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INTRODUCTION
Stuttering is a disorder of speech fluency that presents itself
between the ages of 2 and 4 years. In the preschool population, the
incidence is approximately 5% and the prevalence in the general
population is 1%.

An early and influential theory of the brain basis of stuttering
holds that its underlying cause is anomalous hemispheric later-
alization of the speech control centers. Specifically, Orton (1927)
contends that, in contrast to fluent speakers, people who stut-
ter (PWS) have bilateral representations for speech processes. In
their schema, rather than a single dominant (left) hemisphere
producing speech, in the person who stutters both hemispheres
issue commands which, when not perfectly synchronized, cause
the blocking and repetition of speech segments that characterize
stuttering. Despite the substantial face validity of this hypothesis,
extensive behavioral testing of motor behavior in stutterers pro-
vides scant support. Work in the 80s and 90s by Webster (1985,
1986) converged on the position that “people who stutter have nor-
mal left hemisphere lateralization of the neural mechanisms for the
control of speech and other forms of sequential movement” (Webster,
1997), findings that concur with sodium amytal tests of cere-
bral dominance for speech and language in PWS. As described by
Andrews et al. (1972) and Luessenhop et al. (1973), PWS respond
to right- and left-sided carotid artery injections of sodium amytal
in the same way as fluent speakers. Such direct evidence supports

the contention that PWS have a normal pattern of hemispheric
specialization for speech.

Despite such findings, the theory that abnormal speech control
lateralization drives stuttering still has currency in the general dis-
course around stuttering (e.g., Kushner, 2012). The perpetuation
of this idea is supported in part by the findings from brain imag-
ing evidence that has emerged in the past 20 years (for review, see
Brown et al., 2005). A common finding in a number of these stud-
ies is a shift of speech-related brain activity to the right hemisphere
in adults who stutter. In their seminal PET study, Fox et al. (1996)
report increased activation in the right hemisphere in a language
task in developmental stutterers. This finding was subsequently
replicated by Braun et al. (1997), who were able to differentiate
between patterns of stuttered and fluent speech in the stutterers
that they tested. Importantly, their results challenge the idea that
abnormal laterality caused stuttering. By demonstrating that the
left hemisphere was more active during the production of stuttered
speech and the right more active with fluent speech, the authors
were able to conclude that the primary dysfunction in stuttering is
located in the left hemisphere. They further suggested that hyper-
activation of the right hemisphere is therefore not the cause of
stuttering, but rather a reflection of neuroplastic adaptation.

Such compensatory plasticity has a well-established precedent
in the lesion literature where transference of function between
hemispheres has been observed in (e.g., Weiller et al., 1995).
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Following on from the early PET studies of stuttering, a subse-
quent fMRI investigation by Preibisch et al. (2003) showed that
overactivity in the right frontal operculum in PWS was negatively
correlated with stuttering. Furthermore, this overactivation was
evident even when speech tasks were not required. Taken together,
these observations support the idea that overactivation in the right
hemisphere seen with functional neuroimaging in PWS reflects a
compensatory mechanism rather than being a manifestation of
abnormal cerebral dominance for speech control (e.g., Braun etal.,
1997; Preibisch et al., 2003; Chang et al., 2008; Lu et al., 2010).

There is a missing piece in this puzzle that might help adjudi-
cate between causal and reactive origins for hemispheric activation
anomalies in stuttering. Given that stuttering emerges most com-
monly in the preschool years, observation of normal hemispheric
laterality of brain activity during speech production would sup-
port the thesis that increases in the right hemispheric activation
in adults who stutter are the result of compensatory mechanisms
developed over a lifetime of stuttering. At present, there is no
functional brain imaging evidence from children near the age of
onset of stuttering. The present study was designed to provide such
evidence.

