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How can experts, sometimes in exacting detail, almost immediately and very precisely
recall memory items from a vast repertoire? The problem in which we will be interested
concerns models of theoretical neuroscience that could explain the speed and robustness
of an expert’s recollection. The approach is based on Sparse Distributed Memory, which
has been shown to be plausible, both in a neuroscientific and in a psychological manner, in
a number of ways. A crucial characteristic concerns the limits of human recollection, the
“tip-of-tongue” memory event—which is found at a non-linearity in the model. We expand
the theoretical framework, deriving an optimization formula to solve this non-linearity.
Numerical results demonstrate how the higher frequency of rehearsal, through work or
study, immediately increases the robustness and speed associated with expert memory.
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1. INTRODUCTION

Szilard told Einstein about the Columbia secondary-neutron exper-
iments and his calculations toward a chain reaction in uranium
and graphite. Long afterward [Szilard] would recall his surprise
that Einstein had not yet heard of the possibility of a chain reac-
tion. When he mentioned it Einstein interjected, “Daranhabe ich gar
nicht gedacht!”-“I never thought of that!” He was nevertheless, says
Szilard, “very quick to see the implications and perfectly willing to do
anything that needed to be done.”

—July 16, 1941, meeting between Leo Szilard and Albert
Einstein concerning atomic weapons (Rhodes, 2012, p. 305).

How can experts—like Albert Einstein—immediately find
meaning given very few cues? How can experts—like Leo
Szilard—recollect, sometimes in exacting detail, memories that
non-experts would find baffling? These abilities span wide across
the spectrum of human activity: From full chess games played
decades ago, to verses written by Dante, to exotic wines, or to
the script and actors involved in movie scenes, experts can almost
immediately and very precisely recall from a vast repertoire. How
can neuroscience explain the speed and robustness of experts’
recollection?

The work done herein can be related to the work done
by Shepard (1957) and further developed by Nosofsky (1986);
Shepard (1987) in the sense that the models investigated here
use conceptual approximation and distancing in what could be
considered a psychological space. However, this work does not
aim to continue these authors’ approaches to identification, cat-
egorization, similarity and psychological distance. Here we aim
at discovering the bounds and limits of conceptual retrieval
in human memory via the Sparse Distributed Memory (SDM)
proxy.

Recently, Abbott et al. (2013) explored a computational level
(as defined by Marr, 1892) account of SDM as a model of

inference. We provide here an initial exploration that may further
the work done by these authors, providing a theoretical founda-
tion for a computational account of the edges of recollection via
Sparse Distributed Memory (and possibly other architectures, by
means of the connectionist common-ground).

Other approaches that are neurally plausible could include the
template and chunk theory by Gobet et al. (Gobet and Simon,
2000; Gobet et al., 2001; Harré et al., 2012; Harré, 2013). Chunks
are stored memory items, and templates include slots in which
items can vary.

Recent findings by Huth et al. (2012) suggest that human
semantic representation resides in a continuous psychological
space. The authors provide evidence in the form of fMRI results
supporting that human semantic representation resides in a
continuous multidimensional space. The SDM model explored
herein is consistent with these findings in that SDM permits hier-
archical relationships between concepts, and instantiates a multi-
dimensional conceptual space which holds attractors to memory
items that are, in fact, continuous (as a function of their distance
from the reading point).

Two of the concepts with which we will deal here are reflected
in this 1941 meeting: information content, shown by Einstein’s
surprise involved in unexpected information; and the ability to
rapidly access memory, in detail, shown by Szilard’s “long after-
ward” recollection of the meeting. A third concept we will use is
that evidence points toward memory being organized around cell
assemblies, and Sparse Distributed Memory takes advantage of
this concept.

2. CELL ASSEMBLIES AND THE SPARSE DISTRIBUTED
MEMORY MODEL

2.1. CELL ASSEMBLIES
How is information encoded in the brain? We postulate that
information is encoded by cell assemblies, not by individual
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neurons (Sakurai, 1996, 1998, 1999). There are at least five rea-
sons leading to this position. (1) Neurons constantly die—yet
the brain is robust to their loss. (2) There is large variability
in the activity of individual neurons—as would be expected on
anatomical and physiological grounds alone. (3) A single neu-
ron does not participate in a single function; as Sakurai (1998)
puts it:

Even the famous “face neurons” in the temporal cortex do not
respond to single unique faces but to several faces or to several
features comprising the several faces. (p. 2)

(4) Studies of activity correlation between neighboring neurons
show very low, if not zero, correlation. (5) Finally, while the num-
ber of neurons is quite large, it is minute in comparison with
the different combinations of incoming stimuli one experiences
during one’s lifetime.

