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In the last decade, an increasing interest has arisen in investigating the relationship
between the electrophysiological and hemodynamic measurements of brain activity, such
as EEG and (BOLD) fMRI. In particular, changes in BOLD have been shown to be
associated with changes in the spectral profile of neural activity, rather than with absolute
power. Concurrently, recent findings showed that different EEG rhythms are independently
related to changes in the BOLD signal: therefore, it would be also important to distinguish
between the contributions of the different EEG rhythms to BOLD fluctuations when
modeling the relationship between the two signals. Here we propose a method to perform
EEG-informed fMRI analysis where the changes in the spectral profile are modeled, and,
at the same time, the distinction between rhythms is preserved. We compared our model
with two other frequency-dependent regressors modeling using simultaneous EEG-fMRI
data from healthy subjects performing a motor task. Our results showed that the
proposed method better captures the correlations between BOLD signal and EEG rhythms
modulations, identifying task-related, well localized activated volumes. Furthermore, we
showed that including among the regressors also EEG rhythms not primarily involved in
the task enhances the performance of the analysis, even when only correlations with
BOLD signal and specific EEG rhythms are explored.
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INTRODUCTION
The complementary features of electroencephalography (EEG)
and blood oxygen level-dependent functional magnetic resonance
imaging (BOLD fMRI) constituted the basis for recent develop-
ments in the integration of these neuroimaging modalities (Liu
et al., 1998, 2006; Dale et al., 2000; Babiloni et al., 2005; He and
Liu, 2008). In particular, one of the most popular approaches
combines EEG and fMRI measurements by using temporal-
or frequency-specific information derived from EEG to obtain
regressors of interest used in the common General Linear Model
(GLM) framework; this multimodal strategy is usually referred to
as EEG-informed fMRI analysis and it differs from the classical
fMRI analysis in its unique ability to selectively localize the fMRI
correlates to specific neuronal events or rhythms (He and Liu,
2008). In most of the literature about EEG-informed fMRI anal-
ysis, the EEG spectral power (either corresponding to the entire
range of frequencies or to one or more specific bands) is sim-
ply used as a regressor to find correlations with the BOLD signal,
without taking into account the problem of what is the best way to
model the “transfer function” between the two signals (Logothetis
et al., 2001; Laufs et al., 2003; Moosmann et al., 2003; Feige et al.,
2005; Scheeringa et al., 2011). More recently, some attempts have

been made in order to achieve a better understanding of the
frequency-dependent neurovascular coupling. In this framework,
Goense and Logothetis (2008) used simultaneous intra-cortical
LFP-BOLD recordings and a multiple regression model, in which
activity in many different frequency bands, covering the entire
LFP range of frequencies, was employed to predict BOLD activ-
ity in alert behaving monkeys. The results showed that all of the
LFP bands explained a significant part of the BOLD response.
Kilner et al. (2005) observed that, from the fMRI standpoint, a
proportionality exists between neuronal activation and the rela-
tive metabolic demands or rate of energy dissipation, in 1/s units.
Simultaneously, from the perspective of EEG, activation gives rise
to a shift in the spectral profile toward higher frequencies, also
in 1/s units. The authors linked therefore these two observations
through a dimensional analysis, proposing a “Heuristic” model,
hereinafter named HEU. Such model states that BOLD activations
are accompanied by an increase of the “average” frequency of the
EEG neural activity, and it defines the average in the root mean
square (RMS) sense. The HEU model was then tested by Rosa
et al. (2010) on EEG-fMRI data recorded during a visual stim-
ulation, and showed the ability to provide a better fit than the
model proposed by Goense and Logothetis (2008), where no shift
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in EEG spectral profile toward high frequencies had been con-
sidered. However, although the “Heuristic” model importantly
accounts for a different weighting of the power spectrum as a
function of the frequency, it is not able to discriminate between
different contributions from the single EEG bands in explain-
ing BOLD variance. This can be limiting in some experiments,
where it could be important to understand whether the specific
rhythms, which are known to be involved in the phenomenon
under investigation, contribute to explain BOLD variance inde-
pendently or not. Moving in this direction, a recent work by
Scheeringa et al. (2011) was conducted in order to understand
if, during a visual attention task in humans, alpha and beta EEG
power contribute to BOLD fluctuations independently or not.
The findings of this latter study showed that different rhythms are
independently related to changes in the BOLD signal. To achieve
this result, the BOLD time series were modeled including separate
regressors for each band in the design matrix, without account-
ing, though, for the “Heuristic” effect within each regressor (i.e.,
the possible shift in the spectral profile within the considered
frequency band).

