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Pain is a complex experience that is thought to emerge from the activity of multiple brain
areas, some of which are inconsistently detected using traditional fMRI analysis. One
hypothesis is that the traditional analysis of pain-related cerebral responses, by relying on
the correlation of a predictor and the canonical hemodynamic response function (HRF)- the
general linear model (GLM)- may under-detect the activity of those areas involved in
stimulus processing that do not present a canonical HRF. In this study, we employed an
innovative data-driven processing approach- an inter-run synchronization (IRS) analysis- that
has the advantage of not establishing any pre-determined predictor definition. With this
method we were able to evidence the involvement of several brain regions that are
not usually found when using predictor-based analysis. These areas are synchronized
during the administration of mechanical punctate stimuli and are characterized by a BOLD
response different from the canonical HRF. This finding opens to new approaches in the
study of pain imaging.
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INTRODUCTION
Pain is a multidimensional phenomenon that is thought to
emerge from the activity of a number of sensory, cognitive, and
emotional cortical circuits (Apkarian et al., 2005; Friebel et al.,
2011). The cortical and subcortical areas related to pain pro-
cessing have been extensively studied using functional magnetic
resonance (fMRI) and positron emission tomography (PET).
However, as evidenced by three meta-analyses published in the
last 10 years, there is no agreement among studies regarding brain
activations in response to painful stimuli. Peyron et al. (2000)
concluded that the majority of the studies reported activations to
painful stimuli in the secondary somatosensory cortices, the ante-
rior cingulate cortex and the insular cortex and less consistently in
the thalamus and primary somatosensory cortex. Apkarian et al.
(2005) showed that six areas commonly respond to painful stim-
uli: the secondary somatosensory cortex, the anterior cingulate
cortex, the insular cortex, but also the thalamus, the primary
somatosensory cortex and prefrontal regions. Finally, Friebel et al.
(2011), by conducting a coordinate-based meta-analysis, showed
that painful stimuli activate the bilateral secondary somatosen-
sory cortex, the mid-cingulate cortex, the right inferior parietal
lobe, the bilateral thalamus, the anterior insula and the supple-
mentary motor areas. Other regions, such as the primary motor
cortex and the temporal cortex, the cerebellum, the amygdala,
the parabrachial nucleus, and the periaqueductal gray have been
less frequently observed (Peyron et al., 2000; Derbyshire, 2003;
Strigo et al., 2003; Apkarian et al., 2005) during fMRI recordings.
The functional meaning of these responses to painful stimuli is
debated and recent views suggest that they may reflect the activ-
ity of saliency detectors or multimodal processing (Downar et al.,
2002; Cauda et al., 2011; Legrain et al., 2011; Mouraux et al.,

2011; Lotsch et al., 2012). Inconsistent activations of brain areas in
response to painful stimuli have been mainly attributed to charac-
teristics of the task, cognitive factors, stimulus type and stimulus
location (see Apkarian et al., 2005, for a discussion on this point).

However, an interesting but unexplored possibility is that the
variability in the identification of which areas respond to nocicep-
tive and painful stimuli may be explained also by methodological
factors. With classical approaches, painful or nociceptive stimuli
are presented to volunteers during fMRI acquisition and a set of
predictors is created. These predictors are then subsequently con-
volved with a response function and voxelwise correlated with
the measured time courses (Friston et al., 1995). This kind of
analysis relies on the assumption of a spatially and temporally
replicable BOLD function. However, it has been shown that this
approach leads to an underestimation of the number of areas that
are involved in the processing of the incoming stimulus. This may
be due to two different problems: (i) the signal may have a low
signal-to-noise ratio and (ii) all areas characterized by a hemody-
namic function other than the HRF are not well-modeled with
a gamma-like predictor. In a recent paper, (Gonzalez-Castillo
et al., 2012) it has been shown that, under optimal conditions,
nearly the whole cortex (96%) responds to external stimuli with
stimulus-locked significant BOLD variation. Crucially, almost
68% of the reported 96% activations are due to responses other
than the canonic hemodynamic function.

In this study we have investigated whether methods that do not
impose an a priori gamma-like function may identify activations
in areas that are not characterized by a canonical HRF. These acti-
vations may be not observed when using classical methodological
approaches. Participants received mechanical punctate stimuli
during an fMRI session; cerebral activations were measured by
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using an inter-run synchronization (IRS) approach. The idea
behind this method was first proposed by Hasson et al. (2004). It
assumes that synchronous activity of a brain region in all repli-
cations of the same stimulation (e.g., in all trials in the same
subject) reflects the involvement of that area in the processing
of the stimuli. This method has demonstrated good reliabil-
ity (Seghier and Price, 2009; Hasson et al., 2010) for detecting
time-locked activity in brain areas, including some areas that
are not reliably identified in most conventional fMRI protocols.
Importantly, this method does not guarantee the complete detec-
tion of all the stimulus-locked brain areas but allows increased
sensitivity in the detection of activity in areas that respond with
non-conventional BOLD envelopes. The IRS approach does not
include any a priori hypothesis and is thus particularly suited to
discover the involvement of those brain areas whose activation
may be underestimated by traditional fMRI approaches.

MATERIALS AND METHODS
PARTICIPANTS
Seventeen healthy right-handed volunteers (8 women mean age
28 ± 4.2) participated in the study. Participants were free of
neurological or psychiatric disorders, not taking any psychoac-
tive medication, and did not present a history of drug or alcohol
abuse. We obtained the written informed consent of each subject,
in accordance with the Declaration of Helsinki. The study was
approved by the institutional committee on ethical use of human
subjects at the University of Turin.

TASK AND IMAGE ACQUISITION
We performed a slow event-related paradigm composed of four
different runs. In each run, participants received 24 stimuli either
on their right or left hand (12 stimuli on the left and 12 stimuli
on the right). Mechanical punctate stimuli were applied with a
hand-held 256 mN pinprick probe stimulator, which preferably
activates high-threshold mechanoreceptors and type-I mechano-
heat receptors (Magerl et al., 2001).

In each run, the inter-stimulus interval (ISI) ranged pseudo
randomly between 18 and 22 s. The stimulation site was changed
slightly after each stimulus and no more than three consecutive
stimuli were applied to the same hand. Each run was different
from the other, meaning that the order of presentation of the
stimuli on the left and right hands and the ISI between stimuli
changed in every run.

Images were obtained using a 1.5 Tesla INTERA™ scanner
(Philips Medical Systems). We acquired three-dimensional high-
resolution T1-weighted structural images using a Fast Field Echo
(FFE) sequence, with a 25 ms TR, an ultra-short TE, and a 30◦
flip angle. The acquisition matrix was 256 × 256, and the FoV
was 256 mm. The set consisted of 160 contiguous sagittal images
covering the whole brain.