MATERIALS AND METHODS

SUBJECTS

This study was conducted with the approval of the Macquarie
University Human Ethics Committee #HE29MAY2009-R06572.
Preschool children who stutter (CWS) were recruited by news-
paper advertisement. All were examined by a highly experi-
enced speech pathologist (Elisabeth Harrison) who has more than
20 years of experience in the diagnosis and treatment of stuttering,
prior to their inclusion in the study. Twelve children who were pos-
itively diagnosed as stutterers (CWS) were included in the study.
The stutterers as a group were typical of the wider population of
preschool age CWS in terms of the severity of their stuttering,
i.e., all were in the range of mild—moderately severe with sever-
ity ratings between 3 and 6 (1 = no stuttering, 2 = extremely mild
stuttering, 10 = extremely severe stuttering). This was expected
since the distribution of stuttering severity is positively skewed
in both children and adults (Bloodstein and Ratner, 2008, p. 2).
Age- and sex-matched typically developing (TD) control subjects
were recruited. The group of CWS consisted of 2 females and
10 males, mean age 50.8 months (range 35-64 months), the TD
group consisted of 2 females and 10 males, mean age 51.7 months
(range 27—-66 months). All children were first language speakers of
English and right handed.

TASK

Subjects performed a picture-naming task based on that presented
in Levelt et al. (1998). Twenty colored picture stimuli were selected
from the colorized Snodgrass and Vanderwart set (Rossion and
Pourtois, 2004). Pictures (Table 1) were selected on the basis that
their name consisted of a single syllable and the age of acquisi-
tion of their name was <3 years (Snodgrass and Yuditsky, 1996).
A simple picture-naming task was chosen so that the findings of
the current study could be compared with those previous sem-
inal magnetoencephalography (MEG) studies of picture-naming
in adults (Salmelin et al., 1994, 2000; Levelt et al., 1998) and also

Table 1 | Pictures used in the naming task.

Word Age of acquisition (years)
Ear 2.13
Dog 2.23
Hand 2.24
Sun 2.34
House 2.41
Bed 2.42
Sock 2.44
Spoon 2.45
Cat 2.5
Door 2.55
Cup 2.68
Box 2.69
Shoe 2.72
Cake 2.73
Car 2.73
Book 2.79
Fish 2.84
Bird 2.87
Hat 2.9
Duck 2.93

because simple, short, repeated vocalization tasks induce very few
if any instances of stuttering even in chronic stutterers (Salmelin
et al., 2000; Chang et al., 2009).

Each subject received one training block to get acquainted with
the procedure and to maximize name agreement across items.
Subjects lay supine on a plinth in the magnetically shielded room
and were presented with the picture-naming stimuli projected
via a mirror onto a screen that was situated directly in the par-
ticipant’s line of sight. The experimental presentation was con-
trolled by the Presentation software package (Presentation 14.4,
Neurobehavioral Systems, Albany, NY, USA).

Trials began with a white fixation cross appearing in the center
of a black background. The duration of the fixation cross was ran-
domly varied between 3000 and 4000 ms after which time, a picture
appeared in the center of the screen. The subject was instructed to
respond to the picture by naming it as quickly as possible. Vocal
responses triggered a voice key connected to a directional micro-
phone positioned on the ceiling of the magnetically shielded room
above the subject’s head. Timestamps thus collected were used to
determine vocal onset reaction times. Trials were terminated as
soon as the voice key was triggered. The active response period
was limited to 3000 ms. Stimuli were presented in blocks of 20 tri-
als. A single block contained all of the 20 stimuli randomly shuffled
prior to the start of the block. Subjects participated in one or two
recording sessions.

MAGNETOENCEPHALOGRAPHY

Brain magnetic fields were measured during picture-naming using
acustom built pediatric 64-channel whole-head gradiometer MEG
system. A detailed description of specifications of this device is
available in Johnson et al. (2010).
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Before subjects entered the magnetically shielded room for
MEG data acquisition, their head shapes were recorded using a
digitizing pen (Polhemus Fastrack, Colchester, VT, USA); approx-
imately 200 randomly selected points were recorded for each
subject’s head surface. The 3D locations of the five head position
indicator (HPI) coils attached to a tightly fitting elastic cap, and
the locations of three cardinal landmarks (the nasion and bilateral
preauricular points) were also digitized. Each subject’s head posi-
tion in the MEG dewar was measured at the start and end of each
recording block from the five HPI coils.