To bridge this gap, we intend to study how specific EEG
rhythms selectively contribute to the BOLD fluctuations, taking
into account the “Heuristic” model theory (Kilner et al., 2005).
To this aim, we properly modified the design proposed by Rosa
et al. (2010) by constructing a design matrix including differ-
ent regressors for each EEG rhythm. One regressor per rhythm
was obtained, in order to preserve the rhythms distinction and
the possibility to study different frequency bands separately while
taking into account the shift toward higher frequencies of the
power spectrum. We applied this method to a human EEG-fMRI
dataset, where a unimanual hand grip paradigm was employed
on healthy subjects to elicit task-related activity in motor cortex.
We chose a motor task to test our model, since the fluctua-
tions of specific EEG rhythms during motor performance are well
documented in literature. It is well known, in fact, that limbs
movements are associated to desynchronization and synchroniza-
tion (ERD/ERS) patterns on scalp EEG, involving alpha and beta
rhythms (Pfurtscheller and Lopes da Silva, 1999). In order to
study how the different movement-related EEG rhythms con-
tribute to BOLD signal, we regressed fMRI data onto convolved
time courses of features extracted from the power spectrum of
each band of interest. We extracted five single-band features
obtained by weighting power values as a function of frequency
(which we called “Heuristic-Bands” or HEU-B model). We com-
pared the performance of our model with the HEU model as
introduced by Rosa et al. (2010), and with the approach described
in Goense and Logothetis (2008), Scheeringa et al. (2011), where
fMRI data are regressed onto convolved power time courses of the
bands of interest, ignoring the “Heuristic” effect (from now on,
this latter model will be referred to as “Frequency-Bands” or FB
model). The evaluation of differences between models was first
performed by constructing three different GLMs (one per type of
regressors modeling), thus generating single model maps; then,
regressors from different models were included in a same design
matrix and a statistical parametric mapping (SPM) approach was
used, in order to perform a quantitative comparison. The dif-
ferent models were evaluated comparing their results to those

obtained investigating the main response to the task, through a
stimulus-onset (SO) based analysis.

MATERIALS AND METHODS
SUBJECTS AND EXPERIMENTAL PROTOCOL
Eleven (11) right handed healthy adult volunteers (7 male, 4
female, aged 35.6 ± 13.5 years) participated in the study per-
formed at the “IRCCS Istituto Neurologico Carlo Besta”, Milan,
Italy. All subjects had normal motor ability and no history of neu-
rological or psychiatric disorders. The motor task consisted of 21
interleaved blocks of active and rest conditions. During the active
condition the participants were instructed to squeeze a soft ball
with the right hand, at 2 Hz rate, guided by a metronome. Blocks
lasted for 20 s, resulting in an overall durations of 420 s (Figure 1).
The switching instructions between the different conditions were
given by video signals. All subjects were in a supine position with
arms relaxed and head fixed with adjustable padded restraints on
both sides. They were asked to move as little as possible through-
out the experiment, to avoid blinking, and, in general, to keep
their eyes open. All the subjects gave written informed consent
to the experimental procedures that had gained Ethical Approval
from the applicable institutional committees.

EEG-fMRI ACQUISITION
EEG was simultaneously acquired during fMRI scanning by
using an MR-compatible EEG amplifier (SD MRI 32, Micromed,
Treviso, Italy) and a cap providing 30 Ag/AgCl electrodes posi-
tioned according to the 10–20 system. An extra electrode was
placed on the thorax to obtain an electrocardiogram (ECG).
Concurrently, electromyographic activity was recorded by a pair
of Ag/AgCl electrodes positioned 2–3 cm apart on either side of
the right index flexor muscle. Electrodes impedances were kept
below 5 k�. The signal was sampled at a rate of 1024 Hz using the
software package provided by the manufacturer.

fMRI images were acquired on a 1.5 T MR scanner (Magnetom
Avanto, Siemens AG, Erlangen, Germany). An axial gradient-echo
echo-planar sequence was used to generate the functional images
(TR = 2000 ms, TE = 50 ms, 21 slices, 2 × 2 mm2 in-plane voxel
size, 4 mm slice thickness, no gap), resulting in a total of 210
functional scans for each subject. Whole-brain structural scans
were also acquired using a T1-weighted sequence (160 slices,
TR = 1640 ms, TE = 2 ms; 1 mm3 isotropic voxels), in order to
obtain high-resolution anatomical images for each subject.

EEG-fMRI DATA PRE-PROCESSING
Gradient artifact, due to the EEG acquisition in an MRI
environment, was removed off-line using the FMRIB plu-
gin of the EEGLAB toolbox (http://www.fmrib.ox.ac.uk/eeglab/
fmribplugin). The removal procedure was carried out by an initial
subtraction of an average artifact template from each channel, as
in (Allen et al., 2000), followed by an Optimal Basis Set (OBS) of
principal components for the removal of artifact residuals (Niazy
et al., 2005). The ballistocardiogram (BCG) artifact was also
removed using the FMRIB plugin implementing OBS. Finally, a
surface Laplacian estimation was applied to EEG data, in order
to free them from a reference and make them spatially sharpened
(Hjorth, 1975; Visani et al., 2011). Detailed results of EEG artifact
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FIGURE 1 | Experimental protocol and data analysis pipeline. This
figure gives a schematic overview of the task, the different steps in
EEG-fMRI processing and the outcome of the analysis (see Methods
section for details). “Motor task” block: the motor task consists in a
block-designed right hand grip. “EEG” block: gradient and BCG artifacts
were removed from the EEG data; a surface Laplacian estimation was
applied; EEG from channel C3 was decomposed using wavelet transform
and HEU, FB and HEU-B regressors were estimated. “fMRI” block: the EPI
images were motion and slice timing corrected, normalized and spatially
smoothed; regressors modeling motor task were created and a
stimulus-onset group map was obtained through GLM analysis.
“EEG/fMRI” block: the HEU, FB, and HEU-B regressors were used to
model EEG-fMRI relationships in separate design matrices and three single
model maps (one per model) were obtained; finally, a direct comparison
was performed by including regressors from different models in the same
design matrix, thus obtaining model comparison maps.

removal procedure are shown in the Supplementary Materials
section.

