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Sensitivity to the environment’s sequential regularities makes it possible to predict
upcoming sensory events. To investigate the mechanisms that monitor such predictions,
we recorded scalp EEG as subjects learned to reproduce sequences of motions. Each
sequence was seen and reproduced four successive times, with occasional deviant
directions of motion inserted into otherwise-familiar and predictable sequences. To
dissociate the neural activity associated with encoding new items from that associated
with detecting sequence deviants, we measured ERPs to new, familiar, and deviant
sequence items. Both new and deviant sequence items evoked enhanced P3 responses,
with the ERP to deviant items encompassing both P300-like and Novelty P3-like
subcomponents with distinct timing and topographies. These results confirm that the
neural response to deviant items differs from that to new items, and that unpredicted
events in newly-learned sequences are identified by processes similar to those monitoring
stable sequential regularities.
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INTRODUCTION
The human brain frequently operates in feedforward mode,
exploiting previously-experienced regularities to build expecta-
tions for future events. This proactive operation facilitates per-
ceptual processing (Bar, 2009) and allows appropriate behaviors
to be prepared and executed in a timely fashion (e.g., Kowler,
1989; Maryott et al., 2011). Among the richest regularities avail-
able to the brain are ones entailed not in single isolated events,
but in event sequences. In fact, the brain constructs and continu-
ously updates its representation of such sequential regularities in
an obligatory and effortless manner (Johnson and Donchin, 1982;
Kimura et al., 2011; Sternberg and McClelland, 2012).

In order to benefit fully from the advantages of feedforward
operation, the brain must have a mechanism to detect events that
violate its expectations, and to trigger appropriate responses to
those violations (Winkler, 2007). Such responses might include
heightening attention to the unexpected event, modifying or
delaying a prepared behavior, or updating the brain’s represen-
tation of the regularity at hand. Successful prediction monitoring
must also distinguish prediction errors that are due to stochastic-
ity or noise from errors that reflect a genuine change in the rules
governing the environment (Yu and Dayan, 2005; Nassar et al.,
2010).

Event-related brain potentials (ERPs) provide a direct mea-
sure of neural activity time-locked to specific events (Luck, 2005).
Their temporal precision makes ERPs a useful tool for study-
ing the neural reaction to events within a sequential structure.
Among ERP components, the P3, a positive-going deflection seen
at central electrodes from 300 to 500 ms after a novel or surpris-
ing stimulus, has often been used to study the neural response

to unexpected events (Squires et al., 1976; Linden, 2005; Polich,
2007). Many authors have interpreted the P3 to reflect processes
related to updating the contents of working memory, such as con-
textual updating, event categorization, stimulus evaluation, or
changing a course of action (Goldstein et al., 2002; van Zuijen
et al., 2006; Ridderinkhof et al., 2009). The P3 is thought to
be generated in large part by the anterior cingulate cortex, a
region whose dense connections to sensory, limbic, and prefrontal
areas make it ideally situated to perform prediction monitoring
(Ridderinkhof et al., 2004; Linden, 2005; Crottaz-Herbette and
Menon, 2006). Some authors have identified separable subcom-
ponents within this late positivity, and have proposed that the
long list of P3-eliciting situations may be divided according to
which subcomponents are elicited. In particular, the degree to
which a event is unusual generally enhances positivity at scalp
locations that are more anterior, while the degree to which an
event requires a response or is otherwise task-relevant tends
to enhance positivity at scalp locations that are more centro-
parietal (Goldstein et al., 2002; Gaeta et al., 2003; Rüsseler et al.,
2003; Nieuwenhuis et al., 2005; Barcelo et al., 2006; Polich, 2007;
Ferdinand et al., 2008).

While the P3 has historically been studied in oddball
paradigms, where a stream of stimuli contains both frequent
and infrequent stimulus exemplars (e.g., Courchesne et al., 1975;
Squires et al., 1975; van Zuijen et al., 2006), it has also been stud-
ied in sequence-learning tasks. Stimuli that deviate from an estab-
lished sequential structure elicit a larger P3 response than stimuli
that conform to the sequential structure (Rüsseler and Rösler,
2000; Schlaghecken et al., 2000; Rüsseler et al., 2003; Ferdinand
et al., 2008). The studies demonstrating this P3 enhancement
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have required subjects to learn only a single sequence per block
of many trials, allowing subjects to encode and maintain one
sequential regularity that remained valid for an extended period
of time. However, humans engage in predictive cognition on
many time-scales, from very fast motor control adjustments to
years-long planning.