Functional T2∗ weighted images were acquired using echopla-
nar (EPI) sequences, with a repetition time (TR) of 2000 ms, an
echo time (TE) of 50 ms, and a 90◦ flip angle. The acquisition
matrix was 64 × 64, with a 200 mm field of view (FoV). A total
of 240 volumes were acquired, with each volume consisting of 19
axial slices; slice thickness was 4.5 mm with a 0.5 mm gap. The
first two scans were discarded directly from the scanner.

In order to investigate if brain activations were specific for the
mechanical stimulus, we performed a control experiment using
tactile stimuli applied using a SenseLab™Brush-05. A second
cohort of 12 healthy right-handed volunteers (6 females mean age
29 ± 7.41 years) took part in the control experiment in which we
adopted exactly the same design as before.

DATA ANALYSIS
The data-sets were pre-processed and analyzed using the
BrainVoyager QX software (Brain Innovation, Maastricht, The
Netherlands). We corrected the intensity of the acquired mea-
sures using a mean intensity adjustment. For each volume,
we computed the average intensity across the first image, for
each subsequent scan of the same volume, we computed the
mean intensity and then scaled to obtain the same average vol-
ume intensity. A 3D motion correction was used to correct for
small head movements. All volumes were aligned spatially to the
first volume by rigid body transformations, using a trilinear-
sinc interpolation algorithm. We employed a slice scan time
correction to allow a whole volume to be treated as a single
data point. The sequentially scanned slices comprising each vol-
ume were interpolated in time, using a signal sinc-interpolation
algorithm. Spatial data smoothing was performed using a 3D
Gaussian kernel with full-width half maximum of 8 mm. We
also applied linear and non-linear trend removal using a high
pass filter (f < 3 cycles in time course). For all temporal anal-
yses no temporal smoothing or low-pass filter was applied to
preserve the temporal characteristics of the signal. Temporal
smoothing of 2.8 s FWHM was only applied for the GLM
analysis.

Each subject’s slice-based functional scan was co-registered
with their 3D high-resolution structural scan. Subsequently, we
transformed the 3D structural data-set of each subject into
Talairach space the cerebrum was translated and rotated into
the anterior-posterior commissure plane and the borders of the
cerebrum were identified.

We used an anatomical-functional coregistration to transform
into Talairach space the functional time course of each subject and
to create the volume time course.

INTER-RUN SYNCHRONIZATION (IRS)
To compute the IRS we modified the methodology first intro-
duced by Hasson et al. (2004). Our method included two steps of
analysis, one at the single subjective level (step 1) and one at the
group level (step 2). At step 1, (single subject level), we used the
z-normalized time courses of each voxel in the four runs to derive
a series of similarity measures. That is, we obtained a value of how
much the activity of a voxel in one run correlated with its activity
in each of the other three runs. Pearson’s correlation coefficient
was used to calculate correlation values. Indeed for each run we
calculated the voxelwise temporal correlation between homolo-
gous voxels. More specifically, for a given voxel, we calculated the
correlation of its normalized time course across all the possible
permutations of the four runs. For each subject, we correlated the
activations of the first run with those of the second, third and
fourth run and so forth for all the six permutations. For each cor-
relation a statistical map was created. In this way, we obtained
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six correlation maps for each subject. Significance levels were cor-
rected for multiple comparisons using the False Discovery Rate
(FDR). These maps were then r-to-z transformed using Fisher’s
r-to-z transformation.

To summarize: at the subject level we performed a one-sample
t-test on the six r-to-z transformed maps and we obtained a sin-
gle cumulative subject map. Significance levels were corrected for
multiple comparisons using the FDR. In the second step (multi-
subject level), we summarized all the subject-specific maps using
a one-sample t-test. Significance levels were corrected for multiple
comparisons using the FDR. As a comparison, we also calcu-
lated the conventional multi-subject statistical analysis using the
general linear model (GLM) and a random effect procedure.

In order to perform the GLM analysis, a single design matrix
was specified for all subjects in each task condition, consisting of
task-defined box-car time courses convolved with a pre-defined
hemodynamic response function (HRF) (Boynton et al., 1996) to
account for the hemodynamic delay. This design matrix was then
entered into subject-level GLM analyses to yield beta parameter
estimates for subsequent group statistics. At the group level, a one
sample t-test was performed between all subject-specific maps.
All the analyses were thresholded with a q < 0.05, FDR corrected.
Event-related averages were calculated to show the temporal pro-
file of activation in specific regions. In addition, a conjunction test
was performed to investigate voxels that were simultaneously acti-
vated by the IRS- and GLM-based analysis. To do so, we attributed
a value of 1 to each active voxel of each multi subject map (one for
GLM and one for IRS; threshold of q < 0.05, FDR corrected). We
then summed the two maps and reported in Figure 3 only vox-
els with a value >1, therefore voxels that were activated by both
methods.

A winner-take all map was calculated to detect the region in
which the signal generated by one of our two techniques was max-
imal. We attributed to each brain voxel a value (0 for IRS and 1 for
GLM) depending on which method generated a greater statistical
value in that voxel (multi-subjects summary statistics). We col-
ored voxels with a 0 value (IRS) in green and voxels with a value
of 1 (GLM) in red.

RESULTS
The results of the IRS overlapped with GLM results in several
areas, both for activations and deactivations (see Figure 1). In
addition, broader activations encompassing the prefrontal, pre-
motor, sensorimotor, posterior parietal, basal ganglia, hypotha-
lamus and cerebellar areas were identified when using the IRS
approach. (Figure 1 and Table 1).

In the putamen and in the dorsolateral prefrontal cortex the
BOLD signal was characterized by a time course markedly differ-
ent from the canonical HRF (Glover, 1999). Conversely, the time
course of the BOLD activity in the posterior insula corresponded
to the canonical HRF.

Figure 2 offers the details of the convergence between the
IRS and the GLM results: we performed a conjunction analysis
between the IRS results and the GLM activations (upper panel)
and deactivations (lower panel). It can be noted that IRS and
GLM deactivations overlap to a smaller extent as compared to
activations.

Figure 3 summarizes which technique is more suitable to
detect activity in specific brain regions. It is shown that the GLM
captures activity in the mid and posterior cingulate cortex better
than the IRS which, conversely, detects better activations of the
anterior insula and the anterior cingulate cortex.