The fMRI images were motion and slice timing corrected,
normalized to a standard EPI template based on neuroanatom-
ical atlas of Talairach and Tournoux (1988). Finally, normalized
images were spatially smoothed with an 8 × 8 × 8 mm full width
at half maximum Gaussian kernel. All steps of fMRI data pre-
processing were performed using the SPM5 software package
(http://www.fil.ion.ucl.ac.uk/).

EEG TIME-FREQUENCY ANALYSIS
In order to estimate the amplitude of neuroelectrical oscilla-
tory activity, we decomposed the EEG signal into time-frequency

domain. As in (Laufs et al., 2003; Moosmann et al., 2003; Horovitz
et al., 2008; Ritter et al., 2009), we selected only the channel
expected to be the most involved one in modulating oscillatory
activity during the task. In our case, since the experimental pro-
tocol corresponds to a motor task, the central electrode on the
contralateral motor area was chosen (C3), which is already known
to be placed in the Rolandic area (Pfurtscheller and Lopes da Silva,
1999; Visani et al., 2006).

The signal extracted from C3 channels, s̃(t), was analyzed in
the time-frequency domain by convolution with complex Morlet
wavelets, w(f,t), having a frequency range from 1 to 40 Hz in
0.5 Hz steps. As in our previous work (Sclocco et al., 2012), the
EEG bandwidth was limited to 40 Hz (low-gamma rhythm), since
above that frequency MRI-related artifact are more difficult to
remove, therefore preventing from obtaining a signal of good
quality. The time-varying power of the signal around frequency
f was then obtained by the squared modulus of the convolution

(Tallon-Baudry and Bertrand, 1999): P
(
f , t

) = ∣∣w(f , t) ∗ s̃(t)
∣∣2

(Figure 1).

MODELING EEG-fMRI RELATIONSHIP
After the power spectrum for all frequencies and time points,
P(f,t), was obtained, we extracted regressors for subsequent EEG-
informed fMRI analysis.

Starting from the time-frequency decomposition of the EEG
signal, we obtained fMRI regressors using three models of transfer
function between EEG and fMRI (Figure 1).

The first model, HEU, assumes that the increasing BOLD sig-
nal is associated with a shift in the EEG spectral profile toward
higher frequencies, as in (Kilner et al., 2005; Rosa et al., 2010).
The equation describing the regressor is directly derived from the
dimensional analysis by Kilner et al. (2005). Briefly, the authors
measure the effect of activation on the EEG signal through the
roughness of the signal, defined as the normalized variance of
the first temporal derivative of the EEG. Since the roughness
is mathematically equivalent to the negative curvature of the
EEG autocorrelation function evaluated at zero lag, the Wiener-
Khinchin theorem allows to express the relationship in terms
of spectral density, and consequently the activation in terms of
the “normalized” spectral density. The regressors are obtained
by the integration, over the whole EEG spectral range, of the
time-frequency power values multiplied by the square of the
corresponding frequency. HEU regressors are thus defined as
follows:

rHEU(t) =

√√√√√
nf∑

f =1

f 2P̃(f , t),

where P̃ is the normalized power spectrum and nf is the number
of frequencies considered in the time-frequency decomposition.

For the other two models, we created one regressor for each
of the five EEG canonical rhythms [δ (1–4 Hz), θ (5–8 Hz), α

(8–12 Hz), β (12–30 Hz), and γ (30–40 Hz)]. Although the EEG
frequency content of interest during motor performance is known
to be mainly in alpha and beta bands (i.e., the so-called “Rolandic
rhythms”), we chose to include in the fMRI design matrix a set
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of regressors covering the entire range of the available EEG fre-
quency bandwidth, following the findings from recent studies
(Goense and Logothetis, 2008).

The second model, FB, considers the aforementioned five
bands of neural activity and extracts a regressor from each of them
by integrating the values of the time-frequency power spectrum
over the corresponding frequency range, a = [

fmin, fmax
]
:

rFB(t)a =
fmax∑

f = fmin

P
(
f , t

)
.

The third model, HEU-B, considers the same bands of FB model,
but defines each band regressor accounting for the “Heuristic”
effect. The five regressors of the HEU-B model are, therefore,
given by:

rHEU − B(t)a =

√√√√√
fmax∑

f = fmin

f 2P̃
(
f , t

)
,

where P̃ indicates the normalized power spectrum and a =[
fmin, fmax

]
is the bandwidth of the considered EEG rhythm.