Furthermore, recent literature suggests the connection
between the increased activation of the fusiform face area (FFA)
and the acquisition of expertise (Gauthier et al., 1999; Xu, 2005;
McGugin et al., 2012). Current results hold strong evidence
that FFA activation is correlated with domain-specific expertise
in naturalistic settings (Bilalić et al., 2011b). Additionally, it
is shown that expertise in object-recognition tasks modulates
activation in different areas of the brain (Bilalić et al., 2011a),
including homologous right-left hemispheric activation in both
object and pattern recognition expertise (Bilalić et al., 2010,
2012). This evidence and the preceding points serve to further
emphasize the distributed role of activation in recognition and
expertise.

Hence we subscribe to the hypothesis that the unit of infor-
mation encoding is not the individual neuron, but groups of
neurons, or cell assemblies (Sakurai, 1996, 1998, 1999). In this
model, shown in Figure 1, a single neuron may participate in a
large number of assemblies, and the possible number of assem-
blies is enormous. Cell assemblies, rather than being encumbered
by such combinatorial explosions, actually take advantage of
them, as we will see in Sparse Distributed Memory.

2.2. SPARSE DISTRIBUTED MEMORY
A promising research programme in theoretical neuroscience is
centered around Sparse Distributed Memory, originally proposed

by Kanerva (1988). SDM is a neuroscientific and psychologically
plausible model of human memory.

2.2.1. A large space for memory items
SDM introduces many interesting mathematical properties of
n-dimensional binary space that, in a memory model, are psy-
chologically plausible. Most notable among these are robustness
against noisy information, the tip-of-the-tongue phenomenon,
conformity to the limits of short-term memory (Linhares et al.,
2011), and robustness against loss of neurons. The model has
been explored in the study of vision and other senses (Olshausen
et al., 1993; Laurent, 2002; Rao et al., 2002; Mazor and Laurent,
2005). In spite of the increasing number of neuroscientists dis-
playing interest in Sparse Distributed Memory (Ballard et al.,
1997; French, 1999; Ludermir et al., 1999; Silva et al., 2004;
Laurent, 2006; Bancroft et al., 2012), we still have limited
understanding of its properties.

As in some other neuroscientific models, inhibitory and exci-
tatory signals are represented in binary form. In SDM, both the
data and the storage space belong to {0, 1}n, hence a particular
memory item is represented by a binary vector of length n, hence-
forth called a bitstring. These binary bitstrings are stored (as with
most computational memory models) in addresses. In SDM, these
also take the form of n-dimensional binary vectors.

The distance between two bitstrings is calculated using the
Hamming distance. Hamming distance is defined for two bit-
strings of equal length as the number of positions in which the bits
differ. For example, 00110b and 01100b are bitstrings of length 5
and their Hamming distance is 2.

The size of the {0, 1}n address space grows exponentially
with the number of dimensions n; i.e., N = 2n. While Kanerva
(1988) suggests n between 100 and 10, 000, recently he has pos-
tulated 10, 000 as a desirable minimum n (Kanerva, 2009). This
is, of course, an enormous space, unfeasible to be physically
implemented.

To solve the feasibility problem of implementing this mem-
ory, SDM takes a uniformly distributed random sample of {0, 1}n,
having N ′ elements, and instantiates only these points of the
space. These instantiated addresses in the sample are called hard
locations and each hard location implements a set of n counters,
which we will see in more detail. The hard locations allow SDM
to use the entire (virtual) {0, 1}n space through distributed read

FIGURE 1 | Cell assemblies: the information encoded in a single neuron is negligible and fragile. Multiple neurons may provide the best description of
human information processing.
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and write operations (described in more detail below). A ran-
dom bitstring is generated with equal probability of 0’s and 1’s
in each dimension. Thus, the average distance between two ran-
dom bitstrings has a binomial distribution with mean μ = n/2
and standard deviation σ = √

n/4. For large n, the vast majority
of the space lies “close” to the mean (i.e., between μ − 3σ and
μ + 3σ ) and has few shared hard locations: as n grows, two bit-
strings with distance far from n/2 are very improbable. We define
two bitstrings to be orthogonal when their distance is close to n/2.

Figure 2 provides a simplified view of the model, with a small
space for hard locations and a large space for possible locations.
The model instantiates a random sample of about one million
hard locations—which is in fact, a minute fraction of the space:
for n = 100, only 100 · 106/2100 = 7 · 10−23 percent of the whole
space “exists” (i.e., is instantiated), and for n = 1000 only 100 ·
106/21000 = 7 · 10−294 percent.

2.2.2. Creating a cell assembly by sampling the space at μ−3σ
The activation of addresses takes place according to their
Hamming distance from the datum. Suppose one is writing
datum η at address ξ , then all addresses inside an n-dimensional
circle with center ξ and radius r are activated. So, η will be stored
in all of these activated addresses, which are around address ξ , as
shown in Figure 3. An address ξ ′ is inside the circle if its hamming
distance to the center ξ is less than or equal to the radius r, i.e.,
distance(ξ, ξ ′) ≤ r. Generally, r = μ − 3σ . The radius is selected
to activate, on average, 1/1000th of the sample, that is, approx-
imately 1000 hard locations for a model with one million hard
locations. To achieve this, a 1000-dimension memory uses an
access radius r = 451, and a 256-dimensional memory, r = 103.
This will generate a cell assembly to either store or retrieve a
memory item. With this activation mechanism, SDM provides a
method to write and read any bitstring in the {0, 1}n space.

