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Functional magnetic resonance imaging (fMRI) is the workhorse of imaging-based human
cognitive neuroscience. The use of fMRI is ever-increasing; within the last 4 years more
fMRI studies have been published than in the previous 17 years.This large body of research
has mainly focused on the functional localization of condition- or stimulus-dependent
changes in the blood-oxygenation-level dependent signal. In recent years, however, many
aspects of the commonly practiced analysis frameworks and methodologies have been
critically reassessed. Here we summarize these critiques, providing an overview of the
major conceptual and practical deficiencies in widely used brain-mapping approaches, and
exemplify some of these issues by the use of imaging data and simulations. In particular, we
discuss the inherent pitfalls and shortcomings of methodologies for statistical parametric
mapping. Our critique emphasizes recent reports of excessively high numbers of both
false positive and false negative findings in fMRI brain mapping. We outline our view
regarding the broader scientific implications of these methodological considerations and
briefly discuss possible solutions.
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INTRODUCTION
Functional magnetic resonance imaging (fMRI) has become the
workhorse of human cognitive neuroscience. Brain scanners are
now available at hundreds of research sites, including governmen-
tal institutions, universities and hospitals. The number of studies
using fMRI for the investigation of human brain function is ever-
increasing (see Figure 1). A simple search on pubmed.org (see
Appendix) reveals an accelerating yearly output, so that the num-
ber of studies published in the last 4 years (2009–2012) is about
the same as the number published in the 17 years between 1992
(when it all started) and 2009.

Most of these studies are concerned with the localization of
human brain function. The underlying goal of these efforts is
obviously to characterize the relationship between brain structure
and brain function, in a systematic fashion. For instance, stud-
ies may investigate which brain regions are recruited for music
imagery, or for syntactic analysis of heard speech. Ultimately,
the knowledge of such a structure to function relationship allows
a better understanding of how the brain processes information.
Furthermore, structure–function mapping allows insights into
how and to what extent information processing is performed by
functional subunits, and how these units interact in representing
mental states or performing mental tasks. In summary, the most
clearly definable goal of brain mapping is to establish links between
neuronal substrates, their connections, and their functional
relevance.

While many studies have investigated a wide range of human
mental competences, often with striking findings, we question

the validity of several underlying research methods for mapping
brain function. In particular, we examine the serious pitfalls of
the widely used methodologies that employ statistical parametric
mapping and related concepts.

Several of the relevant issues have already been discussed over
the last decade. Our aim here is to assemble them and con-
sider their implications for scientific inference. We focus on
aspects regarding data handling, omitting methodological aspects
of fMRI data acquisition and neurophysiological interpretation
which have been discussed elsewhere in detail (Logothetis, 2008).
Our arguments do not apply solely to one particular method for
constructing statistical maps of brain function, but rather per-
tain broadly. Our critique thus ranges from general linear models
(GLM; Friston et al., 1995) to sophisticated information mapping
methods using machine learning approaches (Haynes and Rees,
2006; Norman et al., 2006).

We argue that commonly applied brain mapping methods,
implemented in a wide range of software packages that use some
form of statistical parametric mapping, generally have a number
of poorly explored inherent flaws, which when taken together may
greatly reduce the adequacy and credibility of the resulting brain
activation maps. There are two types of inherent flaws. Firstly, the
reported findings may be largely incomplete, reflecting critically
high levels of false negative attributions (also referred to as type II
errors). In commonly used data analysis techniques, false negatives
arise in several ways, discussed in detail below. It should be empha-
sized that each source of false negativity contributes additively to
the overall number of false negatives; thus the effects accumulate.
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FIGURE 1 |The usage of functional MRI gets increasingly popular. We
depict the number of publications for each year that incorporate fMRI on
human subjects. The data is based on a pubmed.org search (see appendix).

Secondly, brain function may be incorrectly attributed to specific
anatomical locations that were not involved in the given task, for
instance regions where there are no neurons. This kind of error
is commonly known as false positivity (or type I error). While
there have been systematic efforts to reduce the occurrence of false
positives in neuroimaging (Lieberman and Cunningham, 2009),
common brain mapping approaches enshrine further intrinsic
and plentiful sources of false positivity, in a way which is rarely
discussed.

Here first we summarize the general methodological frame-
work1 used in most statistical parametric mapping studies. We
then discuss the inherent flaws in this methodological framework.
We discuss previous literature, as well as our own results. The dis-
cussion takes the perspective of false positivity and false negativity,
ordered by their spatial scales from finest to coarsest. While these
issues can also be described using receiver operating characteristic
(ROC) plots (Fawcett, 2004), we discuss them here qualitatively.
Finally, we conclude with a view of the resulting broader scien-
tific implications. Drawing from a review of existing literature
and original research, our conclusions sharply criticize currently
accepted brain mapping epistemology.

