongruent decimal fraction pairs for decimal types a.0Oc, a.b0, a.bc, and a.b, respectively.

Decimal type Compatibility/ Overall distance Tenth distance Hundredth distance Problem size Number of items
congruity

a.0c Compatible 0.40 (0.02) 3.66 (0.25) 3.48(0.15) 10.62 (0.63) 29.566 (2.83)
Incompatible 0.41(0.02) 4.42(0.22) 3.44(0.26) 10.50 (0.47) 28.76 (2.71)

a.b0 Compatible 0.40 (0.02) 3.69 (0.25) 3.62 (0.15) 11.36 (0.63) 28.60 (2.33)
Incompatible 0.40 (0.02) 4.37 (0.22) 3.56 (0.26) 10.85 (0.47) 29.76 (1.94)

a.bc Compatible 0.40 (0.02) 3.67 (0.23) 3.50 (0.23) 11.26 (0.50) 28.56 (2.83)
Incompatible 0.40 (0.02) 4.39(0.17) 3.48(0.14) 10.79 (0.35) 28.88 (2.82)

a.b Congruent 0.40 (0.02) 3.67 (0.23) 3.77 (0.23) 11.23 (0.50) 30.20 (2.66)
Incongruent 0.40 (0.02) 4.39 (0.17) 3.69 (0.14) 10.80 (0.35) 30.00 (2.87)

Please note that participants were presented different numbers of items due to a programming error.
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the additional decimal fraction in numbers of the a.bc type was
not included (e.g., 2.91), because there is no critical single decimal
fraction. For these latter decimal fractions, mean TRTs from both
tenth and hundredth digits were calculated.

Reaction times, error rates, and TRT were analyzed by running
separate repeated measures analyses of variance (ANOVA). In case
of violation of the sphericity assumption for repeated measures
ANOVA, the Greenhouse-Geisser (GG) correction was applied
to adjust the degrees of freedom. For reasons of readability, the
original df together with the GG coefficient are reported.

RESULTS
Reaction times and error rates
Processing of zeros and tenth—hundredth compatibility. First, we
examined, whether we could replicate the relatively smaller com-
patibility effect found in the study of Varma and Karl (2013) and
how zeros in different positions of decimal fractions influenced
processing of these decimal fractions. Therefore, we analyzed
reaction times and error rates by conducting repeated-measures
3 x 2 ANOVAs with factors decimal type (a.0c, a.b0, and a.bc) and
tenth—hundredth compatibility (compatible and incompatible).
The ANOVA for RT revealed a significant main effect of dec-
imal type [F(2,42) = 42.61, p < 0.001, n%, = 0.67]. Pairwise
comparisons indicated that participants compared decimal type
a.0c fastest, followed by a.b0 and decimal type a.bc slowest (all
p <0.001;a.0c: M =805 ms; a.b0: M = 832 ms; a.bc: M = 851 ms;
see also Figure 1A). Thus, we found that zeros facilitated par-
ticipants’ comparisons of decimal fractions. The main effect of

A Empirical study - RT

RTinms *k ¥

a.bo a.bc

d RT * %k
r 1
* %k %
1
20,00 === === oo
9.75 oo - N - -
950 +-----m— - - -------- S -
925 +----- N - - --------- S -
9.00 T T
a.0c a.bo a.bc

Decimal types

FIGURE 1 | Reaction times (RT: A, empirical, B, simulated) for different
decimal fraction pair types (e.g., a.0c = 2.04 vs. 2.91, a.b0 = 2.40 vs.
2.91, and a.bc = 2.43 vs. 2.91). ***p < 0.001.

compatibility and the interaction between group and compat-
ibility were not significant, indicating sequential processing of
decimal fractions (both p > 0.14). Moreover, for error rates we
did not find significant main or interaction effects (all p > 0.28).

String length congruity. String length congruity effects on RT and
error rates were analyzed by running ANOVAs with congruity as
independent variable. Both ANOVAs yielded significant results,
indicating shorter RT and lower ER for length congruent than
incongruent decimal fraction pairs [RT: M = 819 vs. 886 ms;
F(1,21) = 43.42, p < 0.001, nf) = 0.67; ER: M = 2.29 vs. 9.24%;
F(1,21) = 34.33, p < 0.001, nIZ) = 0.62; see also Figures 2A,C].

Eye-tracking data

Processing of zeros and tenth—hundredth compatibility. Further-
more, we explored whether participants processed the digits in
the decimal fractions sequentially or in parallel. Therefore, we
ran a repeated-measures 3 X 2 x 2 ANOVA with factors deci-
mal type (a.0c, a.b0, and a.bc), tenth-hundredth compatibility
(compatible and incompatible) as well as digit position (tenth
and hundredth digit) and TRT as dependent variable. Results
will be reported starting with the three-way interaction, followed
by its constituting two-way interactions before main effects will
finally be described. Mean TRT for all factors are provided in
Table 3.