2.2.3. Writing an item to the memory
Table 1 shows an example of a write operation being performed
in a 7-dimensional memory.

FIGURE 2 | Hard-locations randomly sampled from binary space.

One way to view the write and read operations is to visualize
neurons (hard locations) as vectors, that is vectors pointing to cer-
tain areas of the space. In the SDM model, the cell assembly (i.e.,
the set of active hard locations) work in unison, rather like a sum
of vectors: as one writes bitstrings in memory, the counters of the
hard locations are updated.

When a bitstring activates a set of hard locations, the active
hard locations do not individually point to the bitstring that acti-
vated them, but, taken together, they point to a coordinate in
space (that is, the bitstring that activated them). In this fashion,
any one hard location can be said to simultaneously point to many
different areas of the space, and any point in space is represented
by the set of hard locations it activates.

In other words, both reading and writing depend on many
hard locations to be successful. This effect is represented in
Figure 4: where all hard locations inside the circle are activated
and they, individually, do not point to η. But, as vectors, their sum
points to the general direction of η. If another datum ν is written
into the memory near η, the shared hard locations will have infor-
mation from both of them and would not point (directly) to
either. All hard locations, inside and outside of the circle, may also
point elsewhere to other additional data points: as we have seen,
even “face” neurons have multiple functions.

The write operation works as follows: Suppose one is writ-
ing datum η at address ξ : then all hard locations inside an
n-dimensional circle with center ξ and radius r are activated. So,
η will be stored in all these activated addresses, which are close
to address ξ . An address ξ ′ is inside the circle if its hamming
distance to the center ξ is less than or equal to the radius r, i.e.,

FIGURE 3 | Activated addresses inside access radius r around center

address.

Table 1 | Write operation example in a 7-dimensional memory of data

η being written to ξ , one of the activated addresses.

η 0 1 1 0 1 0 0

ξbefore 6 −3 12 −1 0 2 4

⇓ −1 ⇓ +1 ⇓ +1 ⇓ −1 ⇓ +1 ⇓ −1 ⇓ −1

ξafter 5 −2 13 −2 1 1 3
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distance(ξ, ξ ′) ≤ r. The information will be written to the entire
cell assembly: thus, all hard locations within the circle will be
updated.

Each hard location has both an address (given by its bitstring)
and a value. The value is stored in counters. Each hard location
has one counter for each dimension in the space. Each counter
stores, for its dimension, the bit value that has been written
more frequently (0’s or 1’s) to its hard location. So each counter,
corresponding to each dimension, is incremented for each bit
1 and decremented for each bit 0 written to that hard location.
Thus, if the counter is positive, the hard location has had more
1’s than 0’s written to it, if the counter is negative, more 0’s than
1’s, and if the counter is zero, there have been an equal number of
1’s and 0’s written to that particular dimension in that particular
hard location.

Each datum η is written into the counters of every activated
hard location inside the access radius, centered on the address ξ

that equals the datum: ξ = η. If some neurons are lost, only a
fraction of the datum is lost, and the memory remains capable
of retrieving the right datum due to the high redundancy of the
model.

2.2.4. Reading an item from memory
Table 2 illustrates a read operation over a 7-dimensional memory.

The read operation is performed by polling each activated hard
location and choosing the most-written bit for each dimension.
A hard location is considered activated if it is within a hamming

FIGURE 4 | Hard-locations pointing, approximately, to the target

bitstring.

Table 2 | Read operation example.

ξ1 −2 12 4 0 −3

ξ2 −5 −4 2 8 −2

ξ3 −1 0 −1 −2 −1

ξ4 3 2 −1 3 1
∑ −5 10 4 3 −5

⇓ ⇓ ⇓ ⇓ ⇓
0 1 1 1 0

distance (radius) of the activating bitstring cue. Activated hard
locations are taken into account in calculating the result of a read
operation, while others are ignored. Reading consists of adding
all n counters from the activated hard locations and, for each bit,
setting it to 1 if the counter is positive, setting it to 0 if the counter
if negative, and randomly setting it to 0 or 1 if the counter is zero.
Thus, each bit of the returned bitstring is chosen according to all
written bitstrings in the entire cell assembly (i.e., all active hard
locations) and is equal to the bit value most written in that dimen-
sion. In short, the read operation depends on many hard locations
to be successful. If another datum ν is written into the memory
near η, the shared hard locations will have information from both
of them without directly pointing to ν either. In this way, any
one hard location may, in a fashion, simultaneously “point” to
multiple addresses.