Here, we investigated the neural mechanisms underlying
sequence learning and prediction monitoring in a setting where
the governing regularities were short-lived. To do so, we adopted
the task used by Maryott et al. (2011) to study behavioral
responses to deviant events embedded in complex sequential
structures that frequently changed. In that study, subjects had to
remember and reproduce short sequences of movements, each
approximately 5 s long. Each sequence was seen and reproduced
several times in succession, but occasionally a deviant, unex-
pected item was inserted into a well-learned sequence. Their
participants successfully incorporated the deviant items into their
representation of the sequence, and even showed a slight bene-
fit in reproducing those deviant items. Note that Maryott et al.’s
task differs from traditional sequence-learning paradigms in that
it required that the brain frequently update its representation of
the governing sequential structure, as a new sequence began every
60–90 s.

To investigate whether this dynamic, changing context would
alter the brain’s response to a deviant sequence item, we recorded
EEG signals from subjects as they performed a variant of the
task used by Maryott et al., and measured ERPs to new, famil-
iar, and deviant sequence items. Here, we show that both new
and deviant sequence items evoke a larger P3 than familiar
sequence items do, but that the topography and time course
of the P3 enhancement elicited by new items differs from that
elicited by deviant items. This difference reflects the distinction
between the task-relevance P300/P3b and the Novelty P3/P3a
ERP subcomponents (Goldstein et al., 2002; Linden, 2005; Polich,
2007), with new items enhancing only a P300-like component
and deviant items enhancing both P300-like and Novelty P3-
like components. Our results show that (1) the neural response
to deviant sequence elements in a frequently-updated environ-
ment is broadly similar to that seen in more stable settings, and
(2) the neural processes that identify and respond to prediction-
violating events differ from those that merely encode a new
stimulus.

METHODS
All experimental procedures were approved by the Brandeis
Committee for Protection of Human Subjects.

SUBJECTS
Twelve young adults (7 female, ages 19–28) participated in this
experiment. All were naïve to the task; all were right-handed.
Informed consent was obtained from each subject.

EXPERIMENTAL TASK
To induce and measure sequence learning, we asked participants
to observe and reproduce pseudo-random motion trajectories.
Each trajectory was presented four successive times, and each
participant saw 128 different trajectories.

On each presentation of a trajectory, a yellow disk traversed a
path comprising five connected linear motion segments. Figure 1
illustrates the sequence of events within one such presentation.
Each segment of the trajectory was 1 cm (approximately 1◦ visual
angle) in length, and the disk moved at a constant speed of 2 cm
per second, taking 0.50 s to travel the length of each segment.
After each segment, the disk paused for 0.40 s before resuming
its motion in a changed direction. The yellow disk then disap-
peared from view. After a retention interval of 3.75 s, a second
disk appeared, cueing the subject to move a handheld stylus
over the surface of a graphics tablet (31 × 24 cm; Intuos 3,
Wacom, Vancouver, WA) in order to reproduce from memory
the sequence of disk motions that had just been seen. During
the reproduction, the disk’s motion was yoked to the movement
of the stylus’ tip on the graphics tablet. No other feedback was
provided. Note that neither the stimulus nor the reproduction
disk left a visible trail while moving across the computer dis-
play. Subjects viewed the stimuli from a distance of approximately
57 cm, and were instructed to maintain fixation on a central cross,
and to refrain from blinking, while the stimulus disk was on the
screen.

Each trial’s quasi-random sequence of five motion segments
was generated by the algorithm described by Agam et al. (2005).
The direction of a sequence’s initial motion was chosen randomly,
and the direction change at each “corner” of the trajectory was
between 30◦ and 150◦. These changes in direction could be clock-
wise or counter-clockwise, with equal probability. The motions
comprising any sequence were constrained by several additional
rules: Motion segments were not permitted to intersect, could
not come within one-half a segment’s length of intersecting, and
could not extend beyond the boundaries of the display area.

DESIGN AND PROCEDURE
On every trial, that trial’s unique trajectory was presented four
times, with participants reproducing the sequence after each such
presentation. Each set of four presentations constituted either a
Congruent trial, in which all four presentations of a sequence
were identical to one another, or a Flip trial, in which one motion
segment changed direction on the sequence’s fourth (and final)
presentation. Figure 2 illustrates these two conditions. On the
fourth and final presentation of a Flip trial, the final segment
of the established trajectory was replaced by a segment whose
direction of motion was exactly 180◦ opposed.

We operationalized three types of events: new, familiar, and
deviant. New events were motion segments on their first presenta-
tion; familiar events were segments on their fourth presentation,
and deviant events were the “flipped” final segment of the final
presentation on Flip trials. Note that new and deviant events are
still congruent with the task context, and thus quite similar to
other events within the experiment.