We observed a significant three-way interaction [ F(2,42) =5.17,
p < 0.05, nf) = 0.20, GG = 0.74; see Figure 3]. This interaction
was broken down by conducting two 2 x 2 ANOVAs with factors
decimal type and tenth-hundredth compatibility separately per
digit position (i.e., tenth and hundredth digit).

For the tenth digit (see Figure 3A), the interaction between
decimal type and tenth-hundredth compatibility was significant,
indicating that compatibility effects differed at the tenth digit posi-
tion [F(2,42) = 11.55, p < 0.001, n2 = 0.36, GG = 0.79]. The
two-way interaction was further analyzed by conducting (i) two
univariate ANOVAs with the factor decimal type for compati-
ble and incompatible items separately and (ii) three univariate
ANOVAs with the factor tenth-hundredth compatibility for each
decimal type.

For compatible number pairs, we found a significant main effect
of decimal type [F(2,42) = 38.42, p < 0.001, 1r]12J = 0.65]. Partic-
ipants fixated the tenth digits of decimal type a.bc longer than
that of other types (both p < 0.001), whereas TRT on the tenth
digits of decimal types containing a zero did not differ signifi-
cantly (p = 0.38). For incompatible number pairs, the main effect
of decimal type was also significant [F(2,42) = 32.62, p < 0.001,
ﬂf) = 0.61]. However, different from compatible number pairs,
participants fixated the tenth digit of decimal type a.0c shorter
than that of other types (both p < 0.001), while TRT on the tenth
digit of decimal types a.b0 and a.bc did not differ significantly
(p =1.00).

Subsequently, we evaluated tenth—-hundredth compatibility
effects on participants TRT for each of the three decimal types
separately. Results indicated that the main effect of tenth—
hundredth compatibility was significant for decimal type a.b0
[F(1,21) = 22.96, p < 0.001, nlzj = 0.52], but not for the other dec-
imal types (both F < 1). While the tenth digits were fixated 45 ms
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FIGURE 2 | Reaction times (RT: A, empirical; B, simulated) and error rates (ER; C, empirical; D, simulated) for decimal fraction pair type a.b (e.g., 2.4 vs.
2.91). The decimal fraction with three digits was either larger (i.e., congruent: 3.98 vs. 3.6) or smaller than the decimal fraction with two digits (i.e., incongruent:
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Table 3 | Mean (SD in parentheses) TRT in ms on tenth and hundredth digits for compatible/congruent and incompatible/incongruent decimal

fraction pairs for decimal types a.0Oc, a.b0, a.bc, and a.b, respectively.

Tenth digit Hundredth digit
Decimal type Compatible/ Incompatible/ Compatible/ Incompatible/
congruent incongruent congruent incongruent
a.0c 181 (42) 178 (40) 32 (28) 34 (27)
a.b0 194 (43) 239 (51) 27 (26) 32 (36)
a.bc 234 (35) 237 (41) 39 (33) 42 (44)
a.b 91 (57) 137 (62) 1(4) 1(2)

less for compatible than for incompatible a.b0 number pairs, mean
compatibility effects for decimal types a.0c and a.bc were —3 and
3 ms, respectively (see also Figure 3A).

For the hundredth digit (see Figure 3B), the main effect of
decimal type was significant [F(1,21) = 5.19, p < 0.05, nf) =10.20].
Pairwise comparisons revealed that participants fixated the zero
of the decimal type a.b0 less than the hundredth digit of decimal
types a.bc (p < 0.05). All other pairwise comparisons were not
significant (all p > 0.17). The main effect of tenth-hundredth
compatibility and the two-way interaction were not significant
(both F < 1.24, p > 0.54).

Taken together, the three-way interaction revealed a significant
compatibility effect on tenth digits for decimal type a.b0. More-
over, we found that zeros were fixated less often than other digits:

tenth digits of decimal type a.0c were fixated less than tenth digits
of decimal type a.bc in case of compatible number pairs and less
than tenth digits of decimal types a.b0 and a.bc in case of incom-
patible number pairs. Similarly, the zero of decimal type a.bO0 (i.e.,
the hundredth digit) was fixated less than the hundredth digits of
other decimal types.

