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Background: Patients with congenital and acquired hemiparesis incur long-term func-
tional deficits, among which the loss of prehension that may impact their functional
independence. Identifying, understanding, and comparing the underlying mechanisms of
prehension impairments represent an opportunity to better adapt neurorehabilitation.

Objective: The present review aims to provide a better understanding of precision grip
deficits in congenital and acquired hemiparesis and to determine whether the severity and
type of fine motor control impairments depend on whether or not the lesions are congenital
or acquired in adulthood.

Methods: Using combinations of the following key words: fingertip force, grip force, pre-
cision grip, cerebral palsy, stroke, PubMed, and Scopus databases were used to search
studies from 1984 to 2013.

Results: Individuals with both congenital and acquired hemiparesis were able to some
extent to use anticipatory motor control in precision grip tasks, even if this control was
impaired in the paretic hand. In both congenital and acquired hemiparesis, the ability to
plan efficient anticipatory motor control when the less-affected hand is used provides a
possibility to remediate impairments in anticipatory motor control of the paretic hand.

Conclusion: Surprisingly, we observed very few differences between the results of studies
in children with congenital hemiplegia and stroke patients. \We suggest that the underlying
specific strategies of neurorehabilitation developed for each one could benefit the other.

Keywords: fingertip force, grip force, precision grip, cerebral palsy, stroke

INTRODUCTION
Brain lesion is the most prevalent cause of physical disability:
cerebral palsy occurs in 1 out of 303 live births (Murphy et al,,
1993; Stanley et al., 2000; Center for Disease Control and Preven-
tion, 2014a), and stroke occurs in 0.7% of adults below 45 years,
3% of adults 45-64 years old, and in 8.3% of adults older than
65 years (Center for Disease Control and Prevention, 2014b). Man-
ual dexterity is frequently impaired in these patients, resulting in
long-term functional deficits. Thus, it is important to identify the
underlying causes of these deficits in order to better focus neurore-
habilitation based on concrete scientific evidence, with the aim of
improving patients’ function during typical daily activities.
Various levels of sensorimotor processing can be affected by
unilateral brain lesions and influence dexterity. During the last
25 years, precision grip tasks, allowing the measure of fingertip
forces during manipulation, have been developed to study skilled
manual dexterity (Johansson and Westling, 1984, 1988a; Johans-
son, 2002). This approach has also been used to delineate the
mechanisms underlying prehensile control in children with hemi-
plegic cerebral palsy (HCP) and adults with hemiplegic stroke.

The present review provides an overview of precision grip impair-
ments in these patients, with the aim of comparing impaired
mechanisms in congenital versus adult occurrence of the lesion.
Surprisingly, despite many congruent disabilities in these patholo-
gies, we found only a few papers in the literature including both
children with HCP and adult stroke patients: one describing the
effects of upper-extremity casting (Lanin et al., 2007) and one on
oral anti-spasticity medication (Montané etal.,2004). The similar-
ities and differences in the mechanisms underlying precision grip
in both pathologies have not been examined. Due to differences
in the pathophysiology after lesion, differential impairments are
generally expected. In children with HCP, depending on the age
the CNS damage occurs in utero, there may be a complete reorga-
nization of the corticospinal projections, whereby movements of
the paretic hand may be controlled entirely by the contralesional
hemisphere (Staudt et al., 2004; Eyre et al., 2007; Gordon et al.,
2013). Such structural plasticity does not occur following CNS
injury later in life (Newton et al., 2006). Despite the great dispar-
ity in age (generally 6-14 years in children and more than 60 years
in adults) and the variation in lesion locations, we document a
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FIGURE 1 | To achieve a precision grip movement, the goal of the task is
sent to an inverse model (1) that generates a motor command. Due to
this motor command, a movement of the upper limb is generated. In parallel,
a forward sensory and motor model (2) is generated. This forward model
predicts the movement induced by the motor command and estimates the

sensory feedback of the new state of the hand and arm. It allows comparison
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with actual feedback (4) and consequently there is an updating of the motor
command. Actual feedback emanates from sensors and is transmitted to the
feedback controller (4) after sensory processing (3). The red dotted frame
represents the feedforward components, and the green frame denotes the
feedback components. Both can be affected at different levels in unilateral
brain lesions, with consequential impairment to precision grip.

remarkable similarity in fingertip force impairments, highlight-
ing impairments in timing, coupling, and amplitude of prehensile
forces. The specific impairments documented may allow us to

more precisely focus neurorehabilitation.

PREDICTIVE AND REACTIVE GRIP FORCE CONTROL

Two types of control mechanisms are used to perform skilled
hand movements: predictive mechanisms — that enable one to
anticipate the movement on the basis of sensorimotor memo-
ries of the manipulated object, and reactive mechanisms — that
allow for correction of the movements/forces. Reactive mecha-
nisms are typically feedback loops emanating from sensory and/or
visual afferents. It is generally accepted that predictive mecha-
nisms, also called feedforward or anticipatory mechanisms, are
based on internal models in the central nervous system (Wolpert
and Ghahramani, 2000). These include: (1) an inverse model that
uses the current state of the limb and the specific context to gen-
erate an appropriate motor command, (2) a forward sensory and
motor model that predicts the movement resulting from the motor
command and estimates the sensory feedback of the new state of
the limb, allowing a comparison (3) with actual feedback (4) and
subsequent adjustment of the motor command (Figure 1). It is
the close interaction between predictive and reactive mechanisms

that allows for the production of smooth movements.

In the context of brain lesions, prehension deficits could be
explained by impairments in predictive and/or reactive mecha-
nisms. This is of particular interest for the design of rehabilita-
tion programs. These mechanisms have been well-studied and
described in healthy adults and typically developing children,

especially through analysis of the timing and magnitude of grip
force (GF) and the tangential load forces (LF) during grip-lift
manipulation (Johansson and Westling, 1984, 1988a; Forssberg
etal., 1991, 1992, 1995; Gordon et al., 1992; Witney et al., 2004). In
healthy adults, there is a well-described sequence of events com-
prising a typical coordination pattern (Johansson and Westling,
1984, 1988a) during a grip-lift task (see Figure 2): first the contact
between fingers and the object is initiated in a quick succession
(T0-T2). During the preload phase (T2-T3), GF increases prior
to LF onset. GF and LF subsequently increase in parallel during
the loading phase (T3-T4). Forces rates are characterized by single
peaks that are well-timed. After the parallel increase of forces, the
forces are steadily maintained during a static phase (T5-T6) in
which the object is held in the air, that is followed by the release of
the object including a replacement phase (T6—T7) an a subsequent
rapid decrease in the grip and LF (T7-T8) until the thumb and
index fingers are released from the object (T8-T9).

The adaptation of the forces to the object’s properties dur-
ing precision grip tasks requires the use of tactile (Westling
and Johansson, 1987) and weight-related information (Johans-
son, 1996). Adaptation to various load and frictional conditions
has been well-established. However, such information about the
object’s physical properties is not instantly available due to delays
in the transmission of sensory information. Therefore, to manage
objects with adequate forces in everyday life, GF and LF forces are
planned in an anticipatory manner on the basis of internal rep-
resentations of the objects from prior manipulatory experience
(Johansson and Westling, 1987, 1988a; Gordon et al., 1993), i.e.,
before initiating the movement.
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FIGURE 2 | Representation of the grip (red) and load (blue) forces
applied on a handheld object during a grip-lift task, as well as the
vertical position (lower panel) of the handheld object. The different
phases of the grip-lift task are highlighted with dotted lines. TO-T2, the
contact between fingers and the object is initiated in a quick succession.
T2-T3, preload phase, GF increases prior to LF onset. T3-T4, loading phase,
GF and LF subsequently increase in parallel. T5-T6, static phase, followed
by the release of the object including a replacement phase (T6-T7) of a
subsequent rapid decrease in the grip and load forces (T7-T8) until the
thumb and index fingers are released from the object (T8-T9).

In typically developing children, this anticipatory coordination
of GF and LF matures until approximating that of adults at the age
of 6-8 years (Forssberg et al., 1991). Before that age, the forces do
not increase in parallel, and there are negative LFs at the start and
excessive and multiple increments in GF during the loading phase
(Forssberg et al., 1991).

This immature strategy has been interpreted as a control strat-
egy relying mainly on feedback. Due to the delay of the feedback,
the adjustment of the motor command is sequential, which does
not allow smooth movements. With continuing maturation and
experience during childhood, children utilize internal representa-
tions of the objects, allowing a predictive (anticipatory) control of
the movement (Forssberg et al., 1991).

PREDICTIVE AND REACTIVE GF CONTROL IN A BIMANUAL CONTEXT
The integration of the precise GF and LF coupling in a bimanual
context have been studied recently when opposite or concomitant
patterns of force are required in the hands: a handheld object had
to be placed on the top of another object statically held in the other
hand (Islam et al., 2011) or two pieces of a handheld object had to
be pulled apart (Smits-Engelsman et al., 2011). These tasks, when
performed with healthy adults, demonstrated coordinated actions
of both hands.

The use of one hand to generate a rapid increase of LF to
an object held by the opposite hand has also been used as a
model of coordination. In that context, a predictive increase in
GF is observed before the rapid LF increase (Eliasson et al., 1995;
Bleyenheuft et al., 2009). After the brisk LF increase, there is
a systematic second increase in GEF, programed as a predictive
action that allows an optimal stabilization of the object around the

brisk force increase. Self-induced brisk load increases also mature
during childhood, approaching adult values at 9-10 years of age
(Eliasson et al., 1995; Bleyenheuft and Thonnard, 2010a).

METHODS

DATA SOURCES AND LITERATURE SELECTION

PubMed and Scopus electronic databases were searched using
combinations of the following terms: GF, fingertip force, and preci-
sion grip either with “cerebral palsy” or “stroke.” Studies from 1984
to 2013 were retained. An additional hand-search was conducted
in the reference lists of the articles meeting the search criteria. The
search procedure included only studies in English. Studies focused
on heat and pain, as well as animal studies and studies dedicated
to other clinical forms of CP (e.g., diplegic or bilateral CP) were
excluded.