Subject completed four 45-min experimental sessions, in
which they observed and reproduced 32 different trajectories four
times each. In each session, the first two trials were Congruent
trials, followed by 20 Congruent and 10 Flip trials, block-
randomized so that Flip trials were more evenly distributed. Forty
trials (approximately 31%) were Flip trials; the remaining 88 were
Congruent. This approximates the ratio of Flip to Congruent
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FIGURE 1 | One presentation of a motion sequence stimulus. At the start
of each presentation, a yellow disk appeared at the center of the display
before beginning to move in a series of five, connected linear segments
without leaving any visible trail. After enacting the five movements, the disk

disappeared from view. After a retention interval, a second disk appeared,
signaling the subject to begin reproducing from memory the path that had
been previously traveled by the yellow disk. Each trial consisted of four such
presentations.

FIGURE 2 | The sequence of presentations that made up a Congruent

trial or Flip trial. In our analyses, we considered the first presentation of a
stimulus to be new, the fourth presentation of a Congruent trial to be
familiar, and the “flipped” segment at the end of a Flip trial to be deviant.

trials used by Maryott et al. (2011), in which subjects did not
anticipate the flips (as demonstrated by subjects’ anticipatory
eye movements). Subjects were never informed that some trials
would be Flip trials.

BEHAVIORAL DATA ANALYSIS
A two-step algorithm quantified the fidelity of each reproduction
(Agam et al., 2005; Maryott et al., 2011). It first used pauses and
direction changes to divide the reproduction into segments, and
then estimated the direction of each such segment by fitting a
line to its beginning and end points. Reproduction accuracy was
quantified by directional error: the absolute angular difference
between the direction of a motion segment in the reproduction
and the direction of the corresponding segment in the stimulus
exemplar.

Note that this segmentation algorithm’s output is invalid if it
divides a reproduced trajectory into a number of segments that
differs from the number in the exemplar trajectory. To increase
the likelihood that reproductions would be successfully divided
into five motion segments, we instructed subjects to try to pro-
duce the same number of segments that had been in the stimulus

(five) and to, insofar as possible, draw straight lines with cor-
ners between them. These instructions allowed the segmentation
algorithm to successfully divide over 90% of trials.

ELECTROPHYSIOLOGICAL RECORDING
A high-density EEG system (Electrical Geodesics, Inc., Eugene,
OR) with 129 electrodes sampled scalp electroencephalographic
signals at 250 Hz using a high-impedance amplifier. Signals were
recorded for later, off-line analysis. All channels were adjusted for
scalp impedance below 50 k�; after 12 trials, channels were again
adjusted for impedance below 50 k� scalp impedance.

EEG ANALYSIS
EEG data were cleaned and analyzed in the EEGLAB (Delorme
and Makeig, 2004) and FieldTrip (Oostenveld et al., 2011) tool-
boxes for Matlab (The Mathworks, Inc., Natick, MA). Data were
re-referenced to the average voltage, bandpass filtered to between
0.25 and 75 Hz, and divided into epochs for each segment of each
presentation. Every such epoch extended from 200 ms before that
segment’s disk motion onset to 600 ms after. Data were visually
inspected for muscle artifacts, eye movements, and bad chan-
nels; epochs containing such artifacts were rejected. Independent
components analysis was used to isolate eye blink activity, which
was subtracted from the data. Finally, data were again visually
inspected for artifacts not corrected by the previous two pro-
cesses. After cleaning, data were averaged across trials and sessions
to create a subject average ERP for combinations of condition
(Congruent or Flip), segment (one, two, three, four, or five),
and presentation (one, two, three, or four). ERPs were time-
locked to the onset of motion at the beginning of each segment.

For each of the following investigations, we used a data-driven,
non-parametric clustering approach (Maris and Oostenveld,
2007) to select time windows and electrodes for analysis. The
FieldTrip toolbox includes software implementing this approach.
It first calculates Student’s t for each electrode and time point,
and identifies clusters of time- and/or space-adjacent electrodes
with |t| > tcrit. Criterion t-values were selected by the experi-
menters after considering several factors, including the degrees
of freedom of the comparison, the magnitude of the difference
between the conditions, and the degree of spatial and tempo-
ral specificity desired. In order to maintain spatial and temporal
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specificity when the differences between conditions were large, we
used a more-conservative value of tcrit.

For each cluster, the t-scores of its member electrodes and
time-points were summed, giving a cluster score that reflected
both the extent of the cluster (in space and time) and the
magnitude of the difference between the conditions. A refer-
ence distribution of test statistics was generated by randomly
permuting the data across the two conditions being compared,
computing such scores for each resulting cluster, and taking the
largest such cluster score on each of 1000 permutations. Where
cluster-wise p-values are reported, they have been derived by com-
paring the empirically-obtained cluster score to such a reference
distribution.