All three two-way interactions were significant [decimal
type x compatibility: F(2,42) = 18.08, p < 0.001, Tlf, = 0.46;
decimal type x digit position: F(2,42) = 23.06, p < 0.001,
nf) =0.52; digit position x compatibility: F(1,21) =4.49, p < 0.05,
np? = 0.18]. In the above analyses of the three-way interaction, we
already described the interaction between decimal type and tenth—
hundredth compatibility for each digit position separately (i.e.,
for tenth and hundredth digit separately). Moreover, we already
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FIGURE 3 | Mean total reading times (TRT) for (A) tenth and (B)
hundredth digit for different decimal fraction pair types (e.g.,
a.0c = 2.04 vs. 2.91, a.b0 = 2.40 vs. 2.91, and a.bc = 2.43 vs. 2.91).
Decimal fraction pairs were either compatible (e.g., 4.21 vs. 4.67) or
incompatible (e.g., 2.45 vs. 2.91). ***p < 0.001, *p < 0.05.

analyzed differences between decimal types for each digit posi-
tions (as indicated by the two-way interaction between decimal
type and digit position). Finally, tenth-hundredth compatibil-
ity effects were already discerned for tenth and hundredth digit.
Thus, only the analysis of the digit position effects remains to
be presented (TRT on tenths — TRT on hundredths) for each
decimal type (as indicated by the two-way interaction between
decimal type and digit position). First, we analyzed digit posi-
tion effects for each decimal type separately. Then, we compared
digit position effects of decimal types against each other. Gen-
erally, the tenth digits were fixated longer than the hundredth
digits for all decimal types (all p < 0.001) with mean differences
between TRT on tenth and hundredth digits for a.0c, a.b0, and
a.bc being 147, 187, and 195 ms, respectively. The digit posi-
tion effect of decimal type a.0c was significantly smaller than the
effect of other types (p < 0.001), but decimal types a.b0 and
a.bc did not differ significantly (p = 1.00). Thus, irrespective of
decimal type, participants fixated hundredth digits far less than
tenth digits indicating an (at least partially) sequential processing
strategy.

Finally, all main effects were significant [decimal type:
F(2,42) = 96.29, p < 0.001, 71123 = 0.82; compatibility:
F(1,21) = 55.27, p < 0.001, nf) = 0.73; digit position:
F(1,21) = 281.66, p < 0.001, nf, = 0.93]. Comparable to the RT
analysis, pairwise comparisons revealed that participants fixated
decimal type a.0c shortest, followed by a.b0 and a.bc (all p < 0.001;
a.0c: M =106 ms; a.b0: M =123 ms; a.bc: M = 138 ms). Moreover,

the significant compatibility effect indicated shorter TRT for com-
patible than incompatible number pairs (M = 118 vs. 127 ms).
Finally, we found longer TRT on relevant tenth digits than on
irrelevant hundredth digits (M = 210 vs. 34 ms).

String length congruity. Since the critical digit for decimal type
a.b did not contain a digit at the hundredth’s position, we ana-
lyzed TRT of tenth digits separately by conduction a paired
t-test. Thereby, we evaluated whether string length congruity
also affected participants’ fixation pattern in addition to response
times. The paired ¢-test for the string length congruity effect of
decimal type a.b revealed a significant congruity effect. Partici-
pants fixated the tenth digits of incongruent number pairs longer
than those of congruent number pairs [congruent: M = 91 ms vs.
incongruent M = 137 ms; F(1,21) = 40.06, p < 0.001, nf) =0.66].

SIMULATION

MODEL FOR TWO-DIGIT NUMBER COMPARISON

To simulate the processing of decimal fractions, we adapted the
computational model of Huber etal. (2013c), which simulates
the comparison of two-digit numbers using an artificial neural
network (see Figure 4). This model consists of two single-digit
comparison networks for tens and units and a cognitive control
network, which was inspired by the cognitive control network of
Verguts and Notebaert (2008).

The single-digit comparison networks are composed of an
input layer and a comparison layer. In the input layer the rep-
resentation of digits is modeled using a place coding system with a
fixed Gaussian distribution for each digit (see Verguts et al., 2005,
for a similar approach). Thus, for each digit there is a unit which is
activated most and units coding digits of a similar magnitude are
activated to a lesser degree depending on their numerical distance
to the respective digit [i.e., f(i,7) = exp(—10 % |i — (j + 1)|)
for node i and digit j]. The units of the input layer are con-
nected via forward connections to two comparison nodes, one
coding “left digit larger” and the other one coding “right digit
larger.” The activation of comparison nodes is calculated by
the weighted sum of input nodes reduced by inhibitory con-
nections between comparison nodes with weights w" = —2.
The activation function of the comparison nodes is a sigmoid
function.

Before single-digit comparison networks were integrated into
the cognitive control network, they were trained using the delta
rule (Widrow and Hoff, 1960). To do so, weights between inputand
comparison layer were initialized by generating pseudo-random
values in the interval [—1; 1]. The training comprised 100,000
trials, after which the network compared all combinations of
single-digit number pairs correctly. Only one network was trained.
Connection weights were reused in the second network.