RESULTS

Skilled hand movements both in pediatric HCP and adult stroke
patients are impaired (Eliasson et al., 1991, 1992, 1995a, 20006
Steenbergen et al., 1998, 2008; Forssberg et al., 1999; Gordon and
Duff, 1999; Gordon et al., 1999, 2003, 2006; Eliasson and Gordon,
2000; Duff and Gordon, 2003; Duque et al., 2003; Hermsdorfer
et al., 2003; Nowak et al., 2003; Takahashi and Reinkensmeyer,
2003; Smits-Engelsman et al., 2004; Wenzelburger et al., 2005;
Blennerhassett et al., 2006, 2008; McDonnell et al., 2006; Mutsaarts
et al., 2006; Raghavan et al., 2006; Mackenzie et al., 2009; Quaney
et al., 2010; Seo et al., 2010; van Elk et al., 2010; Naik et al., 2011;
Prabhu et al., 2011; Bleyenheuft and Gordon, 2013). Table 1 high-
lights the precision grip impairments that have been observed on
the more affected (paretic) hand of children with HCP and adults
with stroke. Figure 3 provides examples of forces coordination in
the more affected hand of a child with congenital hemiplegia (A)
and a stroke patient (B).

CHILDREN WITH HCP

In children with HCP, the fingertip forces deviate from that
observed in age-matched typically developing children: the timing
of GF and LF onset is disrupted, GF is excessive, especially at the
onset of LF increase (Eliasson et al., 1991, 1992, 1995a; Forssberg
et al., 1999; Gordon and Dulff, 1999; Gordon et al., 1999; Herms-
dorferetal., 2003) and present multiple successive increments that
can also be observed in the force rates. The object is frequently
pushed down toward the support, generating a negative LF before
initiating the lifting phase. While encountering these impairments
in precision grip, children with HCP demonstrated some abil-
ity to adapt to various weight and friction conditions, provided
they had a greater number of trials to adapt to new conditions
(Steenbergen et al., 1998; Gordon and Duff, 1999). As shown in
a longitudinal study, these impairments are not increasing with
time (Eliasson et al., 2006), which is congruent with other studies
on deficits in maximal grip strength and isometric finger forces
(Smits-Engelsman et al., 2004). During the release of a handheld
object, children with HCP demonstrate also a sequential coor-
dination of forces (Eliasson and Gordon, 2000). However these
forces are adapted to the weight of the object (Eliasson and Gor-
don, 2000). Impairments in replacement and release of handheld
objects are increased when speed and/or accuracy are imposed
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Table 1| Deficits of precision grip in children with HCP and stroke patients.

HCP

Stroke

a. Preload phase
Push down object before lifting
Longer duration

b. Loading phase
Asynchronous onset of GF and LF

Excessive GF at LF increase

Multiple increments in force rates

c. GF
Higher

Altered digit direction

d. Release
Sequential force coordination

e. Adaptation to different weights

Need more trials to adapt

f. Adaptation to different frictions
Need more trials to adapt

g. Predictive abilities
Demonstrated

Anticipation perturbed

v Eliasson et al. (1991); Duque et al. (2003)
v Eliasson et al. (1991); Duque et al. (2003)

v Eliasson et al. (1991, 1992, 1995a, 2006);
Forssberg et al. (1999); Gordon and Duff (1999);
Gordon et al. (1999); Duque et al. (2003)

v Eliasson et al. (1991, 1992); Duque et al. (2003)

v Eliasson et al. (1991, 1992); Duque et al. (2003)

v Eliasson et al. (1991, 1992, 1995a); Forssberg
et al. (1999); Gordon and Duff (1999); Gordon et al.,
1999; Duque et al. (2003)

v'Duff and Gordon (2003); Gordon et al. (2003)

v Eliasson et al. (1992); Steenbergen et al. (1998);
Gordon and Duff (1999)

v Eliasson et al. (1995a); Duff and Gordon (2003)

v Gordon et al. (1999); Duff and Gordon (2003);
Gordon et al. (2006); Steenbergen et al. (2008)

v Eliasson et al. (1992); Gordon et al. (2006);
Mutsaarts et al. (2006); Steenbergen and Gordon
(2006); Bleyenheuft and Thonnard (2010a)

v Gordon et al. (1999); Steenbergen et al. (2008)

v"McDonnell et al. (2006)

v 'Hermsdorfer et al. (2003); Nowak et al. (2003); Takahashi

and Reinkensmeyer (2003); Wenzelburger et al. (2005);
Blennerhassett et al. (2006); McDonnell et al. (2006);

Raghavan et al. (2006); Quaney et al. (2010); Naik et al. (2011)

v'Blennerhassett et al. (2006); McDonnell et al. (2006)

v'Hermsdorfer et al. (2003); Wenzelburger et al., 2005;
Blennerhassett et al. (2006); McDonnell et al. (2006)
v'Blennerhassett et al. (2006); McDonnell et al. (2006)

v'Hermsdorfer et al. (2003); Nowak et al. (2003);
Wenzelburger et al. (2005); Blennerhassett et al. (2006);
McDonnell et al. (2006)

v'Seo et al. (2010)

v'Naik et al. (2011)

v"McDonnell et al. (2006); Raghavan et al. (2006)

v Hermsdorfer et al. (2003); Nowak et al. (2003);
Hermsdorfer et al. (2004)

v'Nowak et al. (2003); Takahashi and Reinkensmeyer (2003);

Hermsdorfer et al. (2004); McDonnell et al. (2006);
Blennerhassett et al. (2007)
v'Raghavan et al. (2006)

Transfer from non-paretic to paretic

(Gordon et al., 2003). However, it is not clear if the impairments
observed are linked to predictive or reactive control of precision
grip.

Predictive abilities in grasp control were demonstrated in chil-
dren with cerebral palsy, since they are able to form and retain
internal representations of new objects (Duff and Gordon, 2003);
there is an influence of bimanual tasks on the performance of
the more and less-affected hand (Steenbergen et al., 2008) and
these children have the ability to transfer learned forces from the
less-affected to the more affected hand (Gordon et al., 1999, 2006).
However these predictive abilities (Mutsaarts et al., 2006; Steenber-
gen and Gordon, 2006; Bleyenheuft and Thonnard, 2010b), as well
as their motor imagery (van Elk et al., 2010), are clearly impaired.
It has been suggested that the impaired precision grip of children
with HCP is the consequence of an inability to use internal models
of manipulated objects. This could be due to inefficient feedback

from the paretic hand (Gordon and Duff, 1999; Gordon et al.,
1999) or to high-level deficits in sensorimotor integration (Elias-
son et al., 1992; Bleyenheuft and Thonnard, 2010b). The role of
predictive and/or reactive deficits in the precision grip of children
with HCP has been further studied using a paradigm (self-or-
examiner-imposed load to a handheld object) where both were
tested independently (Bleyenheuft and Thonnard, 2010b). Predic-
tive and reactive conditions were observed in the paretic hand:
in the paretic hand, children were able to anticipate events prior
to the brisk load increase, but were unable to pursue predictive
control afterward (Bleyenheuft and Thonnard, 2010b). Interest-
ingly, these predictive motor control deficits were not observed in
the less-affected hand. The less-affected hand had been previously
studied in paradigms showing that while anticipatory control is
present (Gordon etal., 1999, 2006; Steenbergen et al., 2008), subtle
deficits can be observed (Steenbergen et al., 1998; Forssberg et al.,
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FIGURE 3 | Representation of typical traces on the paretic hand of (A) a child with congenital hemiparesis and (B) a stroke patient. T2-T3, preload
phase, T3-T4, loading phase, T5 start of static phase.

1999; Gordon et al., 1999; Mutsaarts et al., 2006; van Elk et al.,
2010). These subtle deficits are congruent with those observed on
the more affected hand but are not as pronounced: compared to
controls, manipulation with the less-affected hand demonstrates
lower force rates, increased duration of preload phase, negative
LF during the preload phase, overall higher GE, and an increase
of forces that is less parallel (Gordon et al., 1999). Nevertheless,
anticipatory control is present (Gordon et al., 1999, 2006; Steen-
bergen et al., 2008) suggesting lateralized impairments in motor
planning underlying precision grip in HCP, which could reflect a
lateralized deficit in the sensorimotor integration (Prabhu et al,,
2011). In bimanual tasks, however, children with HCP demon-
strate less accurate performance in both hands when compared
to unimanual use (Islam et al., 2011; Smits-Engelsman et al,,
2011), suggesting that while dissociated in unimanual motor plan-
ning, each effector can be influenced by the other in a bimanual
context.

These results, consistent with previous findings, suggest that
the abilities of the less-affected side could be used in neuroreha-
bilitation to improve motor control of the paretic side. For a recent
systematic review on sensorimotor deficits in children with HCP,
see also Bleyenheuft and Gordon (2013).

STROKE PATIENTS

Precision grip in the paretic hand of stroke patients is also
impaired. The GF is generally higher — which is also seen already
at the onset of the LF increase — and prolongations are observed
in the timing of the movement: there is an asynchronous onset
of GF and LF, leading to a longer preload phase and discontinu-
ous force increase (Hermsdorfer et al., 2003; Nowak et al., 2003;
Takahashi and Reinkensmeyer, 2003; Wenzelburger et al., 2005;
Blennerhassett et al., 2006, 2008; McDonnell et al., 2006; Ragha-
van et al., 2006; Quaney et al., 2010). This longer preload phase
is also correlated to clinical measures of handgrip limitations

(Blennerhassett et al., 2008). Similar to congenital hemiparesis,
the stroke patients push the object on the table before lifting it
(McDonnell et al., 2006). There is a reduced ability to adapt to
changes in the object’s weight (McDonnell et al., 2006; Raghavan
et al., 2006), although some adaptations still occur. The release
phase is also impaired, showing sequential force coordination
(Naik et al., 2011). Altered digit GF direction during prehension
tasks in stroke patients has a direct impact on grip (Seo et al,
2010), but can be improved through visual force feedback (Seo
etal., 2011). Deficits in prediction of the inertial load profile aris-
ing from voluntary movement with handheld objects were also
demonstrated in patients with acute stroke performing lift-and-
hold tasks and point-to-point movements (Nowak et al., 2003).
Since the same type of impairments has been delineated in patients
with cortical and subcortical stroke — increased GF and deficits
in temporal coupling — the authors suggested that the internal
models responsible for precise regulation of forces were impaired.
While these models are thought to be formed in the cerebellum
(Wolpert et al., 1998; Wolpert and Flanagan, 2001), Nowak et al.
(2003) argued that cortical and subcortical structures should be
involved in the subsequent process of issuing motor commands.
Studies investigating the ability of patients with chronic stroke to
learn anticipation (either by force disturbance during a reaching
task (Wenzelburger et al., 2005), or presenting objects with differ-
ent shapes (Raghavan et al., 2010) showed an impaired ability to
adapt. However, a partial ability to form and use internal models
was retained (Wenzelburger et al., 2005). In contrast, Hermsdorfer
et al. (2003, 2004) suggested that internal models are preserved
in patients with chronic cerebral stroke since the feedforward
nature of the GF coupling with LF was preserved during object
oscillations. The difference observed in these two paradigms may
be linked to the fact that the GF-LF coordination was studied,
respectively, in discrete and rhythmic coordination patterns. We
hypothesize that rhythmic (more robust) coordination might be
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preserved while anticipatory motor control needed for discrete
tasks might be impaired. These high-order motor planning deficits
observed in patients with subcortical subacute and chronic stroke
are ameliorated by transfer of information from the unaffected
hemisphere (at least in right hemiparesis) (Raghavan et al., 2006).