Grand average ERPs for each comparison of interest were
created by averaging across subjects and across the electrodes
identified as part of the cluster. After identifying time windows
at which the two conditions differed, but before investigating
response topography, we corrected for amplitude differences by
dividing each electrode’s voltage by the room mean squared elec-
trode voltage within that condition (McCarthy and Wood, 1985;
Picton et al., 2000).

To measure the differences between neural responses to
deviant sequence items and those to familiar sequence items,
we computed ERPs to segment five of presentation four on
Congruent and Flip trials. Note that this is the segment and pre-
sentation on which the “flip” occurs on Flip trials. After cleaning
and preprocessing, the ERPs to the familiar segment included
a mean of 64.33 epochs per subject (SD = 10.48, minimum =
41), and the ERPs to the deviant segment included a mean of
32.08 epochs per subject (SD = 4.23, minimum = 22). We will
denote these segments as familiar and deviant. When viewing
the deviant sequence items, subjects needed to first identify that
their prediction had been disconfirmed and then encode the seg-
ment’s direction of movement. The neural response to deviant
segments should thus reflect both increased encoding demands
and the prediction-monitoring processes that trigger such new
encoding.

To dissociate encoding a new item from detecting unexpected
events, we directly compared the neural responses to new and
deviant sequence items. We computed ERPs to segment five of
Flip trials on both presentation one and presentation four.
After cleaning and preprocessing, the ERPs to the new seg-
ment included a mean of 32.08 epochs per subject (SD = 4.56,
minimum = 22). We will refer to these two segments as new
and deviant. On presentation one of these trials, when viewing
new items, subjects could not predict any segment’s direction of
motion, while on presentation four, subjects had acquired pre-
dictions about the disk’s motion, which were then violated by the
deviant stimulus.

RESULTS
BEHAVIOR
Figure 3A shows subjects’ reproduction accuracy on Congruent
trials. We ran a 5 × 4 ANOVA with factors segment (one,
two, three, four, or five) and presentation (one, two, three, or
four), and a Greenhouse–Geisser correction for sphericity. The
ANOVA showed a main effect of segment [F(4, 44) = 8.955,

FIGURE 3 | (A) Mean directional error on Congruent trials across the five
segments in a motion sequence. Data are displayed separately for each of
the four presentations of a sequence. Subjects’ accuracy improved over
repeated presentations. (B) Mean directional error on Flip and Congruent

trials for the fourth (final) presentation. The two conditions do not differ
significantly. Error bars are repeated-measures standard error (Morey,
2008).

ε = 0.409, p = 0.003, partial η2 = 0.449], and a segment by pre-
sentation interaction [F(12, 132) = 6.310, ε = 0.054, p = 0.048,
partial η2 = 0.364]. There was also a main effect of presentation
[F(3, 33) = 38.866, ε = 0.580, p < 0.001, partial η2 = 0.779].
Follow-up analyses showed that the improvement in reproduc-
tion accuracy from presentation one to presentation two was
significant [F(1, 11) = 62.654, p < 0.001, partial η2 = 0.850], but
the change from presentation two to three, and that from three
to four, were not. The largest learning effects occur after only one
presentation.

We next confirmed that differences in the neural responses to
familiar and deviant items did not reflect significant differences
in the accuracy with which subjects encoded Flip and Congruent
trials. Figure 3B shows mean directional error for each trial type
on presentation four (that is, the presentation on which these
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two trial types differed). We found no significant main effect of
condition [Flip vs. Congruent, F(1, 11) = 2.554, p = 0.138, par-
tial η2 = 0.189]. These results replicate the finding of Maryott
et al. (2011) and confirm that subjects can successfully incor-
porate unexpected events into their planning and execution of a
reproduced motion sequence.

A fully detailed analysis of the behavioral results is beyond the
scope of this paper, as such analyses of closely-related experiments
have been previously published (Agam et al., 2007; Maryott et al.,
2011), and the focus of this paper is on the neural responses to
new, familiar, and deviant sequence items.

ERPs
Figure 4 illustrates the changes in spatial distribution of ERP
amplitude following disk motion onset as subjects observe famil-
iar (top), new (middle), and deviant (bottom) sequence items.
Each topographical plot displays the mean voltage during a 60 ms
window. These plots suggest that the neural responses to new
and familiar items are similar, with only the amplitude differing,
while the neural response to deviant items is substantially dif-
ferent. We turned to two directed comparisons to quantify this
observation.