In the cognitive control network, activity of input nodes is
propagated to the comparison nodes following formula Al of
Verguts and Notebaert (2008). However, instead of an indica-
tor function we use the activation propagated from the input
layer to the comparison layer because in our model the input
of the cognitive control network is the output of the single-digit
comparison networks. Hence, instead of using color informa-
tion like in a Stroop task (see Verguts and Notebaert, 2008),
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FIGURE 4 | Architecture of the neural network model for decimal fraction
processing: networks (A) to (C) depict digit comparison networks for (A)
units, (B) tenth digits and (C) hundredth digits, and (D) the number of
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digits comparison network. These networks are integrated into the neural
network of cognitive control (E) as suggested by Verguts and Notebaert
(2008). L, left digit larger node; R, right digit larger node.

we use the comparison information of one of the digits being
larger. This information is not prespecified in the input layer
(as it would be when using the original network architecture of
Verguts and Notebaert, 2008), but is generated by the single-digit
comparison networks. Comparison nodes are connected to two
response nodes via forward connections. Again, one node codes
“left digit larger” and the other one codes “right digit larger”
and response nodes are connected to each other via inhibitory
connections with w”" = —0.5. Moreover, activation in the
comparison layer is modulated by task nodes for the two tasks
of comparing either tens or units, as described by equation A2 in
Verguts and Notebaert (2008).

Effects of cognitive control are simulated via a conflict monitor-
ing unit. The degree of conflict detected by the conflict monitoring
unit is used to adapt the connection weights between task demand
nodes and corresponding comparison nodes according to the
Hebbian learning rule in equation A3 of Verguts and Notebaert
(2008).

Response times are simulated by counting the number of steps
needed until one of the comparison nodes reaches a fixed threshold
0 of 0.8. Since it is possible that this threshold is never reached, the
maximum value for simulated response times was set to 200.

MODIFICATIONS OF THE EXTENDED MODEL FOR DECIMAL FRACTIONS

The model for two-digit numbers could be extended to simulate
decimal fraction comparison without introducing further qualita-
tive changes to the original model structure (see Figure 4). Since
decimal fractions consisted of up to three digits, we simply added
another single digit comparison network. Moreover, to simulate
the comparison of numbers comprising different numbers of dig-
its (i.e., two vs. three digits), we added another network for the

comparison of the number of digits, which was very similar to the
single-digit comparison networks (see Figure 4C). The compar-
ison of the number of digits can be simulated by the very same
network architecture as the comparison of digits (e.g., Verguts
and Fias, 2004; Santens and Verguts, 2011). However, tuning
curves have to be broader for non-symbolic comparisons (i.e.,
number of digits) than symbolic comparisons (i.e., comparison
of numerical magnitude; Santens and Verguts, 2011) using the
following activation function: f(i,j) = exp(—|i — (j + 1)|) for
node i and number of digits j. Moreover, the number of nodes
was reduced to four nodes for the comparison of numbers with
up to four digits (see Figure 4D). Four digits were chosen to
extend the network easily for comparisons of numbers with up
to four digits, but also three or five or more digits would have
been feasible. We also had to extend the task demand layer. Differ-
ing from the two-digit comparison network, there are nodes for
the comparison of units, tenths, hundredths, and the number of
digits.

Furthermore, activation of task nodes and connection weights
between comparison layer and response layer were modified to
simulate different attentional weighting of the respective digits of
decimal fractions. Attentional weighting values were inspired by
the relative frequency of fixations on tenth and hundredth digits.
Activity of the task node for units was set to 0 as a negligible num-
ber of fixations fell on unit digits, namely 2.5% of all fixations.
The task node for the tenth digits was set to the largest value of
1.5, because they were fixated most (i.e., 84% of all fixations). To
implement the very weak interference of hundredth digits, with
only 13% of all fixations on hundredth digits, activation was set
to the very low value of 0.01. A similar pattern of values was
chosen for the connection weights between comparison layer and
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response layer: 0.1, 1.0, 0.1, for unit, tenth and hundredth dig-
its, respectively. A different weighting of relevant and irrelevant
tasks was also suggested by Santens and Verguts (2011). In their
computational model the representational layer of the irrelevant
dimension was multiplied by a parameter ® with the value of 0.15,
which determined the size of the size congruity effect (see also
Schwarz and Ischebeck, 2003).