The precision grip impairments described for various stroke
patients are of importance because there is an impact of uniman-
ual dysfunction on bimanual tasks, and therefore on activities of
daily living (Miiller and Dichgans, 1994). Excessive GF and deficits
in the temporal coupling of the forces have been observed in the
paretic hand of stroke patients (cortical, subcortical, and cerebellar
lesions). On the basis of one of the largest studies of precision grip
control after stroke, the excessive GF was attributed to impaired
sensory feedback (Blennerhassett et al., 2007). The lack of tempo-
ral coupling was linked to deficits in developing internal models.
Temporal coupling impairments could also be due to disturbed
feedback transmission — this implies that an inability to update the
sensorimotor memory. Predictive and reactive nature of deficits
in precision grip have also been assessed further using the self or
examiner brisk loading bimanual system described for children
with HCP in order to test both of them separately. Deficits high-
lighted in the paretic hand were similar to those observed on the
more affected hand of children with HCP. In predictive conditions,
while an anticipatory control was present, temporal deficits were
shown after brisk load increase. In reactive conditions, a slight
increase was observed in the reflex latency. The less-affected hand
did not differ from age- and sex-matched healthy controls (Dispa
etal., 2014).

Previous studies including analysis of precision grip in the less-
affected hand in patients with unilateral middle cerebral artery
stroke (Quaney et al.,2005) showed an increase GF at lift-off across
dynamic and static portions of the grip-lift task. In patients with
subcortical lesion (subacute phase), the ipsilesional hand was also
affected with a slowing of movements and poor coordination of
grip and lift forces (Nowak et al., 2007).

Both in stroke patients and children with HCP, major precision
grip impairments are observed in the paretic hand. Many of the
deficits highlighted in the prehension of children with HCP and
stroke patients present similarities: excessive GF, lack of GF and
LF coupling, negative LF at the onset of the movement, release
impairments, and a decreased ability to adapt to different loads
(Table 1). These impairments are likely due to impairments in
both predictive and reactive process.

IMPLICATIONS FOR REHABILITATION

Various implications for rehabilitation could arise from precision
grip deficits described in both congenital and acquired hemipare-
sis. First, as a consequence of deficits observed in the integration
of sensory feedback in the anticipatory control of precision grip,
one could suggest training of sensory abilities, as these are needed
for precision grip tasks and are traditionally considered as a pre-
requisite for the performance of prehension tasks (Moberg, 1958;
Jones, 1996; Gordon et al., 1999). The idea that recovery of the
sensory system is needed and/or useful for motor recovery is
widespread (Peurala et al., 2002; Smania et al., 2003; Blennerhas-
sett et al., 2007; Conforto et al., 2007; Shirahashi et al., 2007),
and partly forms the basis of some treatment approaches such as

neurodevelopmental treatment (NDT). A recent paper on tactile
spatial resolution in acute stroke patients even suggests that the
link between sensory and motor modalities is such that pure
motor stroke patients temporarily develop a hypersensibility on
the paretic hand to compensate for the absence of movement
(Doh et al., 2008). This implies a strong link between sensory
and motor functions. Therefore, one could focus rehabilitation
mainly on sensory modalities with the expectation of enhanc-
ing motor function (Bumin and Kayihan, 2001). This could be
especially true at the beginning of rehabilitation where the motor
deficit is greatest, and there is typically a lack of active movement.
However, this strong link between sensory and motor function
can be questioned as a result of the lack of correlation between
sensory dysfunction and motor deficits (Fugl-Meyer et al., 1975;
Bleyenheuft and Thonnard, 2011). The correlation between sen-
sory modalities and independence in everyday life activities has
been described only as weak to moderate in stroke patients (Carey
and Matyas, 2011). Still in stroke patients, a recent single case
report shows no effect of a change in proprioceptive abilities
on motor recovery (Helliwell, 2009). Regarding children with
HCP, Cooper et al. (1995) stated that “The extent of sensory
loss did not mirror the severity of motor deficit.” Moreover,
a study that included a large sample of children with cerebral
palsy demonstrated that neither tactile pressure detection nor
proprioception was related to manual ability (Arnould et al,
2007).

Many attempts have been made to increase sensory perfor-
mance of stroke patients through long-term rehabilitation (Dan-
nenbaum and Dykes, 1988; Carey et al, 1993; Yekutiel and
Guttman, 1993; Carey and Matyas, 2005; Voller et al., 2006;
Sullivan and Hedman, 2007), or transiently via local anesthe-
sia to the intact hand (Doh et al., 2008) or transcranial direct
current stimulation (Ragert et al., 2008). A recent review sug-
gested that while there is a larger number of studies describing
efficacy of passive sensory training than active sensory train-
ing (Schabrun and Hillier, 2009), there is “insufficient evidence
to support or refute their effectiveness in improving sensory
impairment, upper-limb function” (Doyle et al., 2010). How-
ever, a critical appraisal for this review added some relevant
approaches to “active” sensory retraining (Carey et al., 2010)
and a recent study showed the effectiveness of neurorehabilita-
tion on sensation (Carey et al., 2011). Sensory cueing has also
been recently described as useful for improving voluntary arm use
(Fong et al., 2011).

Motor recovery is linked to cortical reorganization (Rehme
et al., 2011a,b). Many strategies have also been developed to
increase the motor performance of precision grip in stroke
patients: Quaney et al. (2010) have recently shown interesting
results on visuomotor training and suggested also to use retrain-
ing of the ipsilesional hand to improve function of contralesional
hand. Strength training in the paretic hand improves both strength
and function (Harris and Eng, 2010). This type of treatment based
on force training is congruent with studies reporting that grip
strength of the paretic hand best predicts upper-limb performance
(Boissy et al., 1999; Harris and Eng, 2007). Recently, transcranial
direct continuous stimulation (dual-tDCS) applied simultane-
ously over the ipsilesional (anodal) and contralateral (cathodal)
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primary motor cortices for a short duration (20 min) has been
demonstrated as transiently improving precision grip in patients
with stroke (Lefebvre et al., 2014). Functional electrical stimula-
tion therapy is described as efficacious for rehabilitation of reach
and grasp function (Thrasher et al., 2008) Constraint-induced
movement therapy (CIMT) is also designed to increase hand
motor function (see Eliasson and Gordon, 2008; Sawaki et al., 2008;
Gordon and Friel, 2009; Sakzewski et al., 2009). Inhibitory repet-
itive transcranial magnetic stimulation (rTMS — 1Hz) over the
unaffected primary motor cortex improves the timing of grasping
and lifting with the affected hand (Dafotakis et al., 2008). Mirror
therapy (Michielsen et al., 2011) and mental training have a posi-
tive effect on the hand function (Miiller et al., 2007; Nilsen et al.,
2010; Prasad et al., 2010; Tetswaart et al., 2011). Robot-assisted
therapies also have potential for prehension recovery (Ziherl et al.,
2010; Merians et al., 2011). The monitoring of recovery and treat-
ment strategies after stroke through motion analysis has been
reviewed (Nowak, 2008). The nature of hand motor impairment
and its treatment after stroke has also been reviewed (Raghavan,
2007), as well as treatment’s intensity (Cooke et al., 2010). What-
ever the strategy used to re-train precision grip, a large cohort
study shows that the likelihood to regain some dexterity is strongly
linked to the presence of early voluntary extension of the fingers
and abduction of the shoulder (Nijland et al., 2010; Kong et al,,
2011).

In children with HCP, many types of training have provided
evidence of increasing precision grip performance: short term
training effects were reported (Wenzelburger et al., 2005), training
based on visual feedback (Valvano and Newell, 1998), and intensive
training with CIMT (Charles et al., 2001).

In stroke patients, like in children with HCP, the ipsilesional
hand has only subtle deficits (Gordon et al., 1999; Quaney et al,,
2005; Nowak et al., 2007). Therefore, the performance of this less-
affected hand is of interest for rehabilitation purposes. As the patients
are able to correctly program precision tasks with the non-involved
hand, this ability could be used either to transfer intact sensory
information from the non-involved to the involved hand, or to
construct a template for the appropriate motor command. The use
of both hands to establish appropriate motor commands bilater-
ally has been developed with success in neurorehabilitation both
in children with HCP (Hung et al., 2004; Gordon et al., 2007, 2008)
and acquired hemiparesis (Brogardh and Lexell, 2010; Hayner
et al., 2010). In contrast, while the transfer of information from
the non-involved to the involved hand has been clearly demon-
strated (Raghavan et al., 2006; Steenbergen et al., 2008), likely
involving the corpus callosum, neurorehabilitation based on the
alternate use of both hands (kinematic mirroring), starting with
the non-paretic hand has not yet been tested. While a new neurore-
habilitation strategy based on this principle could be interesting
if it enables acquisition of a valid motor plan that could be trans-
ferred from the non-paretic to the paretic hand, the effectiveness
of this scheme could be questioned because of inter-hemispheric
influences (Rouiller et al., 1994; Di Lazzaro et al., 1999; Mochizuki
etal., 2004; Westlake and Nagarajan, 2011). Through transcallosal
interactions, each primary motor cortex when stimulated has an
inhibitory action on the opposite motor cortex. Future studies
based on kinematic mirroring should provide interesting clues on

the possibility of transfer from the less-affected to the paretic hand
(Ward and Cohen, 2004; Duque et al., 2005).