An imprecise cue ηx shares hard locations with the target bit-
string η—yet it should be possible to retrieve η correctly, even
if additional reading operations become necessary to retrieve η

exactly. When reading a cue ηx that is x bits away from η, the cue
shares many hard locations with η (see Figure 5). The number
of shared hard locations decreases as the distance of the cue to
η increases, in other words, as x = d(ηx, η) increases. The tar-
get datum η is read in all addresses shared between η and ηx,
thus they will bias the read output toward the direction of η.
If the cue is sufficiently close to the target datum η, the output
of the read operation will be closer to η than ηx originally was.
Iterating the read operation will obtain results increasingly closer
to η, until it is exactly the same. So ηx0 will yield an ηx1 that is
closer, reading at ηx1 yields an ηx2 that is closer still and so on until
ηxi = η, if the iteration converges. Hence, performing a sequence
of successive read operations will allow convergence onto the
target data η.

Since a cue ηx near the target bitstring η shares many hard
locations with η, SDM can retrieve data from imprecise cues (i.e.,
as an autoassociative memory). In spite of this characteristic, it
is crucial to know how imprecise this cue could be while still
converging. What is the maximum distance from our cue to the

FIGURE 5 | Shared addresses between the target datum η and the

cue ηx.
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original data that still retrieves the right answer? There is a pre-
cise point in which a non-linearity occurs, and the qualitative
behavior of the model changes.

A striking feature of this model is its reflection of the psycho-
logical “tip-of-tongue” phenomenon, which seems to reflect the
limits of human recollection. It is the psychological state in which
one knows that one knows some pre-registered memory item, yet
one is unable to recollect it at a given time.

The tip-of-the-tongue phenomenon occurs when a person
knows that he/she has been previously exposed to a certain stimu-
lus, but is unable to recall some specifics. In SDM, a tip-of-tongue
memory event occurs when the expected time to convergence
(or divergence) approaches infinity. In other words, when succes-
sive read iterations fail to converge or to diverge. Kanerva (1988)
called this particular instance of x, where the output of the read
operation averages x, the critical distance. Intuitively, it is the dis-
tance from which smaller distances converge and greater distances
diverge. In Figure 6, the circle has radius equal to the critical dis-
tance and every ηx inside the circle should converge. The figure
also shows an example of convergence in four readings. We put
that this is a proxy for the edge of human recall: a threshold until
which recollection occurs, and beyond which it no longer occurs.

Kanerva describes this critical distance as the threshold of con-
vergence of a sequence of read words. It is “the distance beyond
which divergence is more likely than convergence” (Kanerva,
1988). Furthermore, “a very good estimate of the critical distance
can be obtained by finding the distance at which the arithmetic
mean of the new distance to the target equals the old distance to
the target” (Kanerva, 1988).

Kanerva has analytically derived this non-linearity for a very
particular set of circumstances. His original book analyzed a spe-
cific situation with n = 1000 (N = 21000), 1,000,000 hard loca-
tions, an access-radius of 451 (with 1000 hard locations in each
circle) and 10,000 writes of random bitstrings in the memory.

FIGURE 6 | In this example, four iterative readings are required to

converge from ηx to η.

This is a very particular set of parameters, and doesn’t shed light
on questions of speed and robustness of expert recollection. In
the next section we deal with this non-linearity and the issue of
analyzing critical distance as an optimization problem.

In subsequent sections, we will derive an equation for the crit-
ical distance, in terms of SDM’s parameters. We will then present
empirical results of the evolution of the critical distance under
varying conditions,which shed light on the model’s behavior. It
is worth noting that, since SDM is itself a computer simulation,
what we call empirical results refer to conclusions obtained over
data from thousands of runs of the simulation. All data and con-
clusions (aside from theory) herein refer to trials over computer
simulations.

3. MATERIALS AND METHODS
3.1. DERIVING THE CRITICAL DISTANCE AS A MINIMIZATION

PROBLEM
Kanerva has shown that, when 10, 000 items are stored in the
memory, and the number of dimensions N = 1000, then the crit-
ical distance is at a Hamming distance of 209 bits: if one reads
the item at a distance smaller than 209 bits, one is able to itera-
tively converge toward the item. If, on the other hand, one reads
the item at a distance higher than 209 bits, the memory can-
not retrieve the item. Furthermore at the juncture of about 209
bits, expected time to convergence grows to infinite. This reflects
the aforementioned tip-of-the-tongue phenomenon: when one
knows that one knows a particular bit of knowledge, yet is unable
to retrieve it at that point. Psychologically, this would entail some
top–down mechanism which would force the iterated search to
halt. We establish a maximum number of iterated reads, based on
repeated simulations (see section 4.2).

Kanerva thus fixed a number of parameters in order to derive
this mathematical result:

1. the number of dimensions, N = 1000;
2. the number of other items stored into the memory, at 10, 000;
3. the reading method (by pooling all hard locations);
4. a single write of the target bitstring in the memory;
5. the access radius of 451, activating approximately 1000 hard

locations per read or write operation.