Moreover, to capture the increased impact of zero in dec-
imal fraction processing (Varma and Karl, 2013), single-digit
comparison networks were not trained using a distribution
obtained from a Google-survey (see also Verguts and Fias, 20065
Moeller etal., 2011; Huber etal., 2013b). Instead, the frequency
of occurrence of 0 in the training set of single-digit numbers
was 15% larger and the frequency of occurrence of 1 was 5%
larger than the frequency of occurrences of the other digits. By
increasing the frequency of occurrence of 0, comparison with
0 will be trained more often, thereby; increasing corresponding
weights between input nodes and comparison nodes, thus lead-
ing to faster comparisons with zero (see also Verguts etal., in
press, for frequency effects). We also tried only to increase the
frequency of 0, but this was not as effective as additionally increas-
ing the frequency of 1. However, other values might also have
resulted in a similar effect. Moreover, we slightly increased the
training phase to 120,000 trials (in contrast to 100,000 trials in
Huber etal., 2013c¢).

Attentional weights for the comparison of the number of digits
were set to slightly lower values than the attentional weights for the
comparison of tenth digits (i.e., activation of task node: 1.0 and
connection weight between comparison and response layer: 0.7).
However, each comparison of the number of digits was trained
more often than the comparison of single digits in the single-digit
comparison networks (i.e., 100,000 trials for 4 nodes vs. 120,000
trials for 10 nodes of the other single-digit comparison networks).
Thereby, the comparison of number of digits is faster than the
magnitude comparison of digits, resulting in a more pronounced
string length congruity effect.

Other parameters of the cognitive control network are mostly
identical to the ones used by Huber etal. (2013c) and Verguts
and Notebaert (2008): T = 0.8, i, = 0.2, wh = 0.5, C=0.7,
Beon = 1, heon = 0.8, Ay = 0.7, &y = 1, and B,y = 0.5.

PROCEDURE AND ANALYSIS

The same stimuli as in the empirical study were used. However,
artificial networks were presented with the entire set of 440 items?.
We simulated 22 participants by creating 22 randomizations of
trial orders. Since we added random Gaussian noise at each time
step (M = 0, SD = 0.11), simulated RT and error rates were
different for each simulated participant. Similar to the empir-
ical study, we excluded simulated RT of trials which were not
solved correctly from further analyses resulting in a loss of 2.6%
of the data. Moreover, error rates were subjected to the inverse
sine transformation prior to analyses to approximate a normal
distribution.

3Please note that results were comparable when analyzing only a random subset of
320 items of the 440 items corresponding to 320 items which were presented to the
participants in the empirical study.

RESULTS

Processing of zeros and tenth—hundredth compatibility

To examine the tenth-hundredth compatibility effect and how
zeros influence processing of decimal fractions, we analyzed sim-
ulated RT and error rates by conducting two repeated-measures
3 x 2 ANOVAs with factors decimal type (a.0c vs. a.b0 vs. a.bc) and
tenth-hundredth compatibility (compatible vs. incompatible).
For RT data, the main effect of decimal type was significant [deci-
mal type: F(2,42) =18.03, p < 0.001, nf, =0.46]. Mean RT for a.0c,
a.b0, and a.bc were: 9.53, 9.88, and 9.87, respectively. Similar to
the findings for the behavioral RT, we found that decimal type a.0c
was compared faster than the other decimal types (all p < 0.001).
However, different from the empirical RT findings, decimal type
a.b0 did not differ significantly from decimal type a.bc (p = 1.00,
corrected for multiple comparisons). The main effect of tenth—
hundredth compatibility and the interaction between decimal type
and tenth—-hundredth compatibility were not significant (both
p > 0.24). Moreover, in line with the empirical findings, we did
not find any significant main or interaction effects for error rates
(all p > 0.05). Thus, as indicated in Figure 1, simulated RT repli-
cated the finding of faster RT for decimal type a.0c compared to
the other decimal types studied. However, the model could not
account for faster RT for decimal type a.b0 compared to decimal
type a.bc.

String length congruity

String length congruity effects for simulated RT and error rates
were analysed by running two paired t-tests. Both #-tests were
significant indicating shorter simulated RT and lower simulated
ER for length congruent than incongruent decimal fraction pairs
[RT: M = 9.14 vs. 10.87; F(1,21) = 265.43, p < 0.001, 12 = 0.93;
ER: M = 1.02 vs. 7.05%; F(1,21) = 65.98, p < 0.001, 12 = 0.76].
Thus, as depicted in Figure 2 (for RT see Figures 2A,B and for ER
see Figures 2C,D), simulated RT as well as ER were in accordance
with the empirical findings.