LIMITATIONS

The discussion of similarities in hand impairments of children
with HCP and adult acquired lesion would have benefited from
investigations both in adults with HCP and in children with later
acquired lesion (3 years and older). While several studies are avail-
able for adults with HCP, especially in the field of functioning and
quality of life (Roebroeck etal.,2009; Mesterman etal.,2010), none
specifically focus on their hand function and precision grip. How-
ever, the stability of gross motor function classification (GMFCS)
after the age of 12 years (McCormick et al., 2007; Hanna et al,,
2009) and the absence of decrease in functional performance with
age in longitudinal studies (Eliasson et al., 2006; Blank and Kluger,
2009) suggest that the deficit relative to healthy peers probably
remains stable when children with HCP become adults. For chil-
dren with later acquired brain injury, no information is available
on hand function. Therefore, it would be interesting in future stud-
ies to specifically focus on hand function in children with acquired
brain injury after the age of 3 years as well as in adults with HCP.

CONCLUSION

In this review, we have documented impairments in predictive
motor control of patients with congenital and acquired hemipare-
sis. The ability to use such information in an anticipatory manner
(i.e., based on memory from prior manipulations) to scale their
forces was present in both children and adults with hemiparesis.
Patients with acquired or congenital hemiparesis had the ability —
often with many trials for new objects/conditions — to predicatively
scale their forces to different weights or surface friction. This high-
lights their remaining possibility to use predictive control, even if
it is impaired in the paretic hand. In both congenital and acquired
hemiparesis, it is suggested that the ipsilesional hand may aid the
subsequent control of the contralesional hand. Indeed, even if it
has subtle deficits, this hand has proven in both groups of patients
an intact ability to aid in anticipatory control.

We initially aimed to determine whether the neonatal or adult
occurrence of the lesion influences the type and importance of
hand deficits. We hypothesized that the comparison of hand
deficits in early lesions in children and acquired lesion in adults
should help to direct neurorehabilitation of hand deficits to each
pathology more specifically. Surprisingly, except for the more
focused studies on different locations of stroke in adults (cere-
bellar, capsular stroke, etc.), we observed very few differences
between the results of studies in children with HCP and stroke
patients. The motor control deficits measured with precision grip
were similar. Therefore, we suggest that while the therapeutic
approach should be adapted to the age and the level of under-
standing of each patient, the underlying strategies of neuroreha-
bilitation could be similar in adult stroke patients and children
with HCP.

ACKNOWLEDGMENTS
The authors thank Professors P. Leféevre and J. L. Thonnard for
their help with the design of the model presented in Figure 1.

Frontiers in Human Neuroscience

www.frontiersin.org

June 2014 | Volume 8 | Article 459 | 7


http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

Bleyenheuft and Gordon

Precision grip in hemiparesis

REFERENCES

Arnould, C., Penta, M., and Thonnard, J. L. (2007). Hand impairments and their
relationship with manual ability in children with cerebral palsy. J. Rehabil. Med.
39,708-714. doi:10.2340/16501977-0111

Blank, R., and Kluger, G. (2009). Changes in elementary finger-hand functions over
time in preschool children with spastic cerebral palsy. Neurosci. Lett. 455, 30-35.
doi:10.1016/j.neulet.2009.03.058

Blennerhassett, J. M., Carey, L. M., and Matyas, T. A. (2006). Grip force regula-
tion during pinch grip lifts under somatosensory guidance: comparison between
people with stroke and healthy controls. Arch. Phys. Med. Rehabil. 87, 418—429.
doi:10.1016/j.apmr.2005.11.018

Blennerhassett, J. M., Carey, L. M., and Matyas, T. A. (2008). Clinical measures of
handgrip limitation relate to impaired pinch grip force control after stroke. J.
Hand Ther. 21, 245-252. doi:10.1197/j.jht.2007.10.021

Blennerhassett, J. M., Matyas, T. A., and Carey, L. M. (2007). Impaired discrimina-
tion of surface friction contributes to pinch grip deficit after stroke. Neurorehabil.
Neural Repair 21, 263-272. doi:10.1177/1545968306295560

Bleyenheuft, Y., and Gordon, A. M. (2013). Precision grip control, sensory impair-
ments and their interactions in children with hemiplegic cerebral palsy: a sys-
tematic review. Res. Dev. Disabil. 34, 3014-3028. doi:10.1016/j.ridd.2013.05.047

Bleyenheutft, Y., Lefevre, P., and Thonnard, J. L. (2009). Predictive mechanisms con-
trol grip force after impact in self-triggered perturbations. J. Mot. Behav. 41,
411-417. doi:10.3200/35-08-084

Bleyenheuft, Y., and Thonnard, J. L. (2010a). Grip control in children before,
during, and after impulsive loading. J. Mot. Behav. 42, 169-177. doi:10.1080/
00222891003765843

Bleyenheuft, Y., and Thonnard, J. L. (2010b). Predictive and reactive control of pre-
cision grip in children with congenital hemiplegia. Neurorehabil. Neural Repair
24,318-327. doi:10.1177/1545968309353327

Bleyenheuft, Y., and Thonnard, J. L. (2011). Tactile spatial resolution in unilat-
eral brain lesions and its correlation with digital dexterity. J. Rehabil. Med. 43,
251-256. doi:10.2340/16501977-0651

Boissy, P., Bourbonnais, D., Carlotti, M. M., Gravel, D., and Arsenault, B. A. (1999).
Maximal grip force in chronic stroke subjects and its relationship to global upper
extremity function. Clin. Rehabil. 13, 354-362.

Brogardh, C., and Lexell, J. (2010). A 1-year follow-up after shortened constraint-
induced movement therapy with and without mitt poststroke. Arch. Phys. Med.
Rehabil. 91, 460-464. doi:10.1016/j.apmr.2009.11.009

Bumin, G., and Kayihan, H. (2001). Effectiveness of two different sensory-
integration programmes for children with spastic diplegic cerebral palsy. Disabil.
Rehabil. 23, 394-399. doi:10.1080/09638280010008843

Carey, L., Macdonell, R., and Matyas, T. A. (2011). SENSe: study of the effectiveness
of neurorehabilitation on sensation: a randomized controlled trial. Neurorehabil.
Neural Repair 25, 304-313. doi:10.1177/1545968310397705

Carey, L. M., Blennerhassett, J., and Matyas, T. (2010). Evidence for the retrain-
ing of sensation after stroke remains limited. Aust. Occup. Ther. J. 57, 200-202.
doi:10.1111/j.1440-1630.2010.00867.x

Carey, L. M., and Matyas, T. A. (2005). Training of somatosensory discrimination
after stroke: facilitation of stimulus generalization. Am. J. Phys. Med. Rehabil. 84,
428-442. doi:10.1097/01.PHM.0000159971.12096.7F

Carey, L. M., and Matyas, T. A. (2011). Frequency of discriminative sensory loss in
the hand after stroke in a rehabilitation setting. J. Rehabil. Med. 43, 257-263.
doi:10.2340/16501977-0662

Carey, L. M., Matyas, T. A., and Oke, L. E. (1993). Sensory loss in stroke patients:
effective training of tactile and proprioceptive discrimination. Arch. Phys. Med.
Rehabil. 74, 602-611. doi:10.1016/0003-9993(93)90158-7

Center for Disease Control and Prevention. (2014a). CDC 24/7 Saving Lives, Protect-
ing People [Internet, last review/update 7 May 2014]. Cerebral Palsy [updated 20
March 2014]. Available at: http://www.cdc.gov/ncbddd/cp/

Center for Disease Control and Prevention. (2014b). CDC 24/7 Saving Lives,
Protecting People [Internet, last review/update 7 May 2014]. Prevalence of
Stroke — United States, 2006—2010 [May 25, 2012/61(20); 379-382]. Available
at: http://www.cdc.gov/mmwr/preview/mmwrhtml/mmé6120a5.htm

Charles, J., Lavinder, G., and Gordon, A. M. (2001). Effects of constraint-induced
therapy on hand function in children with hemiplegic cerebral palsy. Pediatr.
Phys. Ther. 13, 68-76. doi:10.1097/00001577-200107000-00003

Conforto, A. B., Cohen, L. G., dos Santos, R. L., Scaff, M., and Marie, S. K. (2007).
Effects of somatosensory stimulation on motor function in chronic cortico-
subcortical strokes. J. Neurol. 254, 333-339. doi:10.1007/s00415-006-0364-z

Cooke, E. V., Mares, K., Clark, A., Tallis, R. C., and Pomeroy, V. M. (2010).
The effects of increased dose of exercise-based therapies to enhance motor
recovery after stroke: a systematic review and meta-analysis. BMC Med. 8:60.
doi:10.1186/1741-7015-8-60

Cooper, J., Majnemer, A., Rosenblatt, B., and Birnbaum, R. (1995). The determina-
tion of sensory deficits in children with hemiplegic cerebral palsy. J. Child Neurol.
10, 300-309. doi:10.1177/088307389501000412

Dafotakis, M., Grefkes, C., Eickhoff, S. B., Karbe, H., Fink, G. R., and Nowak, D. A.
(2008). Effects of rTMS on grip force control following subcortical stroke. Exp.
Neurol. 211, 407—412. doi:10.1016/j.expneurol.2008.02.018

Dannenbaum, R. M., and Dykes, R. W. (1988). Sensory loss in the hand after sensory
stroke: therapeutic rationale. Arch. Phys. Med. Rehabil. 69, 833-839.