Familiar and deviant items
Figure 5A illustrates the neural activity that accompanies familiar
and deviant sequence items. We used the data-driven approach
described above to identify the cluster of electrodes that best cap-
tured (p < 0.001) the difference between the segment that “flips”
on Flip trials and its counterpart on Congruent trials. The cluster
was derived using tcrit = 3.106, the critical t-value at α = 0.01,
df = 11. The resulting cluster consisted of 18 electrodes that were
more positive-going in response to deviant than to familiar seg-
ments, from 396 to 448 ms after disk motion onset. The inset in
Figure 5A depicts the distribution of t-scores between ERPs to
deviant and to familiar segments during that time window and
the locations of the electrodes comprising this cluster; the traces
in the main body of Figure 5A depict ERPs at the cluster, elicited
by deviant and familiar motion segments.

To confirm differences in topography between the neural
responses to familiar and deviant items, we normalized by the
root mean squared electrode voltage in order to correct for
amplitude differences between conditions. Figure 5B illustrates
the distribution of voltage across the scalp after such correc-
tion. The corrected amplitude at three midline electrodes over
the time window from 396 to 448 ms after disk motion onset is
shown in Figure 5C. We ran a 2 × 3 ANOVA with factors con-
dition (deviant and familiar) and electrode (Fz, Cz, and Pz) on
the corrected amplitudes. There was a main effect of condition
[F(1, 11) = 8.249, p = 0.015, partial η2 = 0.429], no main effect
of electrode [F(2, 22) = 2.162, p = 0.139, partial η2 = 0.164],
and no condition by electrode interaction [F(2, 22) = 1.976, p =
0.162, partial η2 = 0.152]. These results confirm what Figure 5C
suggests: amplitude at these three midline electrodes is higher in
response to deviant than to familiar segments, even after correct-
ing for overall amplitude of the response. Thus, the activity of
the response to deviant segments is concentrated at these central
regions, consistent with what’s shown in both the uncorrected

topographical plots in Figure 4 and the corrected topographical
plots in Figure 5B.

New and deviant items
Figures 6, 7 illustrate the differences between neural responses
to deviant and to new sequence items. The clustering algorithm
described above identified two electrode clusters and time win-
dows that differed between ERPs to a new item and ERPs to
a deviant item in the same sequential position. These clusters
were derived using tcrit = 2.201, the critical t-value at α = 0.05,
df = 11.

Cluster 1. Figure 6 depicts the first (by time) resulting cluster
(p = 0.025), which consisted of 16 electrodes that were more
negative-going on deviant than on new segments from 244 to
344 ms after disk motion onset. The inset of Figure 6A shows the
distribution of t-scores between ERPs to the two segments during
that time window (negative values imply the neural response to
deviant items is more negative) and the locations of the electrodes
comprising this cluster; the traces in the main body of Figure 6A
depict ERPs at that cluster, time locked to disk motion onset.
For comparison, the figure also shows traces of the ERP to the
equivalent familiar segment.

To confirm differences in topography between the neural
responses to familiar and deviant items during this time window,
we corrected for the amplitude differences between conditions.
Figure 6B illustrates the distribution of voltage across the scalp
after such correction. The corrected amplitude at three midline
electrodes over the time window from 244 to 344 ms after disk
motion onset is shown in Figure 6C. We ran a 2 × 3 ANOVA
with factors condition (new and deviant) and electrode (Fz,
Cz, and Pz). There was a main effect of condition [F(1, 11) =
48.272, p < 0.001, partial η2 = 0.814] and a main effect of elec-
trode [F(2, 22) = 4.594, p = 0.022, partial η2 = 0.295], but no
significant condition by electrode interaction [F(2, 22) = 0.168,
p = 0.847, partial η2 = 0.015]. Figure 6C shows that at all three
electrodes, the response elicited by new items is more positive
than that response to deviant items at this time window, and that
pattern does not vary across electrodes.

Cluster 2. The second cluster (p = 0.002) consisted of 26 elec-
trodes that were more positive-going on deviant than on new
segments, from 376 to 468 ms after disk motion onset for the seg-
ment. The inset of Figure 7A depicts the distribution of t-scores
between the two conditions during this time window and the
locations of the electrodes comprising this cluster. The traces in
the main body of Figure 7A show ERPs at the cluster, time locked
to disk motion onset.

To confirm differences in topography between the neural
responses to new and deviant items during this second time
window, we corrected for the amplitude differences between con-
ditions. Figure 7B illustrates the distribution of voltage across
the scalp after such correction. The corrected amplitude at three
midline electrodes over the time window from 376 to 468 ms
after disk motion onset is shown in Figure 7C. We ran a 2 × 3
ANOVA with factors condition (new and deviant) and electrode
(Fz, Cz, and Pz). There was a marginal main effect of condition
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FIGURE 4 | Topographical plots of ERP amplitude across the scalp, over the course of familiar, new, and deviant motion segments. Each plot shows
the mean distribution of voltage during the 60 ms window centered on its labeled time point.