DISCUSSION

In the present study, we aimed at providing an alternative explana-
tion for the findings of Varma and Karl (2013), who had reported
a smaller compatibility effect and a larger semantic interference
effect for decimal fractions as compared to natural numbers.
These two findings would be consistent with the hypothesis that
decimal fractions are represented differently and, thus, decimal
fractions would be processed differently when compared to nat-
ural numbers. Therefore, we examined whether rejecting the
natural number conversion hypothesis, stating that decimal frac-
tions are processed similar to natural numbers, may have been
premature. Our results indicated that both findings can also be
explained by relying on componential processing of multi-digit
natural numbers in line with the natural number conversion
hypothesis (see also Dewolf etal., 2013). It provides a more
parsimonious explanation for findings in decimal fraction com-
parison, because additional decimal fraction representations do
not have to be assumed in order to explain how participants
compare decimal fractions. Thus, the present study supports the
notion that natural numbers and decimal fractions are processed
similarly.
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COMPATIBILITY EFFECT

We did not find a significant compatibility effect for reaction times
or error rates data in our behavioral experiment. This result sug-
gests that hundredth digits interfere less, when comparing decimal
fractions than when comparing natural numbers with respect to
their magnitude. At first glance, this pattern of results is in line
with the interpretation of Varma and Karl (2013), suggesting
distinct representations for decimal fractions. However, there is
another explanation for the absence of the compatibility effect
in our study: participants may have compared the decimal frac-
tions — at least in part — sequentially (e.g., Moeller etal., 2009;
Meyerhoff etal., 2012). This assumption could be tested systemat-
ically in the present study by evaluating participants’ eye fixation
behavior. In particular, Moeller etal. (2009) hypothesized that a
sequential comparison of two two-digit numbers would primar-
ily lead to fixations on tens and to only a very small number of
fixations on units. Moreover, fixations should not differ between
compatible and incompatible number pairs. Analogously, sequen-
tial processing of decimal fractions in our study would result
in long TRT on the tenth digits and only very short TRT on
the hundredth digits. In fact, we actually found that pattern for
number pairs including no zeros (i.e., a.bc) or zero at the tenth
position (i.e., a.0c). There was no compatibility effect for hun-
dredth digits, and TRT on tenth digits were about six times longer
(ranging from 1.6 to 223 times for individual participants) than
TRT on hundredth digits. In order for (automatic) processing
of the hundredth digits to interfere sufficiently with the pro-
cessing of tenth digits (i.e., to elicit a significant compatibility
effect), participants have to fixate the hundredth digits to a certain
extent (cf. Huber etal., 2013a). Thus, our findings indicate that
hundredth digits could be ignored more easily, when comparing
decimal fractions with identical unit digits. The most probable
reason for this is that participants processed decimal fractions
sequentially and not in parallel, which is typical for two-digit
numbers.

Nevertheless, we found a significant compatibility effect for
TRT on the tenth digits of decimal fractions having zero at the
hundredth position (i.e., a.b0). Thus, whereas compatibility did
not affect participants’ reaction times and error rates, it modulated
participants’ fixations on the tenth digits. Therefore, zero at the
hundredth position might mislead participants to assume that this
decimal fraction is smaller than the other one. As a consequence,
participants had to fixate the tenth digit longer in incompatible
than in compatible decimal fraction pairs to overcome this bias.

Finally, also in our computational simulations we did not find
a significant compatibility effect, although we simulated the com-
parison of decimal fractions, using a fully componential model.
As outlined above, this finding is obviously a consequence of the
very low attentional weighting of the hundredth digits, elim-
inating the compatibility effect. Increasing the activity of the
task demand nodes and the weights of the connection between
task demand nodes and comparison layer for the hundredth dig-
its would result in reliable compatibility effects for all decimal
fraction types. Similarly, we would predict that increasing the rel-
evance of the hundredth digit in an empirical study would result
in a reliable compatibility effect. One way to achieve this would
be to increase the number of filler items. Macizo and Herrera

(2011; see also Huber etal., 2013a) found that the size of the
unit-decade compatibility effect in two-digit numbers depends
on the number of filler items: the more within-decade filler
items, the larger the compatibility effect. Therefore, it is possi-
ble that increasing the number of filler items would have led to
a significant compatibility effect. To conclude, also our compu-
tational modeling suggested that a smaller compatibility effect or
even the absence of a compatibility effect for decimal fractions
does not necessarily imply a distinct representation of decimal
fractions.

STRING LENGTH CONGRUITY EFFECT

Similar to the results of Varma and Karl (2013 ), string length con-
gruity had a very strong impact on the comparison of decimal
fractions. In particular, we found reliably longer reaction times
and higher error rates for length incongruent than length con-
gruent decimal fraction pairs (i.e. congruent: 2.7 vs. 2.91 with
7 < 9 and 1 vs. 2 digits; incongruent: 7.14 vs. 7.6 with 1 < 6,
but 2 vs. 1 digits). We even had to exclude three participants
from the analysis because of their very high error rates (almost
at chance level) when comparing string length incongruent items.
A possible explanation may be that these three participants con-
fused, for instance, 2.06 with 2.60. However, if so, they made this
error not systematically. Otherwise, we would have observed a
more systematic error pattern and error rates close to 100% for
incongruent pairs, which was not the case. Instead, error rates
were close to chance level (i.e., 50%). Moreover, our participants
were university students who not only should have learnt the dec-
imal notation in school, but are also confronted with it in their
statistics courses. Therefore, we are confident that they should
at least have had a basic understanding of decimal number nota-
tion. Nevertheless, a further study would be required to investigate
whether a poor understanding of decimal number notation might
explain the poor performance of some students when comparing
decimals.