Continuous data were acquired at a sampling rate of 1000 Hz
and filtered online between 0.03 and 250 Hz. Fieldtrip (Oosten-
veld et al., 2011) and SPM8 (Litvak et al., 2011) were used for
all offline data analyses. Offline, data were filtered (bandpass 1-
40 Hz), epoched around the time of stimulus onset (—1000 to
1000 ms), and baseline corrected. Trials containing large amplitude
artifacts were removed using the Fieldtrip visual artifact rejec-
tion method. Data for each recording block were co-registered
with the individual headshape data and then transformed into
a common sensor space (the average sensor space across blocks
within subjects) using the method described by Knosche (2002)
and implemented in Fieldtrip.

SENSOR SPACE ANALYSIS

In order to test whether stuttering status affected the evoked
response to picture-naming stimuli, we used topological inference
to search the entire sensor space for differences between groups.
Based on the random field theory, topological inference for MEG
data has been implemented in SPM8 (Litvak et al.,2011) to correct
for multiple statistical comparisons across N -dimensional spaces.
Briefly, a 2D topographical representation of the evoked field for
each sample of the time dimension across the epoch of inter-
est is created. Here, we created a 64 x 64 pixel image for each
of the samples between —1000 and 1000 ms around the stimulus
onset. This allowed us to compare differences in both space and
time, while correcting for the family wise error (FWE) rate across
the multiple comparisons. These images were then taken to the
second level of the classical SPM analysis and compared using
a two-sample ¢-test. Significance threshold was set at p <0.05
(FWE-corrected) to determine whether statistically significant dif-
ferences between groups (CWS vs. TD) existed in the evoked
response at the sensor level.

SOURCE ANALYSIS

Source analysis was performed in Matlab (2013b; MathWorks, Inc.,
Natick, MA, USA) using the SPM8 toolbox for M/EEG. A canoni-
cal cortical mesh derived from the MNI template was co-registered
and warped, in a non-linear manner, to match the participant’s dig-
itized headshape. Leadfields were computed using a single sphere
volume conductor model. Source localization was then performed
using a group inversion with multiple sparse priors (Friston et al.,
2008b; Litvak and Friston, 2008) and the greedy search method
(Friston et al., 2008a). This procedure results in a spatial projec-
tion of sensor data into (3D) brain space and considers brain
activity as comprising a very large number of dipolar sources
spread over the cortical sheet, with fixed locations and orientations
(Litvak et al., 2011).

In order to minimize the potential for movement and EMG
artifacts distorting the source estimation, trials were discarded in
which the subject’s vocal reaction time was shorter than 700 ms.
Based on the approach using MEG to measure language laterality
developed by Tanaka et al. (2013), evoked activity for each dipo-
lar source was estimated within a 300 ms Gaussian time window
centered on 450 ms after onset of the picture. Given the latency
difference for linguistic processing known to exist for young chil-
dren compared to adults (e.g., Holcomb et al., 1992; Kraus et al.,
1993) we chose to shift the window of interest suggested by Tanaka
et al. (2013), 50 ms later. According to Levelt et al. (1998), brain
activity related to speech planning begins 300 ms after the onset
of a picture-naming stimulus.

3D volumetric source maps were smoothed with a full width at
half maximum (FWHM) smoothing kernel and passed to a sec-
ond level SPM analysis. A paired ¢-test comparing stimulus-locked
induced source activation to baseline was performed across the
whole sample in order to identify a common network for speech
preparation. A two-sample f-test was also conducted between
CWS and TD in order to identify any differences in activation
between the groups. Resulting SPMs were corrected for FWE. The
data were thresholded at the critical FWE t-value and statistically
significant difference clusters projected onto a template brain for

visualization using xjView!.

ROI ANALYSIS

In order to test whether there was any effect of group or hemi-
sphere on any of the activations within the ROIs, we performed a
multivariate, repeated measures ANOVA on the between subjects
factor Group (CWS or TD) and the within subjects factor Hemi-
sphere (left or right) across the three ROIs, which were included as
separate variates. This analysis was performed using IBM® SPSS®
Statistics version 21.