In order to exclude the effect of physiological artifacts on our
data, we also performed the same analyses using motion, white
matter (WM) and cerebrospinal fluid (CSF) as covariates. We
show the difference between the two analyses in Figure 4. As it
can be seen, differences were minimal, therefore confirming that
the nuisances were not biasing significantly our results.

Figure 5 shows the probability that a voxel is activated in
one or in more subjects (IRS analysis). At each spatial location,
the map represents the number of subjects showing significant
activations. This map indicates that significant areas of activa-
tions obtained with the IRS can be observed in >60% of the
participants.

Figure 6 shows an overlay of the activations in response to
mechanical punctate and tactile stimuli (IRS). Several areas of
overlap can be observed. However, it can also be seen that the pos-
terior insula and the anterior cingulate cortex were only activated
by mechanical punctate stimulation and not by tactile stimuli.

DISCUSSION
In this paper we show, using an innovative technique, that classi-
cal techniques, such as the GLM, which convolve a predictor with
the canonic HRF, may lead to the underestimation of cerebral
responses to mechanical punctate stimuli. Therefore, we propose
that previous inconsistencies in the reported cerebral activa-
tions to painful stimuli might have been due to methodological
approaches and not only to differences in cognitive factors, stim-
ulus kind and experimental design (Apkarian et al., 2005). Using
a non-conventional approach, the IRS, we were able to show
that several areas, inconsistently identified when using a classi-
cal predictor-based analysis, activate in response to a mechanical
punctate stimulus. This result suggests that the set of areas that
participate in the processing of painful stimuli may be more
extensive than what is usually found using predictor-based anal-
ysis with fixed hemodynamic responses. Our results suggest that
several areas that activate in response to painful stimuli are char-
acterized by a non-canonical BOLD response (Glover, 1999) and
are, for this reason, incompletely or inconsistently detected using
analysis that assume fixed underlying hemodynamic responses.

We observed that the GLM and the IRS identified different
areas of activation in response to the external stimuli. Areas with a
canonical shape of the BOLD response were better identified with
the GLM, whereas areas showing a non-canonical HRF were only
observed when the IRS was used. By performing a control anal-
ysis using physiological noise as covariate, we also excluded that
the activations observed when using the IRS were mainly artifact-
driven. This spatial variability of the BOLD response (Saad et al.,
2001; Chang et al., 2008) can be related to the different tempo-
ral profile of intervention of different areas (Pichè et al., 2010)
or brain networks in the elaboration of noxious inputs (Cauda
et al., 2013a; Mayhew et al., 2013). Indeed painful stimulation
elicits a series of responses in a widespread pattern of brain areas,
whose functional significance is not completely understood yet
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FIGURE 1 | IRS and GLM results. The upper panel illustrates the idea
of the inter-run synchronization (IRS) approach: areas that are
synchronous in all replications of the same stimulation (in the same
subject) are likely to be involved in the processing of the stimuli and
will be the only commonality among runs. The middle and lower panels
summarize the IRS and GLM results. Results are significant at

p < 0.05. Significance levels were corrected for multiple comparisons
using the false discovery rate (FDR). GLM deactivations are colored in
blue, GLM activations in red, IRS activations in green. Event-related
averages of the BOLD response in the posterior insula, putamen and
the dorsolateral prefrontal cortex are shown. Please note only the
posterior insula has a canonic HRF.
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Table 1 | Significant IRS areas.

Area Voxels L/R% Left BA Right BA

Bilateral precuneus 31188 57/43% BA 7, BA 19, BA 6, BA 10 BA 7, BA 19, BA 6, BA 10

Bilateral posterior
cingulate

597 66/34% BA 29, BA 23, BA 30 BA 29, BA 23, BA 30, BA 31

Bilateral anterior
cingulate

920 53/47% BA 32, BA 24, BA 10, BA 33 BA 32, BA 24, BA 10, BA 33

Bilateral transverse
temporal gyrus

179 81/19% BA 41 BA 41

Bilateral fusiform gyrus 3105 48/52% BA 37, BA 19, BA 18, BA 20 BA 37, BA 19, BA 18, BA 20

Bilateral inferior occipital
gyrus

1022 17/83% BA 18, BA 17 BA 18, BA 17, BA 19

Bilateral inferior temporal
gyrus

532 99/1% BA 37, BA 19, BA 21 BA 37, BA 20

Bilateral insula 3875 86/14% BA 13, BA 40, BA 41, BA 44 BA 13, BA 40, BA 41, BA 42

Bilateral parahippocampal
gyrus

3005 56/44% BA 30, BA 19, BA 37, BA 27 BA 30, BA 19, BA 37

Bilateral lingual gyrus 4483 60/40% BA 17, BA 18, BA 19, BA 30 BA 17, BA 18, BA 19, BA 30

Bilateral middle occipital
gyrus

2373 27/73% BA 18, BA 19, BA 37 BA 18, BA 19, BA 39

Bilateral middle temporal
gyrus

5924 51/49% BA 21, BA 22, BA 37, BA 39 BA 21, BA 22, BA 39

Bilateral superior
temporal gyrus

8560 40/60% BA 22, BA 41, BA 42, BA 13 BA 22, BA 41, BA 42, BA 13

Bilateral inferior frontal
gyrus

3733 37/63% BA 9, BA 44, BA 45, BA 47 BA 9, BA 44, BA 45, BA 6

Bilateral cuneus 5653 28/72% BA 19, BA 18, BA 17 BA 19, BA 18, BA 17, BA 31

Right supramarginal
gyrus

895 0/100% – BA 40

Bilateral cingulate gyrus 595 75/25% BA 23, BA 31, BA 32, BA 24 BA 23, BA 31, BA 32

Bilateral inferior parietal
lobule

5206 62/38% BA 40, BA 13, BA 2 BA 40, BA 7, BA 13, BA 39

Bilateral precuneus 5353 12/88% BA 7, BA 19, BA 31 BA 7, BA 19, BA 31

Bilateral superior parietal
lobule

3059 11/89% BA 7, BA 5 BA 7, BA 5, BA 40

Bilateral middle frontal
gyrus

3171 70/30% BA 6, BA 10, BA 8 BA 6, BA 9, BA 8

Bilateral paracentral
lobule

273 34/66% BA 4, BA 6 BA 5, BA 4, BA 3, BA 7

Bilateral post-central
gyrus

9941 58/42% BA 2, BA 3, BA 40, BA 5 BA 2, BA 3, BA 40, BA 5

Bilateral pre-central gyrus 5925 56/44% BA 6, BA 4, BA 44, BA 9 BA 6, BA 4, BA 44, BA 9