Varma and Karl (2013) suggested that the string length con-
gruity effect is caused by semantic interference of natural and
decimal fraction mental representations. However, our simulation
provides an alternative explanation. We did not include specific
representations for decimal fractions in our network architecture.
Instead, we added representations for the number of digits of deci-
mal fractions. Thereby, we were able to simulate the observation of
longer reaction times for incongruent than for congruent decimal
fraction pairs (i.e., the string length congruity effect). The string
length congruity effect may thus be just another example for the
assumption that numerical magnitude and physical magnitude (as
reflected by the number of digits) are not processed independently
(Pansky and Algom, 2002; Naparstek and Henik, 2010, 2012).
Numbers with more digits also have a larger physical (i.e., hor-
izontal) extension. Thus, continuous magnitude dimensions (e.g.,
total surface area, and total “white” color over black background)
might interfere with the processing of numerical magnitudes (see
also Leibovich and Henik, 2013, for a similar suggestion regard-
ing numerosities). This notion is further supported by the fact
that we used a very similar network architecture as in the study
of Santens and Verguts (2011), who simulated the size congruity
effect (Henik and Tzelgov, 1982) using a dual route model with
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separate representations for numerical magnitude and physical
magnitude. In their model the shared decision account was imple-
mented, according to which the interaction between comparison
of numerical and physical magnitude takes place at the decision
level (e.g., Schwarz and Heinze, 1998; Santens and Verguts, 2011).
Contrarily, the shared representation account suggests that numer-
ical and physical magnitude share the same representation (e.g.,
Walsh, 2003; Bueti and Walsh, 2009). We adapted the approach of
Santens and Verguts (2011) by creating separate representations
for numerical magnitude and number of digits, the latter imple-
mented as a discrete measure of horizontal extent. Thereby, the
network architecture of the present study was motivated by the
shared decision account for the interaction of numerical magni-
tude and continuous physical magnitude as proposed by Santens
and Verguts (2011). Hence, we suggest that not only numerical and
continuous physical magnitude may interfere at the decision level
(as for the size congruity effect), but also numerical magnitude
and the discrete number of digits.

Taken together, our simulation study indicates that the number
of digits interferes with the comparison of numerical magnitudes
(as measured by the string length congruity effect). However, this
influence of the number of digits might indicate an influence of
physical magnitude (i.e., vertical extension) on the processing of
number magnitude. Further studies are needed to disentangle
these two possible origins of the string length congruity effect.

ROLE OF ZERO

Interestingly, we observed that decimal fractions with a zero at
the tenth position were processed fastest. Importantly, however,
we were only able to simulate this finding by increasing the fre-
quency of occurrence of zeros in single-digit number comparison.
Yet, this modification did not explain why decimal fractions with
ending zeros were compared faster than decimal fractions with-
out zeros. Varma and Karl (2013) suggested that zeros may be
privileged in cognitive processing. Our simulation, implementing
such a privileged processing of zeros, suggested that this privi-
leged processing affected decimal fractions with zeros at the tenth
digit position, but not those with zeros at the hundredth position,
which was more or less neglected by the participants in our study
and therefore, should not have affected response times. How-
ever, an alternative account might be that participants did not
process decimal fractions with zeros at the end componentially.
Instead, they might have processed the fractional part of the dec-
imal fraction holistically. For instance, when comparing 2.91 and
2.40, participants ignored the unit digits and compared 91 and
40 instead. Specific processing advantages (as indicated be faster
response times) for multiples of ten have already been reported
before (Brysbaert, 1995; Nuerk et al., 2002). Thus, faster responses
for decimal fractions with zeros at the end might not necessarily
indicate a privileged role of zeros but a privileged role of multiples
of ten, which a model of strictly componential processing cannot
account for.

PERSPECTIVES

By assuming that processing of decimal fractions is not different
from processing of natural numbers, our computational model
also allows for predictions about the processing of natural numbers

and decimal fractions within one model framework. In accordance
with our findings for decimal fractions, we would expect that the
unit-decade compatibility effect is smaller for three-digit numbers
with identical hundred digits as compared to the hundred-decade
compatibility effect for three-digit numbers.