HEU-B model allows, at the same time, to model the depen-
dence of BOLD response on modulations of the EEG spectral
profile and to separate the response to different frequency bands,
making possible to identify the BOLD correlates to a specific EEG
rhythm (e.g., Rolandic rhythms).

STIMULUS ONSET-BASED fMRI ANALYSIS
In order to investigate the effect of the experimental task, a SO
fMRI analysis was first performed using regressors modeling the
alternation of active and rest blocks. The onsets of active blocks
were detected from the EMG recording. The bursts of activ-
ity corresponding to the grip of the right hand were identified
by a physiologist and a SO box-car function synchronous with
EMG bursts was created. At a first stage of analysis, the fMRI
data of each participant were analyzed using the mass univari-
ate approach based on GLM theory, as implemented in SPM5.
The expected response was modeled as the convolution of the
SO box-car function with the SPM canonical Haemodynamic
Response Function (HRF), including its multivariate first order
Taylor expansion in time (time derivative) and width (dis-
persion derivative). Movement parameter estimates produced
by realignment procedure were also included as confound-
ing regressors, in order to remove residual movement artifacts
(Friston et al., 1996).

The whole set of regressors modeling the effects of interest and
the unwanted effects forming the first level design matrix is then
fitted to the image data of each subject involved in the experi-
ment. After the estimation of the regression coefficients, inference
on relevant contrasts of their estimates was performed using a
Student’s t statistic. A first-level t-contrast was specified for each
basis function, resulting in 3 t-contrast maps for participant. At
a second stage of analysis, individual contrast maps were then
included into a second-level full factorial design, in order to per-
form an RFX (random-effects) analysis. Within-subject One-Way

analysis of variance (ANOVA) was computed, and inference was
carried out using an F-test.

We then performed anatomical and functional label-
ing of the involved areas using the probability maps
from Anatomical Automatic Labeling (AAL) SPM toolbox
(http://www.cyceron.fr/web/aal_anatomical_automatic_labeling.
html) and SPM Anatomy Toolbox (Eickhoff et al., 2005).

EEG-INFORMED fMRI ANALYSIS
Single-model mapping
In order to investigate the link between neuroelectrical activity
and BOLD signal, further fMRI analyses were performed using
EEG-derived regressors. At first-level analysis, three design matri-
ces were obtained for each subject, using different groups of
regressors rHEU(t), rFB(t)a, and rHB(t)a.

rHEU(t), rFB(t)a, and rHB(t)a time series were downsam-
pled to match the SPM canonical HRF sampling rate, which
we set to slice acquisition time interval (TR/number of slices)
(Josephs et al., 1997; Henson and Friston, 2007). The time
series were then convolved with the canonical HRF and with
its time and dispersion derivatives. The results of the convo-
lution were used to construct three individual GLMs (one for
each model) that were then fitted to the fMRI data. As in the
SO analysis, the parameters obtained from motion correction
during images pre-processing were also included in the GLM.
Inference on the estimated regressors was performed using t-
tests. A first-level t-contrast was specified for each basis function
of the rHEU (t) regressors, as well as for alpha and beta regres-
sors of rFB (t)a and rHB(t)a models. Although all the five EEG
rhythms were included in the first level design matrices, for the
sake of simplicity, inference was performed only on the alpha
and beta frequency rhythms. This approach was adopted since
it is known that the modulation of the motor-related oscillatory
activity is mainly focused in the alpha and beta frequency ranges
(Papakostopoulos et al., 1980; Pfurtscheller, 1981; Salmelin and
Hari, 1994; Salmelin et al., 1995; Visani et al., 2006). Further
analyses investigating other rhythms could be an interesting
extension of the proposed approach, but this goes beyond the
scope of the present work. The outcome of the first level anal-
ysis, consisted in 15 t-contrast maps for each subject (3 maps
for HEU, 6 for FB and HEU-B). An example of final regres-
sors from each model for a representative subject is shown in
Figure 3.

At the second stage of analysis, 5 full factorial designs were
implemented (HEU, FB-alpha, FB-beta, HEU-B-alpha, HEU-
B-beta), each design including 3 individual contrast maps per
participant. A total of 5 within-subject One-Way analysis of vari-
ance (ANOVA) was computed and inferences were carried out
through an F-test.

In order to test whether the choice to include all of the five
EEG rhythms in the first-level designs would help to explain the
relationship with the BOLD signal, or it would be enough to con-
sider alpha and beta rhythms only, we built two further first-level
design matrices for each subject (one for FB and one for HEU-B),
including alpha and beta regressors only. 12 further first-level t-
contrast maps for participant (6 for each model) were obtained,
and a second-level analysis was performed similarly to the one
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described above. We called the resulting images “reduced models
comparison” maps.