Bilateral superior frontal
gyrus

7474 70/30% BA 6, BA 8, BA 10, BA 9 BA 6, BA 8, BA 10

Bilateral medial frontal
gyrus

2892 55/45% BA 10, BA 6, BA 9, BA 8 BA 10, BA 6, BA 8

Bilateral tuber of vermis 141 46/54% – –

Bilateral declive of vermis 142 49/51% – –

Bilateral cerebellar tonsil 2026 42/58% – –

Bilateral inferior
semilunar lobule

1872 30/70% – –

Bilateral nodule 138 54/46% – –

Bilateral uvula 150 6/94% –

Bilateral pyramis 1120 9/91% – –

Bilateral tuber 469 10/90% – –

Bilateral declive 3205 41/59% BA 19, BA 18 BA 19, BA 37

Bilateral culmen 4483 50/50% BA 19, BA 30, BA 37 BA 19, BA 37

(Continued)

Frontiers in Human Neuroscience www.frontiersin.org May 2014 | Volume 8 | Article 265 | 5

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Cauda et al. Beyond the Pain Matrix

Table 1 | Continued

Area Voxels L/R% Left BA Right BA

Bilateral hippocampus 393 43/57% – –

Bilateral hypothalamus 192 8/92% – –

Right substantia nigra 154 0/100% – –

Bilateral caudate body 1229 60/40% – –

Bilateral ventral anterior
nucleus

329 60/40% – –

Bilateral ventral posterior
lateral nucleus

322 57/43% – –

Bilateral medial dorsal
Nucleus

308 19/81% – –

Bilateral pulvinar 1212 50/50% – –

Bilateral ventral lateral
nucleus

659 19/81% – –

Bilateral anterior nucleus 430 28/72% – –

Right mammillary body 129 0/100% – –

Bilateral medial globus
pallidus

514 18/82% – –

Bilateral lateral globus
pallidus

733 48/52% – –

Bilateral putamen 3691 92/8% – –

Areas significantly correlated between painful stimulation runs. P < 0.05, Significance levels corrected for multiple comparisons using the False Discovery Rate

(FDR).

(Mouraux and Iannetti, 2009; Legrain et al., 2011; Mouraux et al.,
2011; Cauda et al., 2012).

We compared the sensitivity of each method in detecting brain
activations in response to the stimuli. Our results showed that the
IRS detected activations in the prefrontal and premotor regions,
the posterior parietal cortex, the basal ganglia and the cerebel-
lum in response to mechanical punctate stimuli. These areas are
not frequently reported in fMRI studies of pain. Besides, the IRS
was more able to identify activity in the anterior cingulate cortex.
Therefore, it may be concluded that the activity in the afore-
mentioned areas was significantly correlated across runs. The IRS
however, failed to identify any activation in the anterior insula
and mid-cingulate cortex, two areas that are commonly observed
in pain-related tasks and that were detected by the GLM analysis.
How to explain that the IRS failed to identify activations in areas
usually detected in pain research? One possibility is that although
studies with intracranial recordings have proposed that neurons
in the mid-cingulate cortex respond specifically to nociceptive
stimuli (Frot et al., 2008), there is also convincing evidence that
the anterior insula and the mid-cingulate cortex are not specif-
ically activated by nociceptive and painful such stimuli (Legrain
et al., 2011; Mouraux et al., 2011; Shackman et al., 2011; Torta
and Cauda, 2011; Yarkoni et al., 2011). Indeed, these two areas
participate in multisensory and multimodal processing and in
saliency detection (Downar et al., 2002; Cauda et al., 2011, 2012;
Legrain et al., 2011; Mouraux et al., 2011; Torta and Cauda, 2011;
Lotsch et al., 2012; Torta et al., 2013) and their activation is
related to an evaluative process that involves the integration of
several different homeostatic, proprioceptive, hedonic and envi-
ronmental information. Furthermore these areas are involved in

autonomic regulation (Critchley et al., 2000; Craig, 2002, 2009,
2010; Critchley, 2005; Dube et al., 2009; Cauda et al., 2012, 2013b)
and their activity has been shown to drive trial-to-trial variabil-
ity in the anterior insula (Pichè et al., 2010). Some meta-analytic
data (Cauda et al., 2012; Torta et al., 2013) support the possibil-
ity that the anterior insula and mid-cingulate cortex constitute
hub areas devoted to the exchange of information among large–
scale brain network. Thus, it may be suggested that the failure
of the IRS to detect activations in these multimodal areas may
have been driven by increased variability, which is not observed in
areas univocally modulated by the task. Indeed, some studies have
proposed that the anterior insula and the executive network are
characterized by a high degree of internal memory and maintain
a stronger background of auto-correlated activity (Kaneoke et al.,
2012). Conversely, input areas like S1 are more prone to be mod-
ulated efficiently by external stimuli. The auto-correlated activity
in the insula and in the executive network is less likely to correlate
between runs and therefore leads to less reliable results of the IRS.
Indeed, the IRS captures best those activities that are correlated
across runs. The activity in the insula and in the mid-cingulate
cortex were also found to have a low level of inter-subject syn-
chronization in other studies (Hasson et al., 2010).

By performing event-related averages of the BOLD signal
in the posterior insula, the dorsolateral prefrontal cortex and
the putamen, we observed that these three areas are charac-
terized by a different shape of the response. The posterior
insula, which is well-detected by traditional analysis, showed,
as expected, an almost perfect gamma-like BOLD response.
Conversely, the dorsolateral prefrontal cortex showed a more
delayed and prolonged response, which is compatible with the
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FIGURE 2 | Conjunction analysis. The upper panel shows the results of a conjunction analysis of GLM activations and IRS results. In the lower panel the
conjunction of the GLM deactivations and of the IRS is presented.
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FIGURE 3 | Winner-take- all map. The winner- take- all map shows, for
active regions, which technique detected activations better.

attentional and modulatory role of this area (Lorenz et al., 2003).
This finding is in agreement with our recent results on the tem-
poral decomposition of the BOLD response following painful
stimulation (Cauda et al., 2013a). We showed that the dorsolateral
prefrontal cortex was characterized by a delayed and prolonged
BOLD response, whereas the posterior insula was found to have a
canonic HRF. These observations are also supported by the work
of other groups (Mayhew et al., 2013).

The putamen is inconsistently observed in fMRI studies on
pain (Tomycz and Friedlander, 2011) and is commonly described
as involved in motor preparation and motor response to painful
stimuli, although, recently, it has been proposed a role for the
putamen in sensory aspects of pain perception (Starr et al., 2011).
Our data show a delayed onset of the response in the puta-
men, which would support the view of this area as involved in
motor response to potentially dangerous stimuli rather than in
the sensory evaluation of sensory stimuli.