Di Lazzaro, V., Rothwell, J. C., Oliviero, A., Profice, P., Insola, A., Mazzone, P., et al.
(1999). Intracortical origin of the short latency facilitation produced by pairs of
threshold magnetic stimuli applied to human motor cortex. Exp. Brain Res. 129,
494-499. doi:10.1007/5002210050919

Dispa, D., Thonnard, J. L., and Bleyenheuft, Y. (2014). Impaired predictive and reac-
tive control of precision grip in chronic stroke patients. Int. J. Rehabil. Res. 37,
130-137. doi:10.1097/MRR.0000000000000045

Doh, W. Y, Kang, S. Y., and Sohn, Y. H. (2008). Enhanced spatial discrimination in
paretic hands. Clin. Neurophysiol. 119, 1153-1157. doi:10.1016/j.clinph.2008.01.
002

Doyle, S., Bennett, S., Fasoli, S. E., and McKenna, K. T. (2010). Interventions for
sensory impairment in the upper limb after stroke. Cochrane Database Syst. Rev.
16, CD006331. doi:10.1002/14651858.CD006331.pub2

Dulff, S. V,, and Gordon, A. M. (2003). Learning of grasp control in children with
hemiplegic cerebral palsy. Dev. Med. Child Neurol. 45, 746-757. doi:10.1017/
50012162203001397

Duque, J., Hummel, E, Celnik, P., Murase, N., Mazzocchio, R., and Cohen, L. G.
(2005). Transcallosal inhibition in chronic subcortical stroke. Neuroimage 28,
940-946. doi:10.1016/j.neuroimage.2005.06.033

Dugque, J., Thonnard, J.-L., Vandermeeren, Y., Sebire, G., Cosnard, G., and Olivier, E.
(2003). Correlation between impaired dexterity and corticospinal tract dysgen-
esis in congenital hemiplegia. Brain 126, 732-747. doi:10.1093/brain/awg069

Eliasson, A., Forssberg, H., Ikuta, K., Apel, L., Westling, G., and Johansson, R. (1995).
Development of human precision grip. V. Anticipatory and triggered grip actions
during sudden loading. Exp. Brain Res. 106, 425—-433.

Eliasson, A.-C., Forssberg, H., Hung, Y.-C., and Gordon, A. M. (2006). Development
of hand function and precision grip control in individuals with cerebral palsy:
a 13-year follow-up study. Pediatrics 118, e1226—e1236. doi:10.1542/peds.2005-
2768

Eliasson, A. C., and Gordon, A. M. (2000). Impaired force coordination during
object release in children with hemiplegic cerebral palsy. Dev. Med. Child Neurol.
42, 228-234. doi:10.1017/S0012162200000396

Eliasson, A. C., and Gordon, A. M. (2008). “Constraint-induced movement therapy
for children with hemiplegia,” in Improving Hand Function in Children with Cere-
bral Palsy: Theory, Evidence and Intervention. Clinics in Developmental Medicine,
eds A. C. Eliasson and P. Burtner (London: Mac Keith Press), 308-319.

Eliasson, A. C., Gordon, A. M., and Forssberg, H. (1991). Basic co-ordination of
manipulative forces of children with cerebral palsy. Dev. Med. Child Neurol. 33,
661-670. doi:10.1111/j.1469-8749.1991.tb14943.x

Eliasson, A. C., Gordon, A. M., and Forssberg, H. (1992). Impaired anticipatory
control of isometric forces during grasping by children with cerebral palsy. Dev.
Med. Child Neurol. 34,216-225. doi:10.1111/j.1469-8749.1992.tb14994.x

Eliasson, A. C., Gordon, A. M., and Forssberg, H. (1995a). Tactile control of iso-
metric fingertip forces during grasping in children with cerebral palsy. Dev. Med.
Child Neurol. 37,72-84. d0i:10.1111/j.1469-8749.1995.tb11933.x

Eyre, J. A., Smith, M., Dabydeen, L., Clowry, G. J., Petacchi, E., Battini, R., et al.
(2007). Is hemiplegic cerebral palsy equivalent to amblyopia of the corticospinal
system? Ann. Neurol. 62, 493-503. doi:10.1002/ana.21108

Fong,K.N,,Lo,P.C,,Yu,Y.S., Cheuk, C. K., Tsang, T. H., Po,A. S., et al. (2011). Effects
of sensory cueing on voluntary arm use for patients with chronic stroke: a prelim-
inary study. Arch. Phys. Med. Rehabil. 92,15-23. d0i:10.1016/j.apmr.2010.09.014

Forssberg, H., Eliasson, A. C., Kinoshita, H., Johansson, R. S., and Westling, G.
(1991). Development of human precision grip. I: basic coordination of forces.
Exp. Brain Res. 85, 451-457. doi:10.1007/BF00229422

Forssberg, H., Eliasson, A. C., Kinoshita, H., Johansson, R. S., and Westling, G.
(1992). Development of human precision grip. II. Anticipatory control of iso-
metric forces targeted for object’s weight. Exp. Brain Res. 90, 393-398.

Frontiers in Human Neuroscience

www.frontiersin.org

June 2014 | Volume 8 | Article 459 | 8


http://dx.doi.org/10.2340/16501977-0111
http://dx.doi.org/10.1016/j.neulet.2009.03.058
http://dx.doi.org/10.1016/j.apmr.2005.11.018
http://dx.doi.org/10.1197/j.jht.2007.10.021
http://dx.doi.org/10.1177/1545968306295560
http://dx.doi.org/10.1016/j.ridd.2013.05.047
http://dx.doi.org/10.3200/35-08-084
http://dx.doi.org/10.1080/00222891003765843
http://dx.doi.org/10.1080/00222891003765843
http://dx.doi.org/10.1177/1545968309353327
http://dx.doi.org/10.2340/16501977-0651
http://dx.doi.org/10.1016/j.apmr.2009.11.009
http://dx.doi.org/10.1080/09638280010008843
http://dx.doi.org/10.1177/1545968310397705
http://dx.doi.org/10.1111/j.1440-1630.2010.00867.x
http://dx.doi.org/10.1097/01.PHM.0000159971.12096.7F
http://dx.doi.org/10.2340/16501977-0662
http://dx.doi.org/10.1016/0003-9993(93)90158-7
http://www.cdc.gov/ncbddd/cp/
http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6120a5.htm
http://dx.doi.org/10.1097/00001577-200107000-00003
http://dx.doi.org/10.1007/s00415-006-0364-z
http://dx.doi.org/10.1186/1741-7015-8-60
http://dx.doi.org/10.1177/088307389501000412
http://dx.doi.org/10.1016/j.expneurol.2008.02.018
http://dx.doi.org/10.1007/s002210050919
http://dx.doi.org/10.1097/MRR.0000000000000045
http://dx.doi.org/10.1016/j.clinph.2008.01.002
http://dx.doi.org/10.1016/j.clinph.2008.01.002
http://dx.doi.org/10.1002/14651858.CD006331.pub2
http://dx.doi.org/10.1017/S0012162203001397
http://dx.doi.org/10.1017/S0012162203001397
http://dx.doi.org/10.1016/j.neuroimage.2005.06.033
http://dx.doi.org/10.1093/brain/awg069
http://dx.doi.org/10.1542/peds.2005-2768
http://dx.doi.org/10.1542/peds.2005-2768
http://dx.doi.org/10.1017/S0012162200000396
http://dx.doi.org/10.1111/j.1469-8749.1991.tb14943.x
http://dx.doi.org/10.1111/j.1469-8749.1992.tb14994.x
http://dx.doi.org/10.1111/j.1469-8749.1995.tb11933.x
http://dx.doi.org/10.1002/ana.21108
http://dx.doi.org/10.1016/j.apmr.2010.09.014
http://dx.doi.org/10.1007/BF00229422
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

Bleyenheuft and Gordon

Precision grip in hemiparesis

Forssberg, H., Eliasson, A. C., Kinoshita, H., Westling, G.,and Johansson, R. S. (1995).
Development of human precision grip. IV. Tactile adaptation of isometric finger
forces to the frictional condition. Exp. Brain Res. 104, 323-330.

Forssberg, H., Eliasson, A. C., Redon-Zouitenn, C., Mercuri, E., and Dubowitz, L.
(1999). Impaired grip-lift synergy in children with unilateral brain lesions. Brain
122, 1157-1168. doi:10.1093/brain/122.6.1157

Fugl-Meyer, A. R., Ja#sko, L., Leyman, I., Olsson, S.,and Steglind, S. (1975). The post-
stroke hemiplegic patient 1. A method for evaluation of physical performance.
Scand. J. Rehabil. Med. 7, 13-31.

Gordon, A. M., Bleyenheuft, Y., and Steenbergen, B. (2013). Pathophysiology of
impaired hand function in children with unilateral cerebral palsy. Dev. Med.
Child Neurol. 55(Suppl. 4), 32-37. doi:10.1111/dmcn.12304

Gordon, A. M., Charles, J., and Duff, S. V. (1999). Fingertip forces during object
manipulation in children with hemiplegic cerebral palsy. II: bilateral coordina-
tion. Dev. Med. Child Neurol. 41, 176-185. doi:10.1017/S0012162299000365

Gordon, A. M., Charles, J., and Steenbergen, B. (2006). Fingertip force planning
during grasp is disrupted by impaired sensorimotor integration in children
with hemiplegic cerebral palsy. Pediatr. Res. 60, 587—-591. doi:10.1203/01.pdr.
0000242370.41469.74

Gordon,A. M., Chinnan, A., Gill, S., Petra, E., Hung, Y. C.,and Charles, J. (2008). Both
constraint-induced movement therapy and bimanual training lead to improved
performance of upper extremity function in children with hemiplegia. Dev. Med.
Child Neurol. 50, 957-958. doi:10.1111/j.1469-8749.2008.03166.x

Gordon, A. M., and Duff, S. V. (1999). Fingertip forces during object manipula-
tion in children with hemiplegic cerebral palsy. I: anticipatory scaling. Dev. Med.
Child Neurol. 41, 166-175. doi:10.1017/50012162299000365

Gordon, A. M., Forssberg, H., Johansson, R. S., Eliasson, A. C., and Westling, G.
(1992). Development of human precision grip. III. Integration of visual size
cues during the programming of isometric forces. Exp. Brain Res. 90, 399-403.

Gordon, A. M., and Friel, K. (2009). “ Intensive training of upper extremity function
in children with cerebral palsy,” in Sensorimotor Control of Grasping: Physiology
and Pathophysiology, eds J. Hermsdoerfer and D. A. Nowak (Cambridge Univer-
sity Press), 438—457.