Models comparison mapping
In order to compare the different models and to understand
which one is best suited for investigating the BOLD response
to EEG frequency oscillations in the alpha and beta bands dur-
ing a motor task, at the first-level of the analysis, we included
all the regressors obtained from FB and HEU-B models in
the same design matrix. Given the poor performance of HEU
model in single-model mapping (see Results section below), it
was not included in this further step of the analysis. The use
of a single GLM design matrix comprising different models
allowed to highlight BOLD variability that could be explained
by a specific model and not by others (Friston et al., 1994;
Rosa et al., 2010). As for the single model mapping, first-
level t-contrasts were specified only for alpha and beta regres-
sors of the rFB (t)a and rHB(t)a models. This resulted in a
total of 12 first-level t-contrast maps for participant (6 for FB
and 6 for HEU-B). A second-level analysis was thus imple-
mented in order to compare the performance of FB and HEU-B
model.

At a group level, 4 full factorial designs were then imple-
mented, each design including 3 t-contrast maps per subject.
Within-subject One-Way analysis of variance (ANOVA) infer-
ences on the estimated regressors were performed using F-tests
and 4 final “global models comparison” maps were obtained.

FIGURE 2 | Stimulus onset-based analysis. Group map showing the main
effect of right hand grip on fMRI data (p < 0.05, FWE).

This analysis approach allowed us to explore the neural correlates
of EEG regressors that are uniquely attributable to each model
within the pair.

Labeling of the active areas
For each “single-model” and for each “models comparison” map,
we performed anatomical labeling of the resulting areas. In order
to evaluate the ability of the different models to identify the
task-related activations, we generated a “BOLD activation mask”
(BAM) including the functional areas resulting from SO analysis
(Rosa et al., 2010). Accordingly, we built two main classes of brain
areas: “motor” areas, corresponding to BAM functional regions,
and “non-motor” areas, otherwise. The performances of the dif-
ferent models were thus assessed by evaluating the F-scores, the
number of voxels above the adopted p-value thresholds, as well
as the location of these voxels inside and outside the BAM (Rosa
et al., 2010).

RESULTS
STIMULUS ONSET-BASED fMRI ANALYSIS
The results of the SO fMRI analysis showed activations related to
the performed motor task. The main effect of hand grip resulting
from the group analysis is shown in Figure 2, while in Table 1
the significant clusters are assigned to anatomical and func-
tional regions. As expected, SO-related activations were found
in functional areas that are well known to be involved in motor
execution: left primary motor cortex (M1-BA4), premotor cortex
(PM-BA6), primary somatosensory cortex (S1-BAs 1, 2 and 3),
and supplementary motor area (SMA-BA6).

EEG-INFORMED fMRI ANALYSIS
In the following analyses, we explored the relationship between
EEG and BOLD for each model described in the Methods sec-
tion. Figure 3 shows the neural correlates of the EEG regressors
obtained using the HEU model (A), the FB model (B) and the
HEU-B model (C). For the two latter models, maps relative to
contrasts on alpha and beta rhythms are shown. In Table 2, the
significant clusters are listed and assigned to anatomical and
functional regions for each model and each contrast.

In Figure 4 (top panel), the voxels of the active areas are
classified as “motor” and “non-motor”, according to the previ-
ously defined BAM. The “motor” voxels were further classified
according to their Brodmann areas (Figure 4, bottom panel).

The HEU model produced only voxels outside the BAM, in
particular located in the ventral portion of middle cingulate
cortex (MCC) (Figure 3A); therefore, it was excluded from the
second classification based on Brodmann areas, and from the
following model comparison mapping analyses.

Table 1 | Stimulus onset-based fMRI analysis.

Cluster size Maximum MNI Maximum F-score Anatomical areas Brodmann areas (BA)

(# voxel) coordinates (mm) (p < 0.05, FWEa) (# voxels assigned)

914 −40, −22, 61 51.29 54% Left pre-central gyrus, 45% left
pre-central gyrus

BA6 (386), BA4a (135), BA1 (104), BA4p (103),
BA3b (93), BA2 (25), BA3a (15)

aFamily wise error corrected for multiple comparison.
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FIGURE 3 | Single-model mapping. Top panel: alpha and beta
time-varying EEG power for a representative subject. Bottom panel:
group maps obtained using HEU (A), FB (B) and HEU-B (C)

models, along with examples of regressors for a representative

subject (after downsampling and convolution with HRF). For FB and
HEU-B models, neural correlates for alpha and beta rhythms are
shown (HEU: p < 0.001, uncorrected; FB: p < 0.001, uncorrected;
HEU-B: p < 0.05, FDR).
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Table 2 | Single model mapping.