Overall our findings complement the idea that the detection
of activity in some areas is more task dependent (e.g., the dor-
solateral prefrontal cortex is typically found in studies involving
attentional modulation of pain Porro et al., 1998; Peyron et al.,
1999; Bantick et al., 2002) with the possibility that, in tasks not
tapping on that particular function, responses can be still detected
by using non- conventional approaches.

The IRS is however not free of pitfalls. This method has
been originally used to analyze natural visual scenes (vision of a

movie). Here, we provide a first attempt to apply it to punctate
stimuli. Possible shortcomings of our approach rely in the con-
founding effect of habituation and in the possibility that the IRS
picks up activity related to cognitive aspects of the elaboration of
the stimulus, that is, not only the processing of the applied stimu-
lus but also expectations about the incoming one. Our design did
not allow us to control for this possibility. However, anticipation
of the stimulus should occur in all participants at the same time in
order to be included in the response to the stimulus. This possibil-
ity is unlikely because the ISI was jittering between 18 and 21 s in
order to reduce chances of anticipation of the stimulus. Another
possible confound may be represented by the synchronization
between trials and co-occurring confounders, such as motion,
respiration and heart rate. In order to account for this possibil-
ity, we regressed out such physiological confounds and then, after
having re-analyzed the dataset, we compared the results of the
two maps obtained with and without corrections for physiolog-
ical noise. The results had a high level of agreement, therefore
indicating that our findings were driven by the co-occurrence of
noise with stimulus onset.

Might have the phase of the BOLD signal biased the results?
We find this possibility unlikely. The interaction between resting
state BOLD oscillations and activations related to the task is an
issue for different kinds of fMRI approaches. In the GLM, spon-
taneous BOLD oscillations are not taken into account when the
BOLD signal is modeled with a predictor, thus leaving open the
possibility that results are also biased by the undergoing back-
ground activity. In our approach, each participant became the
predictor for another one. Therefore there are two possibilities:
if the spontaneous oscillation is different across subject, that is,
it is random, it is highly likely that the response detected when
using IRS is completely free from biases. Indeed, random noise
would cancel out across different participants. However, also in
the presence of the other possibility, namely that besides a ran-
dom oscillation of the resting state networks there is a systematic
oscillation (as proposed by Mayhew et al., 2013), such that the
phase of some resting state networks systematically affects the
response of the brain to external incoming stimuli, our results are
still valid. In that case, if a significant interaction between rest-
ing state fluctuations and task related fluctuations modified our
results, this modification would be due to the fact that a very simi-
lar resting state-task interaction took place in all participants. This
kind of non- canonical response is exactly the focus of our study.
Indeed, the complex relationship between spontaneous BOLD
oscillations and task-related responses is now progressively being
unveiled and the knowledge is still too sparse to make clear pre-
dictions. Indeed, it may be that the baseline cerebral blood flow
and BOLD response have a strong effect on the BOLD response
elicited by a concomitant stimulus (Davis et al., 1998; Hoge et al.,
1999; Kastrup et al., 1999; Kim et al., 1999; Li et al., 1999; Corfield
et al., 2001). As suggested by several other studies (Sapir et al.,
2005; Ploner et al., 2006, 2010; Boly et al., 2007; Hesselmann
et al., 2010; Pichè et al., 2010; Sadaghiani et al., 2010; Lee et al.,
2011), it can be hypothesized that in our paradigm an interac-
tion between large-scale brain networks (such as, for example,
the DMN and fronto-parietal networks) and BOLD responses
elicited by the stimuli may have led, in some specific areas, to
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FIGURE 4 | Nuisance regression. This map shows a comparison between the results obtained before and after removing motion, white matter and
cerebrospinal fluid covariates from the dataset.

a stimulus-locked response incorporating some of the temporal
characteristics of the large-scale networks. That is, it is possi-
ble that a phenomenon of temporal synchronization between
continuously ongoing brain fluctuations (related to large-scale
brain networks) and BOLD responses to external stimuli exists.
Such synchronization would give origin to an envelope consti-
tuted by the convolution between ongoing fluctuation and BOLD
responses. If this is the case, in large-scale networks, the stimulus-
related BOLD signal would be (at least partially) convolved with
the network-specific resting time course and would generate a
complex signal that incorporates some characteristics of both.
However, this kind of complex interaction is likely to occur in
any possible fMRI methodology and may represent a confound-
ing factor that should be investigated more thoroughly in future
studies, but that does not constitute a specific weakness of out
method.

The IRS is not the only method available to analyze the
data without imposing a priori knowledge about the shape of
the BOLD response. Indeed, the need for methodologies that
enable to study brain functions without imposing a priori knowl-
edge about the BOLD response has led to an increasing number
of innovative approaches (Tagliazucchi et al., 2010, 2012; Saka
et al., 2012; Wu et al., 2013). Some recently proposed meth-
ods have used the detection of point processes to model the
BOLD responses in both resting state and task-related activations.
Another approach, the “total activation model,” was proposed by
Karahanoglu et al. (2013). This method consists in finding an
innovation system that should be sparse if the response evoked
by the task (or at rest) is driven specifically by the task.

FIGURE 5 | IRS results variability. This map shows the probability that
each voxel has to be found active in one or more subjects when using the
IRS. At each spatial location, such maps represent the relative number of
subjects reporting a significant IRS activation. The probability map is
calculated by summing voxel value of each subject-related IRS result and
dividing this value by the number of subjects.

The results of the IRS analyses on mechanical punctate stim-
uli were compared to those obtained when using tactile stimuli
in order to investigate if the IRS was able to differentiate between
brain activities elicited by two different kinds of somatosensory
stimuli. Our findings support this possibility by showing that
the IRS detected both common, but, interestingly, also specific
activations.
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FIGURE 6 | IRS mechanical punctate and tactile stimulations. This map
shows an overlay of the IRS following tactile and nociceptive stimulation.
Results are significant at p < 0.05; significance levels were corrected for
multiple comparisons using the False discovery rate (FDR). Activations
elicited by nociceptive stimulation are shown in green, activations elicited
by tactile stimulation are colored in red.

To summarize, our results show that the common picture
that predictor-based fMRI studies give of pain processing can be
expanded using innovative techniques which, vice versa, do not
assume any a priori hypothesis of a BOLD envelope. Some of
these areas show a gamma-like BOLD response but others are
characterized by less-conventional hemodynamic envelopes.