Necessarily, the natural number conversion hypothesis and the
model architecture employed in the present study suggest that the
number of digits should influence the comparison of numbers not
only when comparing decimal fractions, but also when comparing
two natural numbers. However, differing from decimal fractions
in natural numbers, the number of digits is always congruent with
numerical magnitude. Therefore, different numbers of digits can
only facilitate the comparison of two natural numbers, but never
interfere with the comparison of two natural numbers. Neverthe-
less, the computational model architecture predicts that natural
numbers containing different numbers of digits should be com-
pared faster than natural numbers with the same number of digits,
even if distance and problem size are matched.

Moreover, the computational model, which served as a basis for
the extended network presented in the current study, was devel-
oped to simulate effects of cognitive control observed in two-digit
number processing. It was able to account for the proportion con-
gruity effect found by Macizo and Herrera (2013) and predicted
a Gratton effect (Gratton etal., 1992) in two-digit number com-
parison. Hence, the computational model predicts that also the
comparison of decimal fractions should be under cognitive control
modulating the relevance of tenth and hundredth digits. Regard-
ing the tenth—-hundredth compatibility effect, we would expect
it to be more pronounced in a stimulus set with a smaller pro-
portion of incompatible relative to compatible number pairs, as
found by Macizo and Herrera (2013) for the case of two-digit
numbers. Moreover, in the original computational model (Huber
etal., 2013c) cognitive control was implemented to act locally on a
trial-by-trial basis and, thereby, it was able to simulate the Gratton
effect in two-digit number comparison. Transferred to the case of
decimals, the model thus predicts that participants should adapt
to different proportions of incompatible trials when comparing
decimal fractions on a trial-by-trial basis as well. However, the
computational model suggests that not only the relevance of digits
should be influenced by processes of cognitive control, but also
the inferential influence of the number of digits. This means that
the inferential influence of the number of digits should depend on
the proportion of string length incongruent to congruent num-
ber pairs (in the sense of a proportion congruity effect). In the
current computational model, the network for comparing differ-
ent numbers of digits was added in the same way as the network
for the magnitude comparison of digits. Therefore, the same pro-
cesses of cognitive control, which modulate the relevance of tenth
and hundredth digits, should also modulate the influence of the
number of digits. In a similar vein as for the relevance of tenth
and hundredth digits, the computational model predicts that the
influence of the number of digits should be smaller for higher pro-
portions of incongruent trials. More specifically, the string length
congruity effect should be larger in a condition with only 25%
incongruent trials than in a condition with 75% incongruent trials
(see Macizo and Herrera, 2013, for a similar proportion congruity
manipulation on the unit-decade compatibility effect). Moreover,
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as cognitive control was implemented to act locally on a trial-by-
trial basis, the computational model also predicts a Gratton effect
for the string length congruity. These predictions are a direct result
of the network architecture employed to simulate the string length
congruity effect and have to be demonstrated in future empirical
studies.

Furthermore, we simulated the processing of decimal frac-
tions using a fully componential model. With this architecture,
however, the model was not able to account for the observed
faster responses for decimal fractions with zero at the rightmost
position. We suggested that the fractional part of these decimal
fractions might be processed holistically because of its similar-
ity to multiples of ten (e.g., the fractional part of 2.40 is 40).
In the study of Moeller etal. (2011), the fully componential
model was favored, because it was more parsimonious than the
hybrid model assuming that there exit both a componential as
well as a holistic representation of two-digit numbers (e.g., Nuerk
and Willmes, 2005). However, the present study suggests that
at least some two-digit numbers (i.e., whole 10) might be pro-
cessed holistically favoring a hybrid model of two-digit number
processing.

CONCLUSION

The present study aimed at investigating the processing of dec-
imal fractions. Currently, there is a debate on whether decimal
fractions are processed like natural numbers (natural number
conversion hypothesis) or whether there exist mental represen-
tations of decimal fractions, which are distinct from those of
natural numbers. The latter suggestion of distinct representations
for decimal fractions was supported (i) by the finding of a smaller
compatibility effect in decimal fraction than in natural number
comparison and (ii) by a semantic interference effect indicating
that natural number representations interfere with the compari-
son of decimal fraction representations. In the present study, we
investigated whether these differences indeed indicate that deci-
mal fractions are processed differently from natural numbers. To
do so, we provided another account for the semantic interference
effect. We proposed that a string length congruity effect evoked
by an incongruity between comparison of the magnitude of dig-
its and the physical length could also account for the semantic
interference effect. To evaluate this suggestion, we conducted an
eye-tracking study and simulated the empirical findings using a
computational model. Importantly, in the computational model
we did not implement specific decimal fraction representations.
Instead, our model was an extension of our fully componential
model for two-digit number comparison. To account for the pro-
posed string length congruity effect, we added a network for the
comparison of the number of digits. The computational model
could account for the smaller compatibility effect in decimal
fraction comparison and for the string length congruity effect
providing further support for the natural number conversion
hypothesis.
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