HEU MODEL

Cluster size Maximum MNI Maximum F-score Anatomical areas Brodmann areas (BA)

(# voxel) coordinates (mm) (p < 0.001, uncorrected) (# voxels assigned)

75 6, 16, 35 13.82 60% Right middle cingulate
cortex, 40% left middle
cingulate cortex

BA24 (75)

FB MODEL

Cluster size Maximum MNI Maximum F-score Anatomical areas Brodmann areas (BA)

(# voxel) coordinates (mm) (p < 0.001, uncorrected) (# voxels assigned)

Alpha – – – – –

Beta 207 −38, −26, 63 11.11 86% Left pre-central gyrus,
14% left post-central gyrus

BA6 (126), BA4a (56), BA4p (13), BA3b
(6), BA1 (1)

HEU-B MODEL

Cluster size Maximum MNI Maximum F-score Anatomical areas Brodmann areas (BA)

(# voxel) coordinates (mm) (p < 0.05 FDRa) (# voxels assigned)

Alpha 585 −48, −26, 53 25.35 65% Left post-central gyrus,
34% left pre-central gyrus

BA6 (156), BA41 (121), BA1 (114),
BA3b (88), BA2 (72), BA4p (10)

Beta 473 −34, −28, 75 17.25 56% Left pre-central gyrus,
42% left post-central gyrus

BA6 (210), BA4a (93), BA1 (80), BA3b
(35), BA4p (14), BA2 (3), BA3a (1)

aFalse Discovery Rate corrected for multiple comparison.

The FB model revealed one active cluster only relatively to
the beta rhythm (Figures 3B, 4; Table 2). This cluster, entirely
included in the BAM, is mostly located in M1 (BA 4) and PM
(BA 6).

The HEU-B model produced the highest number of “motor”
voxels (997), and no voxels outside the BAM were found.
Furthermore, voxels distribution among the motor areas are very
similar to those resulting from the SO fMRI analysis, since both
alpha and beta related activations were located in S1 (BAs 1, 2
and 3), M1 (BA 4), SMA (BA6), and PM (BA 6) (Figures 3C, 4;
Table 2), thus revealing a co-localization of the neural correlates
of alpha and beta rhythms with task-related BOLD activity.

Before performing the following pairwise comparison between
FB and HEU-B models, we also investigated whether the FB
model performance could be increased by using the normalized
spectral power instead of the absolute one. Therefore, a fur-
ther single-model mapping analysis was performed (we called
the model FBnorm), the results of which are shown in Figure 5.
The FBnorm model was able to provide BOLD correlates also
for alpha rhythm, but producing only “non-motor” voxels. The
results relative to the beta rhythm are similar to the FB model
(Figures 3B, 4) since only one cluster was found being entirely
within the BAM and mostly located in M1 (BA 4) and PM (BA 6).
However, the number of resulting voxels is decreased if compared
with FB model results (FBnorm: 99 voxels; FB: 202 voxels).

The reduced single model maps are shown in Figure 6. As it
can be noticed, the ability of the models to capture the correlation

with task-induced BOLD variations turned out to be decreased.
In particular, the BOLD correlates of beta rhythm relative to the
reduced FB model identified less “motor” voxels than the FB
one (reduced FB: 127 voxels; FB: 202 voxels), while the reduced
HEU-B model produced voxels outside the BAM when contrast-
ing on both alpha (193 voxels) and beta (65 voxels) regressors (see
Figures 4, 6C). Therefore, including among the regressors also the
EEG rhythms not primarily involved in motor activity enhances
the performance of the EEG-informed fMRI analysis, allowing
a better explanation of BOLD signal variation. The results of
the model comparison mapping between Frequency Bands and
Heuristic Bands models are shown in Figure 7 and Table 3. As it
was found in the previously described analysis, the HEU-B model
was the only one that produces active areas within the motor
regions, especially with reference to the beta rhythm. The HEU-
B model in the beta frequency range produced a higher number
of “motor” voxels (550) and a lower number of “non-motor”
voxels than in the alpha frequency range. Alpha related activa-
tions were located mainly in SMA (BA6), S1 (BAs 2,3), whereas
beta related active clusters were distributed mainly between SMA
(BA6), S1 (BA1), and M1 (BA4) (Figure 7C, Table 3). Differently
from HEU-B model, no voxel survived the uncorrected threshold
in the FB model, for both the alpha and beta rhythms.

DISCUSSION
In this paper, we investigated the relationship between neural
activity and BOLD signal in simultaneously acquired EEG and
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FIGURE 4 | Classification of neural correlates from single model

mapping. Top panel: voxels classification according to the BAM (voxels
belonging to the same areas activated in SO analysis are classified as
“motor” voxels). Bottom panel: distribution of “motor” voxels among the
Brodmann areas identified by the SO analysis. Since HEU model only
produced “non motor” voxels, it was not included in this second
classification. The number of voxels assigned to the classes are tabulated
below bars.

fMRI data during a motor task in healthy human subjects. We
compared three different models (Heuristic, Frequency Bands
and Heuristic Bands) used to build regressors from the EEG sig-
nal, in order to explore the correlations between each of them and
the fMRI data. For the evaluation of the performances of the dif-
ferent models, we chose to use data acquired during a motor task,
where functional activations related to the task execution are well
known.