A GENERALIZED BRAIN MAPPING FRAMEWORK
Here we describe the simplified logic of brain mapping experi-
ments. The vast majority of brain-mapping studies implement or
build on this basic design (Carp, 2012b). In the simplest form,
such experiments consist of two experimental conditions (see
Figure 2A). The experimental conditions may, for instance, be
the visual presentation of two different orientations of a grating,
or the passive listening to grammatically correct and incorrect

1A more thorough description of the fMRI framework can be found here (Ramsey,
2002).

sentences. Importantly, the type and implementation of the con-
ditions must be carefully chosen: while the desired experimental
factors differentiating the two conditions need to be maximally
isolated, the influence of other factors (e.g., extrinsic variables)
should be minimized or at least quantified. While enriched exper-
imental designs are often recommended, such as factorial or
parametric designs or designs that explore the interactions of
the experimental conditions, the basic procedure is the same—
effectively to subtract mean voxel-wise amplitudes of the MRI
intensity in order to estimate how much more activity occurs in
specific regions of the brain for particular combinations of task
conditions.

It is agreed that each experimental condition gives rise to a
different brain state, in the sense of a spatio-temporal pattern
of neuronal activity which is generally assumed to be somewhat
stationary during the condition. Using neuroimaging techniques,
certain aspects of these brain states can be measured (Logo-
thetis and Wandell, 2004). The statistical factors differentiating
the two measures of brain states are assumed to result from the
difference between the two experimental conditions (Figure 2A).
For instance, certain regions may show difference in the fMRI
measurements because of the different visual grating orientations,
or syntactical violations in language processing.

To differentiate the two measured brain states in a statisti-
cally acceptable way, various preprocessing and analysis methods
are used. Many such methods have been proposed, but even
with the most popular methods the number of plausible process-
ing pipelines is about as great as the number of studies (Carp,
2012a). In Figure 2B, we display the minimal set of preprocessing
and analysis steps used in the vast majority of studies. Firstly,
subject head motion is corrected using retrospective realign-
ment methods. Next, the individual fMRI data are normalized2

into a common coordinate space [e.g., MNI or Talairach space
(Chau and McIntosh, 2005)], allowing comparison at the group
level.

As a final preprocessing step, spatial smoothing procedures
are applied which spatially blur the fMRI data. The prepro-
cessed data are then analyzed using a model, such as the GLM
(Friston et al., 1995). Here the quality of fit between a genera-
tive model and the actual data is computed. The GLM model
is generated by convolving the time course of the experimental
conditions (block design or event-related design) with a hemo-
dynamic response function, which is considered to be identical
for each brain voxel. Finally, a statistical comparison is carried
out at the group level, testing for voxel-wise differences in the
model parameters (e.g., the degree of fit of the response model).
The resulting whole-brain statistical maps are then presented in
a thresholded fashion, implementing a correction for multiple
comparisons (i.e., correcting for the large number of statisti-
cal tests being carried out). Often the thresholding includes the
assumption that connectedness increases the significance of brain
voxels. All in all, this results in the widely known images of “blobs”
of brain activity.

2As a side note, the transformation into standard space itself is not without con-
troversy due inter-individual differences in brain anatomy (Brett et al., 2002; Carp,
2012b).
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FIGURE 2 | (A) Simplified basic experimental rationale underlying
fMRI-based brain-mapping studies. Two (carefully chosen) experimental
conditions elicit two distinct brain states. FMRI measurements are able
to capture certain aspects of these brain states. The resulting images
are compared statistically and this statistical difference is causally
ascribed to the difference in terms of experimental factors.
(B) Minimalistic preprocessing and data analysis pipelines. Preprocessing

includes head-motion correction, transformation into a common
coordinate system (e.g., Talairach or MNI space) and spatial smoothing.
On this preprocessed data, model estimates are computed (here, we
depicted the general linear model). The statistical comparison across the
group usually is carried out on basis of the model estimates (e.g.,
contrasts) and incorporates a correction for the multiple comparisons
problem.

SMALL SPATIAL SCALES IN THE BLIND SPOT
Typically, fMRI acquisitions are performed with an isotropic res-
olution of about three millimetres. At first glance it would appear
that the effective resolution used for brain activation mapping is
identical to the resolution of acquisition, in other words that acti-
vations typically only a few millimetres across can be resolved.
However, preprocessing procedures applied on the raw fMRI
data effectively compromise the effective resolution that is avail