As Kanerva defined it, approximately half of read operations 209
bits away from the target data will bring us closer to the target and
approximately half will move us away from the target. His math
could be simplified to this: each item will activate approximately
1000 hard locations, so writing 10, 000 items randomly will acti-
vate a total of 10, 000, 000 hard locations, giving an average of 10
different bitstrings written in each hard location. When one reads
from a bitstring η200, 200 bits away of the target η, η200 will share
a mean of 97 hard locations with the target (Kanerva, 1988, Table
7.1, p. 63). This way, it is possible to split the set of active hard
locations into two groups: one group having 903 hard locations
with 10 random bitstrings written into each; and other group
having 97 hard locations each with 9 random bitstrings plus our
target bitstring η.

Let us analyze what happens to each bit of the read bitstrings.
To each bit we have 903 · 10 + 97 · 9 = 9903 random bits out of a
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total of 10, 000 bits. The total number of 1-bits is a random vari-
able that follows the Binomial distribution with 9903 samples and
p = 0.5. It has a mean of 9903/2 = 4951.5 and standard deviation√

9903/4 = 49.75. If our target bit is 0 we will choose correctly
when our sum is less than half total, or 10, 000/2 = 5000. If our
target bit is 1, our sum is the random variable of total 1-bits added
by 97 1-bits from our sample. Adding a constant number changes
only the mean and does not affect the standard deviation. So
we will choose correctly when our sum of means 4951.5 + 97 =
5048.5 and standard deviation 49.75 is greater than 5000. Both
probabilities here equal 83% of choosing the same bit as the tar-
get. As we have 1000 bits, in average, we can predict that the result
of the read operation will be 170 bits away from the target.

The critical distance is the point where the aforementioned
probability equals the distance from the bitstring ηx to the tar-
get η, or x = n(1 − p), where x is the distance from the bitstring
to the target, p is the probability of choosing the wrong value
of a bit (given by the above technique), and n is the number of
dimensions.

Given that we intend to study the critical distance as a theo-
retical proxy for the limits of human recollection, we would like
to explore a larger number of possibilities and parameter settings
of the model. Hence we compute the non-linearity of the critical
distance as minimization problem. Let:

• d: be the distance to the target;
• h: be the number of hard locations activated during read and

write operations (note that this value depends on that access
radius);

• s: be the number of total stored bitstrings in the SDM;
• H: be the number of instantiated hard locations;
• w: be the number of times the target bitstring was written in

memory;
• θ : be the total of random bitstrings in all h hard locations

activated by a read operation; i.e., the size of a cell assembly;
and

• φ(d): be the mean number of shared hard locations activated by
two bitstrings d bits away from each other. One can find values
for a 1000-dimensional SDM in Kanerva’s book, Table 7.1, p.
63, or the equations to calculate to any SDM in (de Pádua Braga
and Aleksander, 1995; Kanerva, 1988, Appendix B, p. 125).

Consider a memory in which a total of s bitstrings have already
been stored via write operations. Each of these write operations
would have activated approximately h hard locations. This way,
on average, all write operations together activate a total of sh hard
locations. This gives an average of sh/H random bitstrings stored
in each hard location.

Knowing the average number of bitstrings stored in each hard
location, it is simple to find an equation for θ . Each read operation
performed for a cue ηd has φ(d) hard locations shared with the
target bitstring η, and h − φ(d) non-shared hard locations. The
non-shared hard locations have only random bitstrings stored in
themselves. However, the shared hard locations have the target
bitstring written w times, resulting in fewer random bitstrings. As
the average number of bitstrings written in each hard locations is

sh/H, we have:

θ = s · h

H
· [h − φ(d)] +

(
s · h

H
− w

)
· φ(d)

θ = s · h2

H
− w · φ(d)

Suppose the k-th bit of our target bitstring is zero. The read oper-
ation will correctly choose bit 0 if, and only if, more than half of
the bitstrings from the activated hard locations has the k-th bit
0 (setting aside the case of an equal number of zeros and ones1).
As each hard location has sh/H bitstrings and the read operation
activates h, half of the bitstrings equals h · sh/(2H) = sh2/(2H).
Then, to choose correctly, we should have

∑θ
i = 1 Xi < sh2/(2H),

where Xi is the k-th bit of the i-th bitstring stored in each activated
hard location.