The present work showed that the correlations between BOLD
signal and EEG power fluctuations are better captured by mod-
els which take into account the different EEG rhythms, relatively
to the identification of the motor-related activations. In fact,
both the Heuristic Bands model and, even if to lesser extent, the
Frequency Bands model, showed correlations consistent with the
motor task. On the contrary, HEU model only produced voxels

FIGURE 5 | Single model mapping—FBnorm model. Top panel: group
maps obtained from single model mapping using FBnorm model. Neural
correlates for alpha and beta rhythms are shown (p < 0.001, uncorrected).
Bottom panel: (left) voxels classification according to the BAM; (right)
distribution of “motor” voxels among the Brodmann areas identified by the
SO analysis. The number of voxels assigned to the classes are tabulated
below bars.

not belonging to the functional areas involved in the motor task.
Considering the differences between the EEG rhythms by mod-
eling them with separate GLM regressors, though, didn’t turn
out to be enough for a good performance of the model. Indeed,
the Frequency Bands model wasn’t able to capture as much of
the BOLD signal variance as the Heuristic Bands one. It was
therefore important to take into account also the EEG spectral
shift toward higher frequencies during activation, as predicted by
Kilner et al. (2005) and tested in Rosa et al. (2010). In particu-
lar, at the best of our knowledge, our results showed for the first
time that considering the EEG spectral shift separately for each
single rhythm improves the ability of the model to capture the
variance of the BOLD signal. Using EEG regressors estimated by
HEU-B model in the GLM framework improved the statistical
significance of the results (HEU-B F-maps are FDR-corrected for
multiple comparisons, while no voxel survived a correction for
multiple comparisons in FB-related maps). This result is consis-
tent with the findings of our pilot study (Sclocco et al., 2012),
where the HEU and HEU-B models were compared in a simi-
lar way as in this work. Here, we provide a stronger support to
previous results, using a larger dataset which also allowed the
random-effects approach in the group analyses.
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FIGURE 6 | Reduced single model mapping. Group maps obtained
showing neural correlates of alpha and beta rhythms for (A) reduced
FB model and (B) reduced HEU-B model (FB: p < 0.001, uncorrected;
HEU-B on alpha: p < 0.001, uncorrected; HEU-B on beta: p < 0.05,

FDR). (C) Voxels classification according to the BAM (left); distribution
of “motor” voxels among the Brodmann areas identified by the SO
analysis (right). The number of voxels assigned to the classes are
tabulated below bars.

Moreover, we investigated the influence of the power nor-
malization on the FB model, in order to verify whether using
normalized power would improve its performance. Results were
very similar to those obtained with the un-normalized FB model,
providing additional support to the importance of considering
the “Heuristic” effect to model the relationship between EEG and
BOLD signals.

As for the areas identified by the HEU-B model, most of them
are consistent with the broad literature available on the sub-
ject. Electrocorticographic (Gastaut, 1952; Papakostopoulos et al.,
1980) and neuromagnetic (Salmelin and Hari, 1994) recordings
have shown that the Rolandic beta rhythm mainly originates
in the anterior bank of the central sulcus, while the Rolandic
alpha rhythm concentrates predominantly in the post-central

cortex. However, other studies reported rather widespread and
individually variable cortical desynchronization during move-
ment in both the pre-central and post-central cortex (Crone
et al., 1998b). Also in magnetoencephalographic (Willemse et al.,
2010) and EEG-fMRI (Parkes et al., 2006) studies, both the
Rolandic alpha and beta rhythms are found in pre- and post-
central areas. Thus, the association of the Rolandic alpha rhythm
with somatosensory cortex and the Rolandic beta with motor
cortex is not definitive. Our study contributes in this sense by
showing a predominant location of alpha-related cluster in the
post-central areas (65% of the cluster), while the beta-related area
mainly involved the anterior portion of the central sulcus (56% of
the cluster) (Table 2). Furthermore, the distribution of resulting
neural correlates among the functional motor areas revealed some
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FIGURE 7 | Global models comparison mapping. Group maps showing
neural correlates of alpha and beta rhythms for (A) FB and (B) HEU-B model
(p < 0.001, uncorrected). (C) Voxels classification according to the BAM (left);

distribution of “motor” voxels among the Brodmann areas identified by the
SO analysis (right). The number of voxels assigned to the classes are
tabulated below bars.

differences between the alpha and beta localizations. Indeed, con-
trast on alpha regressor produced more voxels corresponding
to the primary somatosensory cortex (alpha: 274 voxels; beta:
119 voxels); on the other hand, most of the beta-related voxels
were found in the primary motor cortex and pre-motor cortex,
respectively (alpha: 287 voxels; beta: 317 voxels).

Finally, in the pairwise comparison performed between FB
and HEU-B models (Figure 7, Table 3), the contrast vector anal-
ysis on the alpha regressor in the HEU-B model identified other
functional areas in addition to task-related correlates: in par-
ticular, correlations are found in BAs 7, 19, and 40. Although
the presence of these extra-rolandic clusters could be due to the
uncorrected threshold adopted for the alpha contrast, they can be
interpreted in the context of an attentional network active dur-
ing the rest blocks (Ritter et al., 2009). At this regard, previous
studies showed how BA 7 (i.e., the somatosensory association
cortex) is active during the expectation of an event (MacKay

and Crammond, 1987). Also the involvement of BA 40 and BA
19 (i.e., supramarginal gyrus and middle temporal area, respec-
tively) can be explained in the context of the attentional network
(Cooreman et al., 2011): left supramarginal gyrus has been shown
to be important for attention in relation to limb movements
(Rushworth et al., 1997, 2001), while middle temporal area con-
tains the MT/V5 area is an associative visual region associated
with attentional modulation (Büchel and Friston, 1997; Coull,
1998).