[F(1, 11) = 3.776, p = 0.078, partial η2 = 0.256], no main effect
of electrode [F(2, 22) = 2.339, p = 0.120, partial η2 = 0.175], and
a significant condition by electrode interaction [F(2, 22) = 7.129,
p = 0.004, partial η2 = 0.393]. The amplitude at each electrode
over this time window is shown in Figure 7B. At Fz and Cz,
the response to deviant items is more positive-going than the
response to new items; at Pz the effect is reversed. Post hoc t-tests
confirmed this interaction, t(11) = 3.700, p = 0.003.

These results suggest that the two electrode clusters depicted in
Figures 6A, 7A likely capture effects corresponding to two differ-
ent ERP sub-components. The centro-parietal cluster illustrated
in Figure 6 occurs due to a parietal negativity elicited by deviant
items relative to new items. At the time window from 244 to
344 ms after disk motion onset, it appears that the neural response
to new items has begun to ramp up toward a broad positive peak
at these electrodes The neural response to deviant items, on the
other hand, is still negative-going at 244–344 ms, but its later pos-
itivity, at this cluster, is larger than that elicited by new items. Note
that the late positivity at these electrodes has highest amplitude
in response to deviant sequence items, next highest in response
to new sequence items, and is lowest in response to familiar
items.

The pattern shown in Figure 7 is very different. The second
cluster is found at the time window encompassing a fronto-
central peak in the neural response to deviant items. This peak
is much higher than the positivity peak seen at this cluster of
electrodes in the neural responses to new and familiar items.
It’s particularly important to note that the ERP traces associated
with new and familiar items at this cluster do not differ from

each other, while the traces associated with the deviant items are
substantially more positive-going.

DISCUSSION
We recorded high-density scalp EEG while subjects performed
a visuomotor sequence-learning task, with occasional deviant
elements inserted into recently-learned sequences. Subjects suc-
cessfully reproduced the sequences, including the deviant items,
demonstrating an ability to incorporate unexpected events into
their planning and execution of a motion sequence. Because
the sequence changed every 60–90 s, subjects had to dynamically
update their representation of the relevant sequential structure.
In order to characterize the neural mechanisms that respond to
unpredictability within these newly-learned sequences, we mea-
sured ERPs to new, familiar, and deviant sequence items. Relative
to both new and familiar items, deviant items elicited strong P3
enhancement over fronto-central areas that began about 300 ms
after item onset and peaked sharply around 400–450 ms. Deviant
items also elicited a broad P3 enhancement over centro-parietal
areas that began around 400 ms after disk motion onset and
peaked around 450 ms. New items elicited similar P3 enhance-
ment at the centro-parietal cluster relative to familiar items,
although that response was smaller and earlier than the response
to deviant items. It’s important to note that there is an unmistake-
able P3-like central positivity elicited by familiar items as well; this
positivity is, however, smaller than that elicited by new or deviant
items.

Note that we created ERPs by time-locking to the onset of
disk motion at the beginning of each segment. While there is
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A

B C

FIGURE 5 | (A) ERPs to familiar and deviant sequence items at a
cluster of central electrodes. The inset topographical plot shows the
locations of the 18 electrodes making up the significant cluster, and the
distribution across the scalp of t values at 396–448 ms after disk
motion onset. The traces show ERPs at the cluster, timelocked to disk
motion onset of each segment. Error bars are repeated-measures
standard error of the mean, and do not reflect the output of the

statistical significance testing process. (B) Topographical plots of the
spatial distribution of voltage from 396 to 448 ms after disk motion
onset, after correcting for overall amplitude differences between
conditions. Topographies appear to differ substantially. (C) Mean
corrected amplitude from 396 to 448 ms after disk motion onset, at
three midline electrodes. The response to deviant items is significantly
more positive-going than the response to familiar items.

a substantial literature on motion-onset evoked potentials (see
review by Kuba et al., 2007), including reports of motion-onset
P3 activity (Kuba et al., 1998; Agam and Sekuler, 2007), it is likely
that the neural response to motion onset is more variable in both
magnitude and latency than the response to a luminance onset or
offset, reducing the signal to noise ratio of our data (Luck, 2005).
It is therefore possible that some early or transient ERP compo-
nents are not adequately captured. Nonetheless, we believe that
our P3 results are, if anything, strengthened by their robustness
in this situation.