LATERALITY

In order to assess the degree of lateralization of the speech
preparatory process, ROI masks for both hemispheres were con-
structed using the AAL atlas (Tzourio-Mazoyer et al., 2002) via
the wfu_pickatlas toolbox (Maldjian et al., 2003). Following the
procedure of Tanaka et al. (2013), we used anatomically defined
ROIs that consisted of the supramarginal gyrus (SMG), superior
temporal gyrus (STG), and the inferior frontal gyrus (IFG). We
chose these areas in line with the core language network presented
in Tanaka et al. (2013), that were based on previous language
lateralization MEG studies (Bowyer et al., 2005; McDonald et al.,
2009). Furthermore, these areas are the key areas in which previous
functional imaging studies (e.g., De Nil et al., 2008) have shown
there to be laterality anomalies in stuttering subjects. Tanaka et al.
(2013) examined the opercular and triangular parts of the IFG
separately whereas we chose to create a single ROI that consisted
of the triangular, opercular, and orbital parts of the IFG in a sin-
gle ROI that could be considered to represent Broca’s area and
its right hemisphere homolog. Volumetric functional images were

Uhttp://www.alivelearn.net/xjview
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masked using these ROIs and then thresholded at the 25% maxi-
mal amplitude across all ROIs. Using the REX toolbox?, the mean
voxel amplitude within these masks was extracted for all subjects.
The laterality index (LI) was then calculated using the formula
“left — right/left 4 right.” Therefore, LI varies continuously from
—1 for pure right hemisphere dominance to +1 for pure left
hemisphere dominance.

RESULTS

NUMBER OF TRIALS

The average total number of trials contributing to the analysis
was 190 for the PWS and 160 for the TD. There was no signifi-
cant difference between the two groups in terms of trial numbers
(p=0.16). The mean reaction time (mean + SEM) for CWS was
1239 4+ 64 and 1278 & 72 ms for TD (p =0.68).

SENSOR SPACE ANALYSIS

Following the onset of the picture-naming stimulus, sensor
level waveforms were characterized by an m100/200 com-
plex, which was largest over occipital areas — consistent with
early visual activation. A later component, peaking around
450 ms, was evident bilaterally in temporal areas and in the
left frontal region. This pattern of activation is illustrated

Zhttp://gablab.mit.edu/

in the grand mean sensor plots in Figure 1. Sensor space
SPMs found no significant between group differences (CWS
vs. TD).

SOURCE SPACE ANALYSIS

Compared to baseline, there were six significant activation clusters
in the brain during the epoch 300—600 ms after the onset of the
naming stimulus (Figure 2). Four of these clusters were in the left
hemisphere. In total, there were 1049 significantly activated vox-
els in the left hemisphere and 130 in the right (Table 2). In the
left hemisphere, the largest cluster was in primary somatosensory
and somatosensory association areas. It encompassed part of the
posterior frontal lobe intersecting with Brodmann areas 3 and 2
and extended into the anterior-superior and inferior parietal lobe,
intersecting with Brodmann areas 7, 5, and 40. The second largest
cluster in the left hemisphere was centered on the triangular part
of the IFG. This cluster overlaps with the representation of Broca’s
area (Brodmann areas 45, 46,and 9). Two other small clusters were
significantly active, one in the middle temporal gyrus intersecting
with Brodmann area 39 and another in the supplementary motor
area [SMA (Brodmann area 6)].

In the right hemisphere, there were two significant clusters: the
largest was in the SMG intersecting with Brodmann area 40. The
other significant cluster was within the SMA Brodmann area 6.
There were no significant activation differences between groups.

Left Hemisphere

Right Hemisphere

Frontal
Amplitude (fT)

Temporal
Amplitude (fT)

0 200 400 600 800

0 200 400 600 800

Occipital
Amplitude (fT)

0 200 400 600 800
Time (ms)

0 200 400 600 800
Time (ms)

FIGURE 1 | Grand mean sensor space activations for six sample sensors taken from frontal, temporal, and occipital locations in the left and right
hemispheres, respectively. TD subjects are depicted in blue (n=12) and CWS in red (n = 12). Vertical dotted lines represent picture-naming stimulus onset
time.
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ROI ANALYSIS

There was a significant main effect of Hemisphere for all ROIs
[IFG: F(1,22) =32, p <0.001; SMG: F(j 1) =35, p < 0.001; STG:
F(1,22) =36, p<0.001] with the level of activation being signif-
icantly greater in the left vs. the right hemisphere. There was
no significant effect of Group or interaction between Group and
Hemisphere.