The present study has a main limitation that should be consid-
ered, that is, the choice of a single EEG electrode (C3), without
taking into account the information carried by other channels.
Still, the aim of this work is the comparison of EEG-to-BOLD
transfer functions within a motor task, therefore a certain degree
of simplification is needed in order to identify the primary sources
of information related to the investigated protocol. Future devel-
opments of this study could focus on the neural correlates of
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Table 3 | Global models comparison.

FB MODEL

Cluster size Maximum MNI Maximum F-score Anatomical areas Brodmann areas (BA)

(# voxel) coordinates (mm) (p < 0.001, uncorrected) (# voxels assigned)

Alpha – – – – –

Beta – – – – –

HEU-B MODEL

Cluster size Maximum MNI Maximum F-score Anatomical areas Brodmann areas (BA)

(# voxel) coordinates (mm) (alpha: p<0.001, uncorrected; (# voxels assigned)

beta: p<0.05, FDR)

Alpha 243 −46, −22, 48 11.58 42% Left post-central gyrus, 41%
left pre-central gyrus, 16% left
inferior parietal lobule

BA6 (75), BA2 (71), BA3b (41),
BA4a (24), BA1 (23), BA4p (6)

97 −24, −6, 66 13.24 63% Left superior pre-frontal
gyrus, 29% left pre-central gyrus

BA6 (68)

79 52, −64, −4 15.78 100% Right middle temporal
gyrus

BA19 (79)

76 −46, −26, 30 10.15 39% Left supramarginal gyrus,
22% left post-central gyrus, 13%
left inferior parietal lobule

BA7 (31), BA40 (18)

71 −38, −36, −4 14.32 11% Left hippocampus, 5% left
inferior temporal gyrus

BA27 (8), BA20 (4)

Beta 560 −28, −24, 64 15.25 55% Left pre-central gyrus, 42%
left post-central gyrus

BA6 (247), BA1 (125), BA4a
(85), BA3b (35), BA2 (13),
BA4p (10)

54 −4, 26, 36 10.51 78% Left middle cingulate cortex,
20% left superior frontal cortex

BA24 (41), BA9 (11)

other recording sites. The relationship between alpha rhythm
and BOLD signal, for example, has been extensively investigated
during the last decade, especially during task-free “resting-state”
studies; spontaneous fluctuations in alpha oscillation power has
been noted to negatively correlate with activity in the dorsal atten-
tion system of superior frontal and intraparietal regions (Laufs
et al., 2003; Mantini et al., 2007), while a positive correlation was
found with activity in a cingulo-opercular network encompass-
ing dorsal anterior cingulate cortex, frontal operculum/anterior
insula and thalamus (Dosenbach et al., 2007; Sadaghiani et al.,
2010). More recently, phase synchronization of alpha oscilla-
tions across distant cortical regions have been used in order
to confirm the existence of a link between the coupling in the
upper alpha band and the fronto-parietal network (Sadaghiani
et al., 2012), suggested to be responsible for the phasic control
of alertness and task requirements, hence complementing previ-
ous findings relating alpha oscillation power to neural structure
serving tonic control (Sadaghiani et al., 2010). Interestingly, the
authors were able to relate different electrophysiological signa-
tures (power vs. phase locking, positive vs. negative correlation)
to distinct functional networks involved in cognitive control and
spatial attention. Therefore, using the proposed HEU-B model
in order to explore the neural correlates of frontal or parietal

electrodes could give new insights on the relationship between
specific EEG rhythms and attention-related functional connec-
tivity networks during an active task. Further extensions of the
present work could be also studying the BOLD correlates of the
EEG rhythms other than alpha and beta, in order to investigate
their involvement in the motor task. For example, desynchroniza-
tion patterns, restricted to the onset of movement, are reported
in the literature in the high gamma frequency range (60–100 Hz)
(Crone et al., 1998a; Marsden et al., 2000; Ohara et al., 2001),
as well as increased theta activity preceding the movement onset
(Popivanov et al., 1999; Turak et al., 2001).

However, the purpose of the present study is the identification
of the best way to model the relationship between EEG and BOLD
signals, while the complete description of the whole-brain neural
correlates found during a motor task could be referred to a further
investigation. Understanding the nature of the link between neu-
ronal activity and BOLD signal plays a crucial role in improving
the interpretability of BOLD imaging and relating electrical and
hemodynamic measures of human brain function. Finding the
optimal way to model the relationship between these two tech-
niques is nowadays an open issue. We expect this work to be a
starting point for studying other types of EEG rhythms, and other
types of task-related activations/deactivations.
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