However, two important caveats should be considered. First,
the results of this study are not intended to provide a com-
plete and exhaustive picture of all the brain areas that show a
stimulus-locked response to pain but to point out the need of
investigating pain-related activations using more advanced tech-
niques (Brodersen et al., 2012) capable of detecting groups of
areas characterized by non-conventional, prolonged or delayed
BOLD responses. Second, we do not propose that the IRS is
able to overcome shortcomings of the GLM and to constitute an
alternative to it, but rather that the two techniques can lead to
complementary results. Indeed, the IRS may be considered pow-
erful enough to detect activity in areas with a canonical and a
non-conventional response at the same time. However, in case of
great variability in the BOLD response to the stimuli, the IRS may
result less effective than the GLM.

The IRS method does not permit to disentangle different
temporal BOLD response; thus, as in the GLM, all areas are visu-
alized together. In this light, our findings can be complemented
by those that we obtained using temporal clustering techniques
(Cauda et al., 2013a). These techniques are able to decompose the
stimulus-locked responses in a temporal window after stimulus
presentation and cluster together voxels showing similar hemo-
dynamic envelopes. However, whereas these techniques have the
power to separate clusters showing unconventional responses,
they are prone to the spatial and temporal variability of hemody-
namic delay (Saad et al., 2001; Chang et al., 2008). Conversely IRS,
which is based on a voxel-by-voxel comparison of homologous
brain areas, shows results that are independent of the variability of
hemodynamic delay. These two techniques can be used in synergy

to clarify the different functional involvement of stimulus-locked
brain areas in pain processing.

REFERENCES
Apkarian, A. V., Bushnell, M. C., Treede, R. D., and Zubieta, J. K. (2005). Human

brain mechanisms of pain perception and regulation in health and disease. Eur.
J. Pain 9, 463–484. doi: 10.1016/j.ejpain.2004.11.001

Bantick, S. J., Wise, R. G., Ploghaus, A., Clare, S., Smith, S. M., and Tracey, I. (2002).
Imaging how attention modulates pain in humans using functional MRI. Brain
125, 310–319. doi: 10.1093/brain/awf022

Boly, M., Balteau, E., Schnakers, C., Degueldre, C., Moonen, G., Luxen, A.,
et al. (2007). Baseline brain activity fluctuations predict somatosensory per-
ception in humans. Proc. Natl. Acad. Sci. U.S.A. 104, 12187–12192. doi:
10.1073/pnas.0611404104

Boynton, G. M., Engel, S. A., Glover, G. H., and Heeger, D. J. (1996). Linear systems
analysis of functional magnetic resonance imaging in human V1. J. Neurosci. 16,
4207–4221.

Brodersen, K. H., Wiech, K., Lomakina, E. I., Lin, C. S., Buhmann, J.
M., Bingel, U., et al. (2012). Decoding the perception of pain from
fMRI using multivariate pattern analysis. Neuroimage 63, 1162–1170. doi:
10.1016/j.neuroimage.2012.08.035

Cauda, F., Costa, T., Diano, M., Sacco, K., Duca, S., Geminiani, G., et al. (2013a).
Massive modulation of brain areas after mechanical pain stimulation: a time-
resolved fMRI study. Cereb. Cortex. doi: 10.1093/cercor/bht153. [Epub ahead of
print].

Cauda, F., D’agata, F., Sacco, K., Duca, S., Geminiani, G., and Vercelli, A. (2011).
Functional connectivity of the insula in the resting brain. Neuroimage 55, 8–23.
doi: 10.1016/j.neuroimage.2010.11.049

Cauda, F., Torta, D. M., Sacco, K., D’agata, F., Geda, E., Duca, S., et al. (2013b).
Functional anatomy of cortical areas characterized by Von Economo neurons.
Brain Struct. Funct. 218, 1–20. doi: 10.1007/s00429-012-0382-9

Cauda, F., Torta, D. M., Sacco, K., Geda, E., D’agata, F., Costa, T., et al. (2012).
Shared “core” areas between the pain and other task-related networks. PLoS
ONE 7:e41929. doi: 10.1371/journal.pone.0041929

Chang, C., Thomason, M. E., and Glover, G. H. (2008). Mapping and correction
of vascular hemodynamic latency in the BOLD signal. Neuroimage 43, 90–102.
doi: 10.1016/j.neuroimage.2008.06.030

Corfield, D. R., Murphy, K., Josephs, O., Adams, L., and Turner, R. (2001).
Does hypercapnia-induced cerebral vasodilation modulate the hemody-
namic response to neural activation? Neuroimage 13, 1207–1211. doi:
10.1006/nimg.2001.0760

Craig, A. D. (2002). How do you feel? Interoception: the sense of the physio-
logical condition of the body. Nat. Rev. Neurosci. 3, 655–666. doi: 10.1038/
nrn894

Craig, A. D. (2009). How do you feel–now? The anterior insula and
human awareness. Nat. Rev. Neurosci. 10, 59–70. doi: 10.1038/
nrn2555

Craig, A. D. (2010). The sentient self. Brain Struct. Funct. 214, 563–577. doi:
10.1007/s00429-010-0248-y

Critchley, H. D. (2005). Neural mechanisms of autonomic, affective, and
cognitive integration. J. Comp. Neurol. 493, 154–166. doi: 10.1002/cne.
20749

Critchley, H. D., Corfield, D. R., Chandler, M. P., Mathias, C. J., and Dolan, R. J.
(2000). Cerebral correlates of autonomic cardiovascular arousal: a functional
neuroimaging investigation in humans. J. Physiol. 523(Pt 1), 259–270. doi:
10.1111/j.1469-7793.2000.t01-1-00259.x

Davis, T. L., Kwong, K. K., Weisskoff, R. M., and Rosen, B. R. (1998). Calibrated
functional MRI: mapping the dynamics of oxidative metabolism. Proc. Natl.
Acad. Sci. U.S.A. 95, 1834–1839. doi: 10.1073/pnas.95.4.1834

Derbyshire, S. W. (2003). Visceral afferent pathways and functional brain imaging.
ScientificWorldJournal 3, 1065–1080. doi: 10.1100/tsw.2003.93

Downar, J., Crawley, A. P., Mikulis, D. J., and Davis, K. D. (2002). A cortical network
sensitive to stimulus salience in a neutral behavioral context across multiple
sensory modalities. J. Neurophysiol. 87, 615–620. doi: 10.1152/jn.00636.2001

Dube, A. A., Duquette, M., Roy, M., Lepore, F., Duncan, G., and Rainville,
P. (2009). Brain activity associated with the electrodermal reactivity to
acute heat pain. Neuroimage 45, 169–180. doi: 10.1016/j.neuroimage.2008.
10.024