LATERALIZATION

For all subjects, activity was lateralized to the left for all ROIs
(Table 3). Lateralization was significantly to the left for all ROIs
and there was no significant difference between groups (Table 4).

DISCUSSION

The current results are the first functional brain imaging data
of overt speech production in preschool-aged CWS. This is an
important contribution to a literature based on results from older
children and adults, whose brain functions have had many years
to develop compensatory strategies.

There is a long history of attributing the cause of stutter-
ing to atypical laterality of speech/language function. The roots
of this theory can be traced back to publications in the early
twentieth century by Orton (1927) and Travis (1931), hence the
lateralization theory of stuttering often being referred to as the
Orton—Travis theory. They posited that a failure in development of
normal cerebral dominance would lead to cascade of events: com-
petition between the hemispheres, an incoordination of outputs
and interruption of fluent speech. Even though the early attempts

FIGURE 2 | Significant (active > baseline) regions of activation during
speech preparation across all subjects (n=24). Four clusters of
activation survived correction (FWE) in the left hemisphere and two in the
right. Description of the locations is available in Table 2.

to test this theory experimentally were inconclusive (Bryngelson,
1935, 1939; Heltman, 1940) and a number of negative findings
followed, e.g., Dorman and Porter (1975), interest in the the-
ory has persisted, most likely because of its parsimonious appeal
and the persistence of anecdotal evidence suggesting that forced
changes in handedness for writing — a common educational prac-
tice in the early twentieth century (Kushner, 2012) — gave rise to

Table 3 | Laterality indices (LI) for all subjects (CWS and TD) across
three ROIs.

Subject IFG STG SMG

CWSs TD CWS TD CWSs TD
1 0.16 0.19 0.36 0.23 0.18 0.14
2 0.17 0.20 0.15 0.18 0.01 0.1
3 0.16 0.18 0.14 0.25 0.07 0.22
4 0.19 0.18 0.27 0.38 0.26 0.22
5 0.17 0.20 0.23 0.28 0.22 0.19
6 0.17 0.18 0.55 0.27 0.55 0.28
7 0.17 0.18 0.14 0.30 0.08 0.30
8 0.15 0.19 0.28 0.21 0.1 0.26
9 0.17 0.17 0.20 0.22 0.19 0.13
10 1.00 1.00 0.31 0.60 0.36 0.50
" 0.18 0.20 0.29 0.23 0.09 0.12
12 1.00 0.15 0.35 0.34 0.33 0.29

IFG, inferior frontal gyrus; STG, superior temporal gyrus; SMG, supramarginal
gyrus.

Table 4 | Mean (+SEM) laterality indices (LI) for CWS and TD across
three ROls.

ROI CWS TD Two-sample All One-sample
t-test subjects  t-test

IFG  0.31+£0.09 0.25+0.07 p=0.63 0.284+£0.06 p<0.001

STG 0.27+£0.03 0.29+0.03 p=0.68 0.284+£0.02 p<0.001

SMG 0.21+0.04 0.23+0.03 p=064 0.22+0.03 p<0.001

IFG, inferior frontal gyrus; STG, superior temporal gyrus;, SMG, supramarginal
gyrus. Two-sample t-test values refer to tests between controls and stutterers.
One-sample t-tests refer to tests of the whole sample’s LI against O (no laterality).
LI varies continuously from —1 for pure right hemisphere dominance to +1 for
pure left hemisphere dominance.

Table 2 | MNI coordinates and anatomical labels of FWE-corrected brain sources thresholded at T > 5.2 as revealed by task-baseline contrast.