Gordon, A. M., Lewis, S. R., Eliasson, A. C., and Duff, S. V. (2003). Object release
under varying task constraints in children with hemiplegic cerebral palsy. Dev.
Med. Child Neurol. 45, 240-248. doi:10.1111/j.1469-8749.2003.tb00338.x

Gordon, A. M., Schneider, J. A., Chinnan, A., and Charles, J. R. (2007). Efficacy of
a hand-arm bimanual intensive therapy (HABIT) in children with hemiplegic
cerebral palsy: a randomized control trial. Dev. Med. Child Neurol. 49, 830-838.
doi:10.1111/j.1469-8749.2007.00830.x

Gordon, A. M., Westling, G., Cole, K. J., and Johansson, R. S. (1993). Memory repre-
sentations underlying motor commands used during manipulation of common
and novel objects. . Neurophysiol. 69, 1789-1796.

Hanna, S. E., Rosenbaum, P. L., Bartlett, D. J., Palisano, R. J., Walter, S. D., Avery,
L., etal. (2009). Stability and decline in gross motor function among children
and youth with cerebral palsy aged 2 to 21 years. Dev. Med. Child Neurol. 51,
295-302. doi:10.1111/;.1469-8749.2008.03196.x

Harris, J. E., and Eng, J. J. (2007). Paretic upper-limb strength best explains arm
activity in people with stroke. Phys. Ther. 87, 88-97. doi:10.2522/ptj.20060065

Harris, J. E., and Eng, J. J. (2010). Strength training improves upper-limb func-
tion in individuals with stroke: a meta-analysis. Stroke 41, 136—140. doi:10.1161/
STROKEAHA.109.567438

Hayner, K., Gibson, G., and Giles, G. M. (2010). Comparison of constraint-induced
movement therapy and bilateral treatment of equal intensity in people with
chronic upper-extremity dysfunction after cerebrovascular accident. Am. J.
Occup. Ther. 64, 528-539. doi:10.5014/aj0t.2010.08027

Helliwell, S. (2009). Does the use of a sensory re-education programme improve
the somatosensory and motor function of the upper limb in subacute stroke?
A single case experimental design. Br. J. Occup. Ther. 72, 551-558. doi:10.4276/
030802209X12601857794853

Hermsdorfer, J., Hagl, E., and Nowak, D. A. (2004). Deficits of anticipatory grip force
control after damage to peripheral and central sensorimotor systems. Hum. Mov.
Sci. 23, 643-662. d0i:10.1016/j.humov.2004.10.005

Hermsdorfer, J., Hagl, E., Nowak, D. A.,and Marquardt, C. (2003). Grip force control
during object manipulation in cerebral stroke. Clin. Neurophysiol. 114, 915-929.
doi:10.1016/S1388-2457(03)00042-7

Hung, Y. C,, Charles, J., and Gordon, A. M. (2004). Bimanual coordination during
a goal-directed task in children with hemiplegic cerebral palsy. Dev. Med. Child
Neurol. 46,746-753. doi:10.1111/j.1469-8749.2004.tb00994.x

Ietswaart, M., Johnston, M., Dijkerman, H. C., Joice, S., Scott, C. L., MacWal-
ter, R. S., etal. (2011). Hamilton Mental practice with motor imagery in
stroke recovery: randomized controlled trial of efficacy. Brain 134, 1373-1386.
doi:10.1093/brain/awr077

Islam, M., Gordon, A. M., Skéld, A., Forssberg, H., and Eliasson, A. C. (2011). Grip
force coordination during bimanual tasks in unilateral cerebral palsy. Dev. Med.
Child Neurol. 53,920-926. doi:10.1111/j.1469-8749.2011.04040.x

Johansson, R. S. (1996). “Sensory control of dexterous manipulation in humans,” in
Hand and Brain: The Neurophysiology and Psychology of Hand Movements, eds
A. M. Wing, P. Haggard, and J. R. Flanagan (San Diego, CA: Academic Press),
381-414.

Johansson, R. S. (2002). Dynamic use of tactile afferent signals in control of dexter-
ous manipulation. Adv. Exp. Med. Biol. 508, 397—410. doi:10.1007/978-1-4615-
0713-0_45

Johansson, R. S., and Westling, G. (1984). Roles of glabrous skin receptors and sen-
sorimotor memory in automatic control of precision grip when lifting rougher
or more slippery objects. Exp. Brain Res. 56, 550—564. doi:10.1007/BF00237997

Johansson, R. S., and Westling, G. (1987). Signals in tactile afferents from the fin-
gers eliciting adaptive motor responses during precision grip. Exp. Brain Res. 66,
141-154. doi:10.1007/BF00236210

Johansson, R. S., and Westling, G. (1988a). Coordinated isometric muscle com-
mands adequately and erroneously programmed for the weight during lifting
task with precision grip. Exp. Brain Res. 71, 59-71. doi:10.1007/BF00247522

Jones, L. (1996). “Propriception and its contribution to manual dexterity,” in Hand
and Brain, eds A. W. Wing, P. Haggard, and J. R. Flanagan (San Diego, CA:
Academic Press), 349-362.

Kong, K. H., Chua, K. S., and Lee, J. (2011). Recovery of upper limb dexterity in
patients more than 1 year after stroke: frequency, clinical correlates and predic-
tors. Neurorehabilitation 28, 105-111. doi:10.3233/NRE-2011-0639

Lanin, N. A., Novak, I., and Cusick, A. (2007). A systematic review of upper extrem-
ity casting for children and adults with central nervous system motor disorders.
Clin. Rehabil. 21, 963-976. doi:10.1177/0269215507079141

Lefebvre, S., Thonnard, J. L., Laloux, P., Peeters, A., Jamart, J., and Vandermeeren, Y.
(2014). Single session of dual-tDCS transiently improves precision grip and dex-
terity of the paretic hand after stroke. Neurorehabil. Neural Repair 28, 100-110.
doi:10.1177/1545968313478485

Mackenzie, S. J., Getchell, N., Modlesky, C. M., Miller, E, and Jaric, S. (2009). Using
grasping tasks to evaluate hand force coordination in children with hemiplegic
cerebral palsy. Arch. Phys. Med. Rehabil. 90, 1439-1442. doi:10.1016/j.apmr.2009.
02.014

McCormick, A., Brien, M., Plourde, J., Wood, E., Rosenbaum, P., and McLean, J.
(2007). Stability of the gross motor function classification system in adults with
cerebral palsy. Dev. Med. Child Neurol. 49, 265-269. doi:10.1111/j.1469-8749.
2007.00265.x

McDonnell, M. N., Hillier, S. L., Ridding, M. C.,and Miles, T. S. (2006). Impairments
in precision grip correlate with functional measures in adult hemiplegia. Clin.
Neurophysiol. 117, 1474-1480. doi:10.1016/j.clinph.2006.02.027

Merians, A. S., Fluet, G. G., Qiu, Q., Saleh, S., Lafond, I., Davidow, A., etal.
(2011). Adamovich robotically facilitated virtual rehabilitation of arm transport
integrated with finger movement in persons with hemiparesis. J. Neuroeng. Reha-
bil. 8,27. doi:10.1186/1743-0003-8-27

Mesterman, R., Leitner, Y., Yifat, R., Gilutz, G., Levi-Hakeini, O., Bitchonsky, O., et al.
(2010). Cerebral palsy — long-term medical, functional, educational, and psy-
chosocial outcomes. J. Child Neurol. 25, 36—42. d0i:10.1177/0883073809336677

Michielsen, M. E., Selles, R. W., van der Geest, J. N., Eckhardt, M., Yavuzer, G.,
Stam, H. J., et al. (2011). Motor recovery and cortical reorganization after mir-
ror therapy in chronic stroke patients: a phase II randomized controlled trial.
Neurorehabil. Neural Repair 25,223-233. doi:10.1177/1545968310385127

Moberg, E. (1958). Objective methods for determining the functional value of sen-
sibility in the hand. J. Bone Joint Surg. Br. 40-B, 454-476.

Mochizuki, H., Huang, Y. Z., and Rothwell, J. C. (2004). Interhemispheric interac-
tion between human dorsal premotor and contralateral primary motor cortex.
J. Physiol. 15,331-338. doi:10.1113/jphysiol.2004.072843

Montané, E., Vallano, A., and Laporte, J. R. (2004). Oral antispastic drugs in non-
progressive neurologic diseases: a systematic review. Neurology 63, 1357—-1363.
doi:10.1212/01.WNL.0000141863.52691.44

Miiller, F, and Dichgans, J. (1994). Impairments of precision grip in two patients
with acute unilateral cerebellar lesions: a simple parametric test for clinical use.
Neuropsychologia 32, 265-269. doi:10.1016/0028-3932(94)90012-4

Frontiers in Human Neuroscience

www.frontiersin.org

June 2014 | Volume 8 | Article 459 | 9


http://dx.doi.org/10.1093/brain/122.6.1157
http://dx.doi.org/10.1111/dmcn.12304
http://dx.doi.org/10.1017/S0012162299000365
http://dx.doi.org/10.1203/01.pdr.0000242370.41469.74
http://dx.doi.org/10.1203/01.pdr.0000242370.41469.74
http://dx.doi.org/10.1111/j.1469-8749.2008.03166.x
http://dx.doi.org/10.1017/S0012162299000365
http://dx.doi.org/10.1111/j.1469-8749.2003.tb00338.x
http://dx.doi.org/10.1111/j.1469-8749.2007.00830.x
http://dx.doi.org/10.1111/j.1469-8749.2008.03196.x
http://dx.doi.org/10.2522/ptj.20060065
http://dx.doi.org/10.1161/STROKEAHA.109.567438
http://dx.doi.org/10.1161/STROKEAHA.109.567438
http://dx.doi.org/10.5014/ajot.2010.08027
http://dx.doi.org/10.4276/030802209X12601857794853
http://dx.doi.org/10.4276/030802209X12601857794853
http://dx.doi.org/10.1016/j.humov.2004.10.005
http://dx.doi.org/10.1016/S1388-2457(03)00042-7
http://dx.doi.org/10.1111/j.1469-8749.2004.tb00994.x
http://dx.doi.org/10.1093/brain/awr077
http://dx.doi.org/10.1111/j.1469-8749.2011.04040.x
http://dx.doi.org/10.1007/978-1-4615-0713-0_45
http://dx.doi.org/10.1007/978-1-4615-0713-0_45
http://dx.doi.org/10.1007/BF00237997
http://dx.doi.org/10.1007/BF00236210
http://dx.doi.org/10.1007/BF00247522
http://dx.doi.org/10.3233/NRE-2011-0639
http://dx.doi.org/10.1177/0269215507079141
http://dx.doi.org/10.1177/1545968313478485
http://dx.doi.org/10.1016/j.apmr.2009.02.014
http://dx.doi.org/10.1016/j.apmr.2009.02.014
http://dx.doi.org/10.1111/j.1469-8749.2007.00265.x
http://dx.doi.org/10.1111/j.1469-8749.2007.00265.x
http://dx.doi.org/10.1016/j.clinph.2006.02.027
http://dx.doi.org/10.1186/1743-0003-8-27
http://dx.doi.org/10.1177/0883073809336677
http://dx.doi.org/10.1177/1545968310385127
http://dx.doi.org/10.1113/jphysiol.2004.072843
http://dx.doi.org/10.1212/01.WNL.0000141863.52691.44
http://dx.doi.org/10.1016/0028-3932(94)90012-4
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