Frontiers in Human Neuroscience www.frontiersin.org May 2014 | Volume 8 | Article 265 | 10

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Cauda et al. Beyond the Pain Matrix

Friebel, U., Eickhoff, S. B., and Lotze, M. (2011). Coordinate-based meta-analysis
of experimentally induced and chronic persistent neuropathic pain. Neuroimage
58, 1070–1080. doi: 10.1016/j.neuroimage.2011.07.022

Friston, K. J., Holmes, A. P., Poline, J. B., Grasby, P. J., Williams, S. C., Frackowiak,
R. S., et al. (1995). Analysis of fMRI time-series revisited. Neuroimage 2, 45–53.
doi: 10.1006/nimg.1995.1007

Frot, M., Mauguiere, F., Magnin, M., and Garcia-Larrea, L. (2008). Parallel
processing of nociceptive A-delta inputs in SII and midcingulate cor-
tex in humans. J. Neurosci. 28, 944–952. doi: 10.1523/JNEUROSCI.2934-
07.2008

Glover, G. H. (1999). Deconvolution of impulse response in event-related BOLD
fMRI. Neuroimage 9, 416–429. doi: 10.1006/nimg.1998.0419

Gonzalez-Castillo, J., Saad, Z. S., Handwerker, D. A., Inati, S. J., Brenowitz,
N., and Bandettini, P. A. (2012). Whole-brain, time-locked activation
with simple tasks revealed using massive averaging and model-free analy-
sis. Proc. Natl. Acad. Sci. U.S.A. 109, 5487–5492. doi: 10.1073/pnas.11210
49109

Hasson, U., Malach, R., and Heeger, D. J. (2010). Reliability of corti-
cal activity during natural stimulation. Trends Cogn. Sci. 14, 40–48. doi:
10.1016/j.tics.2009.10.011

Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., and Malach, R. (2004). Intersubject syn-
chronization of cortical activity during natural vision. Science 303, 1634–1640.
doi: 10.1126/science.1089506

Hesselmann, G., Sadaghiani, S., Friston, K. J., and Kleinschmidt, A. (2010).
Predictive coding or evidence accumulation? False inference and neu-
ronal fluctuations. PLoS ONE 5:e9926. doi: 10.1371/journal.pone.00
09926

Hoge, R. D., Atkinson, J., Gill, B., Crelier, G. R., Marrett, S., and Pike, G. B.
(1999). Linear coupling between cerebral blood flow and oxygen consump-
tion in activated human cortex. Proc. Natl. Acad. Sci. U.S.A. 96, 9403–9408. doi:
10.1073/pnas.96.16.9403

Kaneoke, Y., Donishi, T., Iwatani, J., Ukai, S., Shinosaki, K., and Terada, M. (2012).
Variance and Autocorrelation of the Spontaneous Slow Brain Activity. PLoS
ONE 7:e38131. doi: 10.1371/journal.pone.0038131

Karahanoglu, F. I., Caballero-Gaudes, C., Lazeyras, F., and Van De Ville, D. (2013).
Total activation: fMRI deconvolution through spatio-temporal regularization.
Neuroimage 73, 121–134. doi: 10.1016/j.neuroimage.2013.01.067

Kastrup, A., Li, T. Q., Kruger, G., Glover, G. H., and Moseley, M. E. (1999).
Relationship between cerebral blood flow changes during visual stimulation
and baseline flow levels investigated with functional MRI. Neuroreport 10,
1751–1756. doi: 10.1097/00001756-199906030-00023

Kim, S. G., Rostrup, E., Larsson, H. B., Ogawa, S., and Paulson, O.
B. (1999). Determination of relative CMRO2 from CBF and BOLD
changes: significant increase of oxygen consumption rate during visual
stimulation. Magn. Reson. Med. 41, 1152–1161. doi: 10.1002/(SICI)1522-
2594(199906)41:6%3C1152::AID-MRM11%3E3.0.CO;2-T

Lee, T. W., Yu, Y. W. Y., Wu, H. C., and Chen, T. J. (2011). Do resting brain dynamics
predict oddball evoked-potential? BMC Neurosci. 12:121. doi: 10.1186/1471-
2202-12-121

Legrain, V., Iannetti, G. D., Plaghki, L., and Mouraux, A. (2011). The pain matrix
reloaded: a salience detection system for the body. Prog. Neurobiol. 93, 111–124.
doi: 10.1016/j.pneurobio.2010.10.005

Li, T. Q., Moseley, M. E., and Glover, G. (1999). A FAIR study of motor cortex acti-
vation under normo- and hypercapnia induced by breath challenge. Neuroimage
10, 562–569. doi: 10.1006/nimg.1999.0496

Lorenz, J., Minoshima, S., and Casey, K. L. (2003). Keeping pain out of mind:
the role of the dorsolateral prefrontal cortex in pain modulation. Brain 126,
1079–1091. doi: 10.1093/brain/awg102

Lotsch, J., Walter, C., Felden, L., Noth, U., Deichmann, R., and Oertel, B. G.
(2012). The human operculo-insular cortex is pain-preferentially but not pain-
exclusively activated by trigeminal and olfactory stimuli. PLoS ONE 7:e34798.
doi: 10.1371/journal.pone.0034798

Magerl, W., Fuchs, P. N., Meyer, R. A., and Treede, R. D. (2001). Roles of capsaicin-
insensitive nociceptors in cutaneous pain and secondary hyperalgesia. Brain
124, 1754–1764. doi: 10.1093/brain/124.9.1754

Mayhew, S. D., Hylands-White, N., Porcaro, C., Derbyshire, S. W., and Bagshaw,
A. P. (2013). Intrinsic variability in the human response to pain is assem-
bled from multiple, dynamic brain processes. Neuroimage 75, 68–78. doi:
10.1016/j.neuroimage.2013.02.028

Mouraux, A., Diukova, A., Lee, M. C., Wise, R. G., and Iannetti, G. D.
(2011). A multisensory investigation of the functional significance of the
“pain matrix.” Neuroimage 54, 2237–2249. doi: 10.1016/j.neuroimage.2010.
09.084

Mouraux, A., and Iannetti, G. D. (2009). Nociceptive laser-evoked brain poten-
tials do not reflect nociceptive-specific neural activity. J. Neurophysiol. 101,
3258–3269. doi: 10.1152/jn.91181.2008

Peyron, R., Garcia-Larrea, L., Gregoire, M. C., Costes, N., Convers, P.,
Lavenne, F., et al. (1999). Haemodynamic brain responses to acute pain in
humans: sensory and attentional networks. Brain 122(Pt 9), 1765–1780. doi:
10.1093/brain/122.9.1765