Cluster size Lobe Area Hemisphere Brodmann Peak MNI coordinates
(voxels) areas intensity at peak (mm)
718 Parietal Precuneus, superior parietal lobule, inferior L 75,403, 2 6.6 —18 —52 58
parietal lobule, paracentral lobule
Postcentral gyrus
214 Frontal Middle frontal gyrus, inferior frontal gyrus L 9, 46, 45 5.6 —44 22 30
107 Parietal Inferior parietal lobule, supramarginal gyrus R 40 6.0 54 —42 36
100 Frontal Precentral gyrus, middle frontal gyrus R 6 5.8 34 —10 54
30 Temporal Middle temporal gyrus L 39 5.7 —b2 —-626
10 Frontal Middle frontal gyrus L 6 5.4 —32450
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stuttering or that left handedness conveys a higher risk for stut-
tering. Indeed, it is still common to find examples such claims
as “Most stammering children are left-handed” (du Plessix Gray,
2012) or “In fact, just as human speech — stuttering in particular —is
related to cerebral laterality (most stutterers are left-handed). ..”
(Shell, 2006), in the popular press, despite significant evidence
to the contrary (Records et al., 1977; Webster and Poulos, 1987;
Ardila et al., 1994; Salihovic and Sinanovic, 2000). While the bur-
geoning neuroimaging literature on stuttering has conferred some
support for the idea that anomalous laterality is the cause of stut-
tering, such imaging data cannot provide a causal link. Indeed, it
has long been contended that right hemispheric overactivations
represent reactions to, or compensations for stuttering, rather
than being causative agents. For this reason, anatomical or func-
tional demonstrations of normal laterality in young stutterers are
powerful evidence against a laterality origin for stuttering and
would support a reactive origin for the changes in both func-
tional and structural laterality changes seen in adult stutterers.
Our data strongly support the contention that the laterality anom-
alies of older stutterers reflect compensatory shifting of function
rather than an underlying causal dysfunction. This conclusion is
supported by a recent neuroanatomical study that reported no
differences in right-left asymmetries between 9- and 12-year-old
stuttering boys and a matched cohort of controls (Chang et al.,
2008).

An important caveat to this conclusion comes from the fact
that a significant proportion of those children who begin to stut-
ter will spontaneously recover [up to 80% by some estimations
(Yairi and Ambrose, 1992, 1999; Yairi et al., 1993; Kalinowski et al.,
2002)]. With this in mind, it is possible that our child partici-
pants may be quite different neurologically from children whose
stuttering persists into adulthood. That is, while the sample we
tested were all current stutterers at the time of our investiga-
tion, it must be expected that most of them would not continue
to be stutterers into adulthood and therefore a large proportion
of our sample consists of stutterers who will recover precisely
because they do not have the underlying abnormal laterality that
leads to persistent developmental stuttering. This possibility is
encapsulated well in the work of Shell (2006) who states, “Par-
ticularized lateralization among human children develops onto-
genetically at around the time they are learning to speak. Some
researchers think this fact may explain why so many children (3—
4%) “stumble” in speech and then “outgrow” the problem when
lateralization is fully developed. Those children who do not fully
lateralize are, according to this view, the children who are the
“real” stutterers (about 1%).” Arguing against this possibility, the
study by Chang et al. (2008) showed that the brains of recovered
stutterers were more like those of current stutterers than con-
trol subjects, an observation that suggests that the occurrence of
recovery likely reflects initial severity rather than reflecting the
existence of a neurologically distinct subgroup. For this reason, we
believe our data are still likely to reflect the true status of later-
ality in the early stages of stuttering, at least in regard to speech
production.

The possibility remains though that anomalous laterality of
other speech or language-related brain functions might exist in

the early stages of stuttering. Indeed, a recent study using near
infrared spectroscopy suggests that this may be the case in regard
to some aspects of auditory language processing (Sato et al.,2011).
Future studies looking to characterize brain activation anom-
alies in young CWS should include longitudinal following of the
subjects so that retrospective analysis of those subjects whose stut-
tering does not resolve might be carried out. Given a large enough
initial cohort, this approach would allow researchers to control for
possible heterogeneities within the cohort.