Suppose the k-th bit our target bitstring is 1. The read opera-
tion will choose bit 1 when more than half of the bitstrings from
the activated hard locations has the k-th bit 1. We have already
seen that half of the bitstrings is sh2/(2H). But here, as the bit
equals 1 and there are w target bitstrings in each φ(d), we have to
add w · φ(d) to the sum. In other words, we must account for the
number of times the target was written into the hard locations
which are activated by both the target and the cue which is at a
distance d. This gives us w · φ(d) +∑θ

i = 1 Xi > sh2/(2H).
Summarizing, we have:

P(wrong|bit = 0) = 1 − P

(
θ∑

i = 1

Xi <
sh2

2H

)

P(wrong|bit = 1) = P

(
θ∑

i = 1

Xi <
sh2

2H
− w · φ(d)

)

We already know that P(Xi = 1) = P(Xi = 0) = 1/2. Since each
Xi corresponds to a Bernoulli trial,

∑θ
i = 1 Xi ∼ Binomial(θ; 0.5),

which has mean θ/2 and standard deviation
√

θ/4.
The critical distance is the distance where the chance of con-

vergence to the target equals the distance of divergence from the
target. That is, in the critical distance, the probability of a wrong
choice of the bit, times the number of bits, is equal to the origi-
nal distance to the target. Then, the critical distance is the d that
satisfies equation P(wrong) · n = d or P(wrong) = d/n.

Using the theorem of total probability, we have:

P(wrong) = P(wrong|bit = 0) · P(bit = 0)

+ P(wrong|bit = 1) · P(bit = 1)

if we let

α = P

⎛
⎝θ(d)∑

i = 1

Xi <
sh2

2H

⎞
⎠

1the case for a random coin toss is negligible, since, as θ becomes large, its
probability tends toward 0 quickly.
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and

β = P

⎛
⎝θ(d)∑

i = 1

Xi <
sh2

2H
− w · φ(d)

⎞
⎠

thus,

P(wrong) = 1

2
· [(1 − α) + β]

This way, the equation to be solved is:

1

2
· [(1 − α) + β] = d

n

Since d is an integer value and θ is a function of d, this equality
may not be achievable (this describes a range, where for a cer-
tain d: leftside > rightside and for d + 1: leftside < rightside). In
these cases, the critical distance can be obtained minimizing the
following equation with the restriction of d ∈ N and d ≤ n:

f (d) =
{

1

2
· [(1 − α) + β] − d

n

}2

If the size of the cell assembly, θ , is large enough, a good approx-
imation to the Binomial(θ; 0.5) is the normal distribution. Let
N be the normalized normal distribution with mean zero and
variance one. We have:

α � N

(
z <

sh2/(2H) − θ/2√
θ/4

)
= α̃

β � N

(
z <

sh2/(2H) − w · φ(d) − θ/2√
θ/4

)
= β̃

Simplifying, we have:

N

(
z <

sh2/(2H) − θ/2√
θ/4

)
= N

(
z <

w · φ(d)√
θ

)

N

(
z <

sh2/(2H) − w · φ(d) − θ/2√
θ/4

)
= N

(
z <

−w · φ(d)√
θ

)

And we have to minimize the following function with restrictions
of d ∈ N and d ≤ n:

f̃ (d) =
{

1

2
·
[

1 − α̃ + β̃
]

− d

n

}2

In the case studied in Kanerva (1988), n = 1000, h = 1000,
H = 1, 000, 000, s = 10, 000, w = 1, and θ = 10, 000 − φ(d).
Replacing these values in the equation, we have to minimize:

f̃ (d) =
{

1

2
·
[

1 − α̃ + β̃
]

− d

1000

}2

When d = 209, we have φ(d) = 87 and f̃ (209) ∼= 0.00032, which
is the global minimum.

We note once again that equations to calculate φ(d) have been
derived in Kanerva (1988, Appendix B) and need not be repeated
here—see also the derivations for higher d by de Pádua Braga and
Aleksander (1995). The example calculated above used Table 7.1
of Kanerva (1988), which has the values of φ(d) for d in a 1000-
dimensional SDM with one million hard locations.

In the following section we briefly reiterate and discuss the
contribution of the theoretical model, and turn to empirical
results pertaining to the exploration of the critical distance.
We vary parameters of the memory model in order to explore
the changes to the critical distance. These empirical trials yield
enlightening results pertaining to the critical distance as a paral-
lel for the edge of human recollection and for human expertise
in SDM.

4. RESULTS
In this text, we show that, given α̃, β̃, and d, minimizing the
function (repeated here from the previous derivation):

f̃ (d) =
{

1

2
·
[

1 − α̃ + β̃
]

− d

n

}2

solves the issue of non-linearity involved in the critical distance of
the model, that is, the psychological limits of human recollection
at a given point in time. Such result should be valuable to assess
whether the memory is prone to convergence or divergence.

This result may help provide avenues of exploration in theoret-
ical neuroscience and can be readily available to cognitive model-
ers. Yet, it still falls short of giving us an intuitive understanding of
the speed and robustness of the memory of experts. Therefore, we
will explore the critical distance behavior at different configura-
tions. We have implemented the model and conducted a large set
of computational experiments, whose visualizations illuminate
the issue of expert memory.