Bleyenheuft and Gordon

Precision grip in hemiparesis

Miiller, K., Biitefisch, C. M., Seitz, R. J., and Hémberg, V. (2007). Mental practice
improves hand function after hemiparetic stroke. Restor. Neurol. Neurosci. 25,
501-511.

Murphy, C. C., Yeargin-Allsopp, M., Decouflé, P., and Drews, C. D. (1993). Preva-
lence of cerebral palsy among ten-year-old children in metropolitan Atlanta, 1985
through 1987. J. Pediatr. 123, S$13-S20. doi:10.1016/S0022-3476(05)80892-3

Mutsaarts, M., Steenbergen, B., and Bekkering, H. (2006). Anticipatory planning
deficits and task context effects in hemiparetic cerebral palsy. Exp. Brain Res.
172, 151-162. doi:10.1007/s00221-005-0327-0

Naik, S. K., Patten, C., Lodha, N., Coombes, S. A., and Cauraugh, J. H. (2011). Force
control deficits in chronic stroke: grip formation and release phases. Exp. Brain
Res. 211, 1-15. doi:10.1007/s00221-011-2637-8

Newton, J. M., Ward, N. S., Parker, G. J., Deichmann, R., Alexander, D. C., Fris-
ton, K. J,, etal. (2006). Non-invasive mapping of corticofugal fibers from
multiple motor areas — relevance to stroke recovery. Brain 129, 1844-1858.
doi:10.1093/brain/awl106

Nijland, R. H., van Wegen, E. E., Harmeling-van der Wel, B. C., Kwakkel, G., and
EPOS Investigators. (2010). Presence of finger extension and shoulder abduc-
tion within 72 hours after stroke predicts functional recovery: early prediction
of functional outcome after stroke: the EPOS cohort study. Stroke 41, 745-750.
doi:10.1161/STROKEAHA.109.572065

Nilsen, D. M., Gillen, G., and Gordon, A. M. (2010). The use of mental practice
to improve upper limb recovery post-stroke: a systematic review. Am. J. Occup.
Ther. 64, 695-708. doi:10.5014/ajot.2010.09034

Nowak, D. A. (2008). The impact of stroke on the performance of grasping: use-
fulness of kinetic and kinematic motion analysis. Neurosci. Biobehav. Rev. 32,
1439-1450. doi:10.1016/j.neubiorev.2008.05.021

Nowak, D. A., Grefkes, C., Dafotakis, M., Kiist, J., Karbe, H., and Fink, G. R. (2007).
Dexterity is impaired at both hands following unilateral subcortical middle cere-
bral artery stroke. Eur. J. Neurosci. 25,3173-3184. doi:10.1111/j.1460-9568.2007.
05551.x

Nowak, D. A., Hermsdorfer, J., and Topka, H. (2003). Deficits of predictive grip
force control during object manipulation in acute stroke. J. Neurol. 250, 850—860.
doi:10.1007/500415-003-1095-z

Peurala, S. H., Pitkinen, K., Sivenius, J., and Tarkka, I. M. (2002). Cutaneous elec-
trical stimulation may enhance sensorimotor recovery in chronic stroke. Clin.
Rehabil. 16,709-716. doi:10.1191/0269215502¢cr5430a

Prabhu, S. B., Diermayr, G., Gysin, P., and Gordon, A. M. (2011). Coordination of
fingertip forces in object transport during gait in children with hemiplegic cere-
bral palsy. Dev. Med. Child Neurol. 53, 865-869. doi:10.1111/j.1469-8749.2011.
04061.x

Prasad, G., Herman, P, Coyle, D., McDonough, S., and Crosbie, J. (2010). Applying
a brain-computer interface to support motor imagery practice in people with
stroke for upper limb recovery: a feasibility study. J. Neuroeng. Rehabil. 7, 60.
doi:10.1186/1743-0003-7-60

Quaney, B. M., He, J., Timberlake, G., Dodd, K., and Carr, C. (2010). Visuomo-
tor training improves stroke-related ipsilesional upper extremity impairments.
Neurorehabil. Neural Repair 24, 52—61. doi:10.1177/1545968309341646

Quaney, B. M., Perera, S., Maletsky, R., Luchies, C. W., and Nudo, R. J. (2005).
Impaired grip force modulation in the ipsilesional hand after unilateral middle
cerebral artery stroke. Neurorehabil. Neural Repair 19, 338-349. doi:10.1177/
1545968305282269

Ragert, P, Vandermeeren, Y., Camus, M., and Cohen, L. G. (2008). Improvement of
spatial tactile acuity by transcranial direct current stimulation. Clin. Neurophys-
iol. 119, 805-811. doi:10.1016/j.clinph.2007.12.001

Raghavan, P. (2007). The nature of hand motor impairment after stroke and its treat-
ment. Curr. Treat. Options Cardiovasc. Med. 9, 221-228. doi:10.1007/s11936-
007-0016-3

Raghavan, P., Krakauer, J. W,, and Gordon, A. M. (2006). Impaired anticipatory
control of fingertip forces in patients with a pure motor or sensorimotor lacunar
syndrome. Brain 129, 1415-1425. doi:10.1093/brain/awl070

Raghavan, P,, Santello, M., Gordon, A. M., and Krakauer, J. W. (2010). Compensatory
motor control after stroke: an alternative joint strategy for object-dependent
shaping of hand posture. J. Neurophysiol. 103,3034-3043. doi:10.1152/jn.00936.
2009

Rehme, A. K., Fink, G. R,, von Cramon, D. Y., and Grefkes, C. (2011a). The
role of the contralesional motor cortex for motor recovery in the early days
after stroke assessed with longitudinal FMRI. Cereb. Cortex 21, 756-768.
doi:10.1093/cercor/bhq140

Rehme, A. K., Eickhoff, S. B., Wang, L. E.,, Fink, G. R,, and Grefkes, C. (2011b).
Dynamic causal modeling of cortical activity from the acute to the chronic stage
after stroke. Neuroimage 55, 1147-1158. doi:10.1016/j.neuroimage.2011.01.014

Roebroeck, M. E., Jahnsen, R., Carona, C., Kent, R. M., and Chamberlain, M. A.
(2009). Adult outcomes and lifespan issues for people with childhood-onset
physical disability. Dev. Med. Child Neurol. 51, 670—-678. doi:10.1111/j.1469-
8749.2009.03322.x

Rouiller, E. M., Babalian, A., Kazennikov, O., Moret, V., Yu, X. H., and Wiesendanger,
M. (1994). Transcallosal connections of the distal forelimb representations of
the primary and supplementary motor cortical areas in macaque monkeys. Exp.
Brain Res. 102, 227-243. doi:10.1007/BF00227511

Sakzewski, L., Ziviani, J.,and Boyd, R. (2009). Systematic review and meta-analysis of
therapeutic management of upper-limb dysfunction in children with congenital
hemiplegia. Pediatrics 123, 1111-1122. doi:10.1542/peds.2008-3335

Sawaki, L., Butler, A. J., Leng, X., Wassenaar, P. A., Mohammad, Y. M., Blanton, S.,
etal. (2008). Constraint-induced movement therapy results in increased motor
map area in subjects 3 to 9 months after stroke. Neurorehabil. Neural Repair 22,
505-513. doi:10.1177/1545968308317531

Schabrun, S. M., and Hillier, S. (2009). Evidence for the retraining of sensa-
tion after stroke: a systematic review. Clin. Rehabil. 23, 27-39. doi:10.1177/
0269215508098897

Seo, N. J., Fischer, H. W,, Bogey, R. A., Rymer, W. Z., and Kamper, D. G. (2011).
Use of visual force feedback to improve digit force direction during pinch
grip in persons with stroke: a pilot study. Arch. Phys. Med. Rehabil. 92, 24-30.
doi:10.1016/j.apmr.2010.08.016

Seo, N. J., Rymer, W. Z., and Kamper, D. G. (2010). Altered digit force direction
during pinch grip following stroke. Exp. Brain Res. 202, 891-901. doi:10.1007/
s00221-010-2193-7

Shirahashi, I., Matsumoto, S., Shimodozono, M., Etoh, S., and Kawahira, K. (2007).
Functional vibratory stimulation on the hand facilitates voluntary movements of
a hemiplegic upper limb in a patient with stroke. Int. J. Rehabil. Res. 30,227-230.
doi:10.1097/MRR.0b013e32829fa4b6

Smania, N., Montagnana, B., Faccioli, S., Fiaschi, A., and Aglioti, S. M. (2003).
Rehabilitation of somatic sensation and related deficit of motor control in
patients with pure sensory stroke. Arch. Phys. Med. Rehabil. 84, 1692-1702.
doi:10.1053/S0003-9993(03)00277-6

Smits-Engelsman, B. C., Klingels, K., and Feys, H. (2011). Bimanual force coordi-
nation in children with spastic unilateral cerebral palsy. Res. Dev. Disabil. 32,
2011-2019. doi:10.1016/j.ridd.2011.04.007

Smits-Engelsman, B. C., Rameckers, E. A., and Duysens, J. (2004). Late develop-
mental deficits in force control in children with hemiplegia. Neuroreport 15,
1931-1935. doi:10.1097/00001756-200408260-00020

Stanley, E, Blair, E., and Alberman, E. (2000). Cerebral Palsies: Epidemiology and
Causal Pathways. Clinics in Developmental Medicine No 151. London: Mc Keith
Press.