Peyron, R., Laurent, B., and Garcia-Larrea, L. (2000). Functional imaging of brain
responses to pain. A review and meta-analysis (2000). Neurophysiol. Clin. 30,
263–288. doi: 10.1016/S0987-7053(00)00227-6

Pichè, M., Arsenault, M., and Rainville, P. (2010). Dissection of perceptual, motor
and autonomic components of brain activity evoked by noxious stimulation.
Pain 149, 453–462. doi: 10.1016/j.pain.2010.01.005

Ploner, M., Gross, J., Timmermann, L., Pollok, B., and Schnitzler, A. (2006).
Pain suppresses spontaneous brain rhythms. Cereb. Cortex 16, 537–540. doi:
10.1093/cercor/bhj001

Ploner, M., Lee, M. C., Wiech, K., Bingel, U., and Tracey, I. (2010). Prestimulus
functional connectivity determines pain perception in humans. Proc. Natl. Acad.
Sci. U.S.A. 107, 355–360. doi: 10.1073/pnas.0906186106

Porro, C. A., Cettolo, V., Francescato, M. P., and Baraldi, P. (1998). Temporal and
intensity coding of pain in human cortex. J. Neurophysiol. 80, 3312–3320.

Saad, Z. S., Ropella, K. M., Cox, R. W., and Deyoe, E. A. (2001). Analysis and
use of FMRI response delays. Hum. Brain Mapp. 13, 74–93. doi: 10.1002/
hbm.1026

Sadaghiani, S., Hesselmann, G., Friston, K. J., and Kleinschmidt, A. (2010). The
relation of ongoing brain activity, evoked neural responses, and cognition.
Front. Syst. Neurosci. 4:20. doi: 10.3389/fnsys.2010.00020

Saka, M., Berwick, J., and Jones, M. (2012). Inter-trial variability in sensory-
evoked cortical hemodynamic responses: the role of the magnitude of pre-
stimulus fluctuations. Front. Neuroenergetics 4:10. doi: 10.3389/fnene.2012.
00010

Sapir, A., D’avossa, G., Mcavoy, M., Shulman, G. L., and Corbetta, M. (2005).
Brain signals for spatial attention predict performance in a motion dis-
crimination task. Proc. Natl. Acad. Sci. U.S.A. 102, 17810–17815. doi:
10.1073/pnas.0504678102

Seghier, M. L., and Price, C. J. (2009). Dissociating functional brain networks
by decoding the between-subject variability. Neuroimage 45, 349–359. doi:
10.1016/j.neuroimage.2008.12.017

Shackman, A. J., Salomons, T. V., Slagter, H. A., Fox, A. S., Winter, J. J., and
Davidson, R. J. (2011). The integration of negative affect, pain and cogni-
tive control in the cingulate cortex. Nat. Rev. Neurosci. 12, 154–167. doi:
10.1038/nrn2994

Starr, C. J., Sawaki, L., Wittenberg, G. F., Burdette, J. H., Oshiro, Y., Quevedo, A.
S., et al. (2011). The contribution of the putamen to sensory aspects of pain:
insights from structural connectivity and brain lesions. Brain 134, 1987–2004.
doi: 10.1093/brain/awr117

Strigo, I. A., Duncan, G. H., Boivin, M., and Bushnell, M. C. (2003). Differentiation
of visceral and cutaneous pain in the human brain. J. Neurophysiol. 89,
3294–3303. doi: 10.1152/jn.01048.2002

Tagliazucchi, E., Balenzuela, P., Fraiman, D., and Chialvo, D. R. (2010). Brain rest-
ing state is disrupted in chronic back pain patients. Neurosci. Lett. 485, 26–31.
doi: 10.1016/j.neulet.2010.08.053

Tagliazucchi, E., Balenzuela, P., Fraiman, D., and Chialvo, D. R. (2012). Criticality
in large-scale brain FMRI dynamics unveiled by a novel point process analysis.
Front. Physiol. 3:15. doi: 10.3389/fphys.2012.00015

Tomycz, N. D., and Friedlander, R. M. (2011). The experience of pain and the
putamen: a new link found with functional MRI and diffusion tensor imaging.
Neurosurgery 69, N12–N13. doi: 10.1227/01.neu.0000405590.47966.e8

Torta, D. M., and Cauda, F. (2011). Different functions in the cingulate cortex,
a meta-analytic connectivity modeling study. Neuroimage 56, 2157–2172. doi:
10.1016/j.neuroimage.2011.03.066

Torta, D. M., Costa, T., Duca, S., Fox, P. T., and Cauda, F. (2013). Parcellation
of the cingulate cortex at rest and during tasks: a meta-analytic clustering
and experimental study. Front. Hum. Neurosci. 7:275. doi: 10.3389/fnhum.2013.
00275

Frontiers in Human Neuroscience www.frontiersin.org May 2014 | Volume 8 | Article 265 | 11

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Cauda et al. Beyond the Pain Matrix

Wu, G. R., Liao, W., Stramaglia, S., Ding, J. R., Chen, H., and Marinazzo, D.
(2013). A blind deconvolution approach to recover effective connectivity brain
networks from resting state fMRI data. Med. Image Anal. 17, 365–374. doi:
10.1016/j.media.2013.01.003

Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., and Wager, T. D.
(2011). Large-scale automated synthesis of human functional neuroimaging
data. Nat. Methods 8, 665–670. doi: 10.1038/nmeth.1635

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 28 March 2013; accepted: 10 April 2014; published online: 05 May 2014.
Citation: Cauda F, Costa T, Diano M, Duca S and Torta DME (2014) Beyond the
“Pain Matrix,” inter-run synchronization during mechanical nociceptive stimulation.
Front. Hum. Neurosci. 8:265. doi: 10.3389/fnhum.2014.00265
This article was submitted to the journal Frontiers in Human Neuroscience.
Copyright © 2014 Cauda, Costa, Diano, Duca and Torta. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Human Neuroscience www.frontiersin.org May 2014 | Volume 8 | Article 265 | 12

http://dx.doi.org/10.3389/fnhum.2014.00265
http://dx.doi.org/10.3389/fnhum.2014.00265
http://dx.doi.org/10.3389/fnhum.2014.00265
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

	Beyond the ``Pain Matrix,'' inter-run synchronization during mechanical nociceptive stimulation
	Introduction
	Materials and Methods
	Participants
	Task and Image Acquisition
	Data Analysis
	Inter-Run Synchronization (IRS)

	Results
	Discussion
	References