4.1. NUMERICAL SIMULATIONS: VISUALIZING THE MEMORY
DYNAMICS

So far we have seen a single particular case with set parameters,
and our goal is to understand the speed and robustness of expert
memory. Let us consider variations of these parameters, and com-
pute, through simulations, the behavior of the critical distance.
We vary the number of dimensions N ∈ {256, 1000}, we vary the
number of stored items from the set {1000, 2000, . . . , 50000}, and
we vary the rehearsal number: the number of times an item has
been stored in the memory.

The following figures depict heat maps describing the behav-
ior of the critical distance. In these simulations, all items are
stored at their respective locations, that is, a bitstring x is
stored at the location x. Generating each heat map proved
computationally demanding: when N = 1000, approximately
305, 000, 000, 000, 000 bit-compares are required (storage of
items in memory: 5 · 1013, and to read items from memory:
3 · 1015 bit-compares). Each individual pixel demands an average
of 7, 000, 000, 000 bit-compares.

All figures presented below have three colored lines. The green
line marks the first occurrence of non-convergence to the exact
target bitstring. The red line marks the last occurrence of the
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convergence to the exact target bitstring. Finally, the blue line
marks the estimated critical distance, that is where the read output,
on average, equals the input distance to the target bitstring. It is an
estimation because the critical distance is not exactly defined this
way. Critical distance is the point or region in which both diver-
gence and convergence have a 50% chance to occur. That is, all
points before the green line converged, all points after the red line
diverged, and the points between these lines sometimes converge
and sometimes diverge.

One may notice that, despite not having an exact convergence,
almost all points between the green and the red line are near the
target bitstring.

4.2. INFLUENCE OF ITERATIVE READINGS IN CRITICAL DISTANCE
The number of iterative-readings is an important parameter of
an SDM implementation. Simulations were done in a 1000 and
256-dimensional SDM. Both with one million hard locations,
activating (on average) 1000 hard locations per operation and
varying the number of times the target bitstring η is written to
memory.

For each write-strength of η (written once, twice, five times,
nine times) we varied the saturation of the SDM, that is, the num-
ber of random bitstrings written (once each) along with eta in the
memory. We varied this from 1000 to 50, 000 random bitstrings,
in increments of 1000. Once populated with eta plus the random
bitstrings, we performed 1–40 iterative-readings at each possible
distance from the target (from zero to the number of dimensions).

Figures 7A–D show, respectively, a 1000-dimensional SDM
checked with a single read, 6, 10, and 40 iterative-readings. It is
easy to see a huge difference from a single read to more reads,
but a small difference from 6 to 10 and from 10 to 40 iterative-
readings. These observations also apply to our tests with the
256-dimensional SDM. As compared to the 1000-dimensional
SDM, we found a smaller, more gradual difference from a sin-
gle read to more reads, yet a minute difference from 6 to 10
and from 10 to 40 iterative-readings. Following these results,
due to the number of computations needed in each simulation,
all other simulations were done using 6 iterative-readings, since
40 iterative-readings have only a slight improvement in relation
to six.

It is unexpected that, after 40, 000 writes in the 1000-
dimensional memory, the critical distance is so small. Kanerva
(1988) showed that, under these parameters, the memory capac-
ity is slightly less than 100, 000 items. The author defines SDM
capacity as saturated when its critical distance is zero. In the 256-
dimensional memory, this behavior starts after 20, 000 writes.
This is unexpected, since Kanerva’s estimation for N = 256 is
between 112, 000 and 137, 000 random bitstrings stored.

Our principal hypothesis for the discrepancies between our
empirical results and the original theory is that, while the hard
locations are instantiated as samples from a uniform distribution
and our simulations wrote bitstrings randomly, they do not satu-
rate uniformly. Any write activates a fixed average (around 1000
in our case) of hard locations, but the variance in this case is not
insignificant. One bitstring read may activate 900 while another
(in another area of the space, be it close or far) may activate 1100
hard locations. Thus, certain hard locations would become more

FIGURE 7 | Influence of number of iterative-readings in a 1000-dimen-

sional SDM memory.
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noise than signal during activation sooner, rather than a uni-
form degradation occurring. This discrepancy would cause, in the
aggregate, a saturation of the SDM with fewer bitstrings stored
than expected in theory. This remains one possibility, though we
hope the issue will be explored in future work.

4.3. INFLUENCE OF THE NUMBER OF WRITES ON THE CRITICAL
DISTANCE

The influence of the number of writes on the critical distance was
not analyzed by Kanerva. It is important because, when a random
bitstring is seen only once, it is psychologically plausible that it
will be gradually forgotten with new incoming information. What
matters is not exactly the number of writes, but the proportion of
the number of times a bitstring was stored in relation to others.