While the interpretation of child MEG data in source space
must be considered in light of the inherent uncertainties that gov-
ern solutions to the inverse problem, the concordance between the
results of the whole-brain analysis presented herein and previous
MEG studies of speech in adult subjects suggests that these findings
are robust. In the time after early visual processing, and consis-
tent with articulatory planning for speech (Levelt et al., 1998), a
strongly left-lateralized brain network was activated. This network
consisted of inferior frontal, parietal, and temporal nodes largely
consistent with previous MEG studies that have examined speech
or speech planning (e.g., Carota et al., 2010). Notably, our results
show a distinctly left-lateralized inferior frontal activation, and
premotor activity in areas consistent with the SMA activity seen
in previous studies (Salmelin et al., 1994, 2000). Furthermore, like
the study of Salmelin et al. (2000), the activity we saw in the SMA
was right lateralized. We also observed significant parietal lobe
activations in our study which, while not consistent with the fMRI
literature on overt speech (Indefrey and Levelt, 2004), is consistent
with similar MEG studies, which have consistently found activa-
tion in both inferior and superior parietal lobes (Salmelin et al.,
1994; Levelt et al., 1998; Hulten et al., 2009) including Brodmann
area7 (Carotaetal.,2010), which was the most active parietal locus
in our findings. Carota etal. (2010) suggest that activation in Brod-
mann area 7 during speech planning is indicative of the parietal
cortex’s key role in monitoring motor intention in language.

Our conclusions regarding the lack of laterality differences
must be considered within the scope of the limited part of the
speech planning process that we have examined. It is impor-
tant to emphasize that the time window beyond 600 ms was not
taken into inversion analysis and, given that the average vocal
reaction time was longer than 1000 ms, there remains a signifi-
cant epoch in which laterality differences might manifest. It is,
however, important to note that articulatory mouth movement
begins significantly earlier than the onset of overt speech — sim-
ilar studies to the current one suggest this difference is in the
order of 300 ms in adult subjects (Salmelin et al., 2000) hence
the speech planning time is not as long as the reaction time as
measured by voice key as in the current study. Future develop-
ment of devices, which allow real-time monitoring of articulatory
movements within the MEG environment (e.g., Lau, 2013) should
allow for articulatory artifacts to be controlled much more pre-
cisely and remove a number of the limitations surrounding the
time frame in which brain processing of speech production might
be measured.

A number of previous neuroimaging studies using hemody-
namic techniques (PET, fMRI) have shown there to be differences
between stutterers and non-stutterers in the activation strength
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of various cortical and subcortical sources (e.g., Fox et al., 1996,
2000; Braun et al., 1997; De Nil et al., 2000, 2008; Ingham et al.,
2000; Neumann et al., 2003; Preibisch et al., 2003; Giraud et al.,
2008; Watkins et al., 2008; Chang et al., 2009; Kell et al., 2009;
Sakai et al., 2009; Loucks et al., 2011); (for review, see De Nil
and Kroll, 2001; Ingham, 2001; Fox, 2003; Brown et al., 2005).
However, our study did not find any difference between source
activation strength between CWS and TD. This difference may
reflect a difference between neuromagnetic approaches to source
imaging compared to hemodynamic imaging. Indeed, most pre-
vious MEG studies of stuttering have not attempted to analyze
differences in source activations, rather utilizing the inherent tem-
poral advantage of MEG to illustrate differences in auditory evoked
activations (Salmelin et al., 1998; Beal et al., 2010; Kikuchi et al.,
2011b) and temporal dynamics (Salmelin et al., 2000; Biermann-
Ruben et al., 2005) or location of discrete dipole sources (Salmelin
et al., 2000). Only a single previous study has demonstrated the
ability of MEG to characterize cortical activation patterns in stut-
tering using a distributed sources model, and that was in a single
adult subject (Sowman et al., 2012). Our primary aim was to use
the other advantages of MEG (passivity, lack of noise, and reduced
need for enclosure of the participant) to investigate laterality in
children. A previous MEG study using a similar approach has
shown that left dominance of parietotemporal coherence in theta
band activity is specifically correlated with higher performance
of language-related tasks in preschool children (Kikuchi et al.,
2011a). The current study also demonstrates the utility and possi-
ble sensitivity of MEG-based measures for characterizing laterality
in developmental language disorders.

In conclusion, we have demonstrated that in the very early
stages of stuttering development, the preparation for speech is
not characterized by anomalous lateralization of brain activa-
tions. This evidence gives weight to the hypothesis that the right
hemispheric biases in chronic stuttering are due to neuroplastic
adaptations rather than being an underlying primary source of
dysfunction.
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