NEURAL RESPONSES TO SEQUENCE DEVIANTS
This experiment fills an important gap in the previous work
on the neural response to sequence deviants, most of which
has been done using a serial reaction time task (SRTT). In
the SRTT, subjects make speeded key presses to a stream
of letters or other stimuli (Nissen and Bullemer, 1987).
When a repeating sequence of letters is embedded within
the stream, subjects respond more quickly to those repeat-
ing items, and some subjects develop explicit knowledge of
the sequence’s presence and structure. Subjects who have such

explicit knowledge show an enhanced P3 to letters that vio-
late the established sequence, but subjects without such knowl-
edge do not (Schlaghecken et al., 2000; Ferdinand et al.,
2008). Similarly, subjects who are instructed that an under-
lying sequence exists show an enhanced P3 (Rüsseler et al.,
2003).

Interestingly, in speeded sequential learning tasks, deviant
events interfere with behavioral performance (Nattkemper and
Prinz, 1997; Rüsseler and Rösler, 2000; Schlaghecken et al., 2000).
On the other hand, we saw no or minimal behavioral effects of
the deviant events in our task. One possible explanation for this
is that the neural representation of dynamic motion trajectories
differs substantially from the neural representation of sequences
of individual key presses or static items, as in the SRTT. However,
we believe that the difference reflects the nature of the response
required. Rather than make speeded single responses, our sub-
jects must encode the entire sequence into short-term memory,
maintain that representation for several seconds, and then gener-
ate a complete reproduction. The reaction-time effects of deviant
sequence items that have been seen in the SRTT are thus unlikely
to occur in such a task setting.
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FIGURE 6 | (A) ERPs to new, deviant, and familiar sequence items at one
of the two clusters differentiating these conditions. The inset topographical
plot shows the locations of the electrodes making up the slightly
right-lateralized centro-parietal cluster and the distribution of t values at
244–344 ms after disk motion onset; the traces show ERPs at those
electrodes. (B) Topographical plots of the spatial distribution of voltage

from 244 to 344 ms after disk motion onset, after correcting for overall
amplitude differences between conditions. Deviant items appear to elicit
markedly different topographies from new items. (C) Mean corrected
amplitude from 344 to 444 ms after disk motion onset, at three midline
electrodes. The response to new items is significantly more positive-going
than the response to deviant items.

Rüsseler and Rösler (2000) drew on Nattkemper and Prinz
(1997)’s SRTT variant in which multiple stimuli mapped onto
each response key. This allowed them to separate the neural
response to perceptual deviants (new letter but same response)
from the neural response to items that were deviant in both the
perceptual and motor domains (new letter and different key-
press). They found an enhanced P3 only to these latter double
deviants, and concluded that the P3 effect reflects the need to
change or update a response rather than merely detecting an
unexpected stimulus (see also Goldstein et al., 2002). In our task,
participants are explicitly aware of the sequential structure, as
they must memorize and reproduce it. Thus, a deviant sequence
item in our study requires participants to change a planned motor
output and to encode information about the new event. Our find-
ing that the P3 is enhanced by deviant sequence items is consistent
with Rüsseler and Rösler’s hypothesis. A recent related study mea-
sured ERPs while subjects observed short sequences of pictures

depicting the steps of everyday actions, ending in either a cor-
rect execution of the action or an error (de Bruijn et al., 2007).
Observed errors elicited an enhanced P3 relative to correct execu-
tions. In de Bruijn et al.’s task, subjects were presumably drawing
on their previous knowledge about the sequential structure mak-
ing up the actions; observed errors deviate from this structure but
do not require a response from the participant.

P3 FINDINGS AND INTERPRETATION
Previous work on the P3 has identified two distinct subcompo-
nents with very similar timing (e.g., Squires et al., 1975; Spencer
et al., 2001; Goldstein et al., 2002; Linden, 2005; Polich, 2007).
The slightly earlier subcomponent, the Novelty P3 (sometimes
called the P3a), is centered over fronto-central regions, and is
elicited by deviant stimuli that are salient and low-probability,
regardless of whether they require a response (Goldstein et al.,
2002). The second subcomponent, the P300, is more posterior,
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FIGURE 7 | (A) ERPs to new, deviant, and familiar sequence items at the
second of the two clusters differentiating these conditions. The inset
topographical plot shows the locations of the electrodes making up the
slightly right-lateralized centro-parietal cluster and the distribution of t
values at 376–468 ms after disk motion onset; the traces show ERPs at
those electrodes. (B) Topographical plots of the spatial distribution of

voltage from 376 to 468 ms after disk motion onset, after correcting for
overall amplitude differences between conditions. Deviant items appear to
elicit markedly different topographies from new items. (C) Mean corrected
amplitude from 376 to 468 ms after disk motion onset, at three midline
electrodes. There is a significant interaction between electrode and
condition.

centered over centro-parietal electrodes. The P300 is elicited by
task-relevant stimuli such as targets. Deviant sequence elements
in the SRTT enhance the P300 (also sometimes called P3b)
subcomponent (Schlaghecken et al., 2000; Rüsseler et al., 2003;
Ferdinand et al., 2008). This seemingly-clear theoretical distinc-
tion has been made more complex by later work demonstrating
Novelty P3-like activity evoked by task-relevant cues and targets
(e.g., Gaeta et al., 2003; Barcelo et al., 2006). Polich (2007) has
proposed a model of the cognitive processes corresponding with
the Novelty P3/P3a and the P300/P3b subcomponents in which
the Novelty P3 indexes processes involved in allocating or switch-
ing attention to an unlikely event, and the P300 reflects changing
the contents of working memory. Our findings are consistent with
this model.