A remark on cognitive psychology is in order here. Consider,
as an example, the aforementioned exchange between Szilard
and Einstein. As an expert confronts unexpected information,
it is reasonable to expect that additional memory writes will
occur. If we presume that evolution brought the human memory
close to optimality, as explored by the rational analysis approach
(Anderson and Milson, 1989; Anderson, 1990; Anderson and
Schooler, 1991), one would expect some mechanism akin to
Shannon’s idea of information content to be in play.

That is, as an expert is surprised by new, unforeseen, informa-
tion, say, an outcome 
, with information I(
) = −log(P(
)),
where I stands for the information content in outcome 
. One
would therefore expect the expert’s memory to either place addi-
tional attention to the outcome, leading to: (1) additional writes
to memory, or (2) amplification of the write operation’s signals,
or possibly (3) both effects.

Figures 8A–D show a 1000-dimensional SDM with 1, 2, 5, and
9 writes of the target bitstring η. It is easy to see a huge difference
from 1 to 2 writes. Although the green line has a strange behavior
near 50, 000 items stored, the critical distance was much greater
than with 1 write. From 2 to 5 to 9 rehearsals, the critical distance
starts growing rapidly and slows down near six writes. This makes
sense, since it should have a threshold smaller than 500 bits.

The 256-dimensional memory has a similar behavior, but less
abrupt. It keeps growing, but slower than a 100-dimensional
memory. It never crosses the 50 bits on x-axis in 256 bits, while
the 1000-dimensional reaches the 200 bits on x-axis and almost
hits 400 bits on the x-axis.

These figures display the immense power of reinforcement or
rehearsal: additional writes of a memory item significantly raise
the attractor basin (critical distance) for that memory item.

This behavior is plausible, as the human brain rapidly recog-
nizes a pattern when it is used to it. Many times, the patterns
appear in different contexts, giving cues far from the target con-
cept, much like a chess player, who looks at a position and rapidly
recognizes what is happening (Bilalić et al., 2009; Rennig et al.,
2013).

5. DISCUSSION
This is the first work focused on better understanding the criti-
cal distance behavior of a Sparse Distributed Memory (Kanerva,
personal communication). Our future research intends to explore
the rehearsal mechanisms in cognitive architectures for one of
the most studied domains of expertise: (Linhares, 2005; Linhares

FIGURE 8 | Influence of number of target writes in a 1000-dimensional

SDM memory.
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and Brum, 2007; Linhares and Freitas, 2010; Linhares et al.,
2012; Linhares and Chada, 2013; Linhares, 2014), and attempt
to bridge the low-level world of neurons and their assemblies
with the high-level world of abstract thought and understand-
ing of strategic scenarios. We have argued here that, as SDM
remains both a psychologically plausible and a neuroscientifically
plausible model of human memory, the study of its critical dis-
tance may provide insights into the edges of our own recollection.
Without a precise understanding of the critical distance behavior,
one cannot advance the theoretical model. Moreover, one can-
not develop robust applications without knowing the limits of
convergence.

The empirical tests shown here confirmed that the critical dis-
tance in SDM constitutes a “band” wherein both convergence
and divergence become less and less likely. This is a palatable
result because, intuitively, the Tip-of-the-Tongue phenomenon in
humans seems like an attractor, something we sometimes “fall
into.” We argue this is a parallel between SDM and human rec-
ollection, and posit that our theoretical and empirical results
provide evidence that the critical distance is a correlate to the edge
of human recollection.

While humans sometimes fall into the TotT, there are also
times when we almost fall into it and, after a bit of effort, are able
to recall the desired information. In the model, this would mean
we enter the critical band, but leave it after one or two iterations
and converge. Likewise, it seems one can be very certain of what
one is saying and, in mid-sentence, completely diverge from the
next piece of information we wished to recall. In SDM this would
amount to entering the critical band, but then diverging.

As Figure 6 shows, the speed of convergence is a function of
the number of read operations: additional read operations bring
one closer to the memory item (assuming that the original cue
was not past the critical point). We also see that this effect is
greatly reduced after 6 to 10 read operations. As Figure 7 shows,
expertise can be correlated with providing additional writes to
the memory, and we show that increasing the rehearsal num-
ber greatly increases the margin for error or ambiguity, and greatly
decreases the relevant information needed for convergence, as the
critical threshold is increased. In human terms, experts “know
what you are talking about” with fewer cues. Their memory has
much greater robustness.

Yet, it is the combination of these two dynamics that sheds light
on experts’ speed. Taking the SDM model as a plausible account
of human memory, we can compare by saying that, for experts,
having a much higher threshold may signify being able to converge
within fewer, or even a single, read operation. As the hard locations
have been reinforced with the original information, read oper-
ations converge faster. With very few cues and noisy, ambiguous,
information, experts may still manage to recollect and understand
almost immediately the object, situation, or event in question. It is
no wonder Albert Einstein could immediately grasp Leo Szilard’s
concerns.

5.1. DATA SHARING
All the computational methods developed in this study are avail-
able as an open-source project, and can be found at https://
github.com/msbrogli/sdm.
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