Staudt, M., Gerloff, C., Grodd, W., Holthausen, H., Niemann, G., and Krageloh-
Mann, I. (2004). Reorganization in congenital hemiparesis acquired at different
gestational ages. Ann. Neurol. 56, 854—863. doi:10.1002/ana.20297

Steenbergen, B., Charles, J., and Gordon, A. M. (2008). Fingertip force control dur-
ing bimanual object lifting in hemiplegic cerebral palsy. Exp. Brain Res. 186,
191-201. doi:10.1007/s00221-007-1223-6

Steenbergen, B., and Gordon, A. M. (2006). Activity limitation in hemiplegic cere-
bral palsy: evidence for disorders in motor planning. Dev. Med. Child Neurol. 48,
780-783. doi:10.1017/50012162206001666

Steenbergen, B., Hulstijn, W., Lemmens, I. H., and Meulenbroek, R. G. (1998). The
timing of prehensile movements in subjects with cerebral palsy. Dev. Med. Child
Neurol. 40, 108—114. doi:10.1111/.1469-8749.1998.tb15370.x

Sullivan, J. E., and Hedman, L. D. (2007). Effects of home-based sensory and motor
amplitude electrical stimulation on arm dysfunction in chronic stroke. Clin.
Rehabil. 21, 142-150. doi:10.1177/0269215506071252

Takahashi, C. D., and Reinkensmeyer, D. J. (2003). Hemiparetic stroke impairs antic-
ipatory control of arm movement. Exp. Brain Res. 149, 131-140.

Thrasher, T. A., Zivanovic, V., Mcllroy, W., and Popovic, M. R. (2008). Rehabilita-
tion of reaching and grasping function in severe hemiplegic patients using func-
tional electrical stimulation therapy. Neurorehabil. Neural Repair 22, 706-714.
doi:10.1177/1545968308317436

Valvano, J., and Newell, K. M. (1998). Practice of a precision isometric grip-force
task by children with spastic cerebral palsy. Dev. Med. Child Neurol. 40, 464—473.
doi:10.1111/j.1469-8749.1998.tb15397.x

Frontiers in Human Neuroscience

www.frontiersin.org

June 2014 | Volume 8 | Article 459 | 10


http://dx.doi.org/10.1016/S0022-3476(05)80892-3
http://dx.doi.org/10.1007/s00221-005-0327-0
http://dx.doi.org/10.1007/s00221-011-2637-8
http://dx.doi.org/10.1093/brain/awl106
http://dx.doi.org/10.1161/STROKEAHA.109.572065
http://dx.doi.org/10.5014/ajot.2010.09034
http://dx.doi.org/10.1016/j.neubiorev.2008.05.021
http://dx.doi.org/10.1111/j.1460-9568.2007.05551.x
http://dx.doi.org/10.1111/j.1460-9568.2007.05551.x
http://dx.doi.org/10.1007/s00415-003-1095-z
http://dx.doi.org/10.1191/0269215502cr543oa
http://dx.doi.org/10.1111/j.1469-8749.2011.04061.x
http://dx.doi.org/10.1111/j.1469-8749.2011.04061.x
http://dx.doi.org/10.1186/1743-0003-7-60
http://dx.doi.org/10.1177/1545968309341646
http://dx.doi.org/10.1177/1545968305282269
http://dx.doi.org/10.1177/1545968305282269
http://dx.doi.org/10.1016/j.clinph.2007.12.001
http://dx.doi.org/10.1007/s11936-007-0016-3
http://dx.doi.org/10.1007/s11936-007-0016-3
http://dx.doi.org/10.1093/brain/awl070
http://dx.doi.org/10.1152/jn.00936.2009
http://dx.doi.org/10.1152/jn.00936.2009
http://dx.doi.org/10.1093/cercor/bhq140
http://dx.doi.org/10.1016/j.neuroimage.2011.01.014
http://dx.doi.org/10.1111/j.1469-8749.2009.03322.x
http://dx.doi.org/10.1111/j.1469-8749.2009.03322.x
http://dx.doi.org/10.1007/BF00227511
http://dx.doi.org/10.1542/peds.2008-3335
http://dx.doi.org/10.1177/1545968308317531
http://dx.doi.org/10.1177/0269215508098897
http://dx.doi.org/10.1177/0269215508098897
http://dx.doi.org/10.1016/j.apmr.2010.08.016
http://dx.doi.org/10.1007/s00221-010-2193-7
http://dx.doi.org/10.1007/s00221-010-2193-7
http://dx.doi.org/10.1097/MRR.0b013e32829fa4b6
http://dx.doi.org/10.1053/S0003-9993(03)00277-6
http://dx.doi.org/10.1016/j.ridd.2011.04.007
http://dx.doi.org/10.1097/00001756-200408260-00020
http://dx.doi.org/10.1002/ana.20297
http://dx.doi.org/10.1007/s00221-007-1223-6
http://dx.doi.org/10.1017/S0012162206001666
http://dx.doi.org/10.1111/j.1469-8749.1998.tb15370.x
http://dx.doi.org/10.1177/0269215506071252
http://dx.doi.org/10.1177/1545968308317436
http://dx.doi.org/10.1111/j.1469-8749.1998.tb15397.x
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

Bleyenheuft and Gordon

Precision grip in hemiparesis

van Elk, M., Crajé, C., Beeren, M. E. G. V., Steenbergen, B., van Schie, H. T., and
Bekkering, H. (2010). Neural evidence for compromised motor imagery in right
hemiparetic cerebral palsy. Front Neurol. 1:150. doi:10.3389/fneur.2010.00150

Voller, B., Flgel, A., Werhahn, K. J., Ravindran, S., Wu, C. W., and Cohen, L. G. (2006).
Contralateral hand anesthesia transiently improves poststroke sensory deficits.
Ann. Neurol. 59, 385-388. d0i:10.1002/ana.20689

Ward, N. S., and Cohen, L. G. (2004). Mechanisms underlying recovery of motor
function after stroke. Arch. Neurol. 61, 1844—1848.

Wenzelburger, R., Kopper, E, Frenzel, A., Stolze, H., Klebe, S., Brossmann, A., et al.
(2005). Hand coordination following capsular stroke. Brain 128(Pt 1), 64-74.
doi:10.1093/brain/awh317

Westlake, K. P., and Nagarajan, S. S. (2011). Functional connectivity in relation
to motor performance and recovery after stroke. Front. Syst. Neurosci. 5:8.
doi:10.3389/fnsys.2011.00008

Westling, G., and Johansson, R. S. (1987). Responses in glabrous skin mechanore-
ceptors during precision grip in humans. Exp. Brain Res. 66, 128-140. doi:10.
1007/BF00236209

Witney, A. G., Wing, A., Thonnard, J. L., and Smith, A. M. (2004). The cuta-
neous contribution to adaptive precision grip. Trends Neurosci. 27, 637-643.
doi:10.1016/j.tins.2004.08.006

Wolpert, D. M., and Flanagan, J. R. (2001). Motor prediction. Curr. Biol. 11,
R729-R732. doi:10.1016/S0960-9822(01)00432-8

Wolpert, D. M., and Ghahramani, Z. (2000). Computational principles of movement
neuroscience. Nat. Neurosci. 3(Suppl.), 1212-1217. doi:10.1038/81497

Wolpert, D. M., Miall, C., and Kawato, M. (1998). Internal models in the cerebellum.
Trends Cogn. Sci. 2,338-347. doi:10.1016/S1364-6613(98)01221-2

Yekutiel, M., and Guttman, E. (1993). A controlled trial of the retraining of the
sensory function of the hand in stroke patients. J. Neurol. Neurosurg. Psychiatr.
56, 241-244. doi:10.1136/jnnp.56.3.241

Ziherl, J., Novak, D., Olensek, A., Mihelj, M., and Munih, M. (2010). Evaluation
of upper extremity robot-assistances in subacute and chronic stroke subjects. J.
Neuroeng. Rehabil. 7, 52. doi:10.1186/1743-0003-7-52

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 19 March 2014; accepted: 05 June 2014; published online: 30 June 2014.
Citation: Bleyenheuft Y and Gordon AM (2014) Precision grip in congenital and
acquired hemiparesis: similarities in impairments and implications for neurorehabili-
tation. Front. Hum. Neurosci. 8:459. doi: 10.3389/fnhum.2014.00459

This article was submitted to the journal Frontiers in Human Neuroscience.
Copyright © 2014 Bleyenheuft and Gordon. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Human Neuroscience

www.frontiersin.org

June 2014 | Volume 8 | Article 459 | 11


http://dx.doi.org/10.3389/fneur.2010.00150
http://dx.doi.org/10.1002/ana.20689
http://dx.doi.org/10.1093/brain/awh317
http://dx.doi.org/10.3389/fnsys.2011.00008
http://dx.doi.org/10.1007/BF00236209
http://dx.doi.org/10.1007/BF00236209
http://dx.doi.org/10.1016/j.tins.2004.08.006
http://dx.doi.org/10.1016/S0960-9822(01)00432-8
http://dx.doi.org/10.1038/81497
http://dx.doi.org/10.1016/S1364-6613(98)01221-2
http://dx.doi.org/10.1136/jnnp.56.3.241
http://dx.doi.org/10.1186/1743-0003-7-52
http://dx.doi.org/10.3389/fnhum.2014.00459
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

	Precision grip in congenital and acquired hemiparesis: similarities in impairments and implications for neurorehabilitation
	Introduction
	Predictive and reactive grip force control
	Predictive and reactive GF control in a bimanual context

	Methods
	Data sources and literature selection

	Results
	Children with HCP
	Stroke patients

	Implications for rehabilitation
	Limitations
	Conclusion
	Acknowledgments
	References