Our results support the presence of two distinct late positivities
enhanced by deviant sequence items relative to new and familiar

items. One, a right-lateralized centro-parietal ERP had the high-
est amplitude in response to deviant items, the next highest in
response to new items, and the lowest in response to familiar
items (Figure 6). This response appears to be similar to the P300
(or P3b), in that it is generally posterior of Cz and comprises a
broad positive peak. If it is a variant of the P3b, that suggests that
it reflects the process of encoding a motion segment into work-
ing memory in preparation for reproducing it (Polich, 2007).
Over repeated presentations of the same sequence, the working-
memory adjustments required after each succeeding presentation
are reduced, leading to the decreased amplitude for familiar items
relative to the other two conditions (as seen by Agam et al., 2010),
even though the segment is still task-relevant. We find the right-
lateralization of this positivity particularly intriguing, given the
right-hemisphere bias in visual attention (Corbetta and Shulman,
2002).
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The second late positivity enhanced by deviant sequence items
is a more fronto-central ERP with sustained high amplitude
associated with deviant sequence items and a much smaller pos-
itivity associated with new and familiar items (Figures 5, 7).
This response appears to be similar to the Novelty P3 (or P3a)
in its sharper peak and true fronto-central distribution. These
characteristics, and its enhancement to deviant items while not
dissociating new from familiar items, strongly suggest that this
positivity enhancement is specifically associated with expecta-
tion violation, and may reflect either the shift of attention to
the unexpected event, or a process of inhibiting or rejecting a
representation and motor plan that were actively maintained in
working memory (Yu and Dayan, 2005; Polich, 2007; Vossel et al.,
2009).

The identification of an enhanced Novelty P3/P3a-like sub-
component in the response to deviant sequence items is espe-
cially interesting given that the deviant events in our study are
quite different from the usual eliciting conditions for a Novelty
P3 (e.g., Goldstein et al., 2002; Polich and Comerchero, 2003;
Polich, 2007). Our deviant items are motion segments, at the
same speed as other segments, within the same general task
constraints; they are unexpected only in that their direction of
motion is 180◦ different from that which subjects are presumed to
expect. Observing a component that bears a strong resemblance
to the Novelty P3 in this setting is thus a surprising and impor-
tant finding, and may expand our understanding of novelty and
deviance processing in tasks that require more elaborate cognitive
processing.

CONCLUSIONS
Differences between the neural responses to new and to deviant
stimuli highlight the importance of prediction-monitoring in
cognition. On the surface, new and deviant items are quite
similar: both require the subject to perceive and encode a direc-
tion of motion that has not been previously observed, in order
to reproduce it from memory. The difference between the two
types of events lies in their contexts. When viewing a deviant
sequence item, participants have strong predictions about the
disk’s direction of motion; when viewing a new item, their pre-
dictions are much more uniformly distributed. The differences in
neural response between these two conditions therefore reflects
the effects of these predictions on perceiving and encoding the
element.

Although our results illuminate the relationship between
sequential structure, unpredictability, and the P3, our study
does have two important limitations. First, because partici-
pants were explicitly aware of both the sequential structure of
the task and the points at which new trials (and thus new
sequences) began, these findings cannot be extended to explain
the mechanisms by which people identify sequential structure in
a continuous, unbroken stream of sensory input, nor to explain
the processes by which people identify changes in that struc-
ture. Second, because deviant items in this paradigm always
differed from the familiar items by 180◦, we cannot say any-
thing about the effect of the magnitude of prediction viola-
tions. Both of these questions will need to be investigated before
the relationship between expected unpredictability, unexpected

unpredictability, and the subcomponents of the P300 can be fully
described.

In summary, we have shown that, when learning motion
sequences, people show distinct neural responses to new stim-
uli, familiar stimuli, and stimuli that deviate from the governing
sequence. The neural responses to a deviant sequence item dif-
fer from those to a new sequence item, further supporting the
hypothesis that identifying prediction errors is a cognitive pro-
cess. Finally, our results extend previous work on monitoring
sequential regularities and show that the neural mechanisms
involved are similar when the sequential structure is frequently
updated and when it is stable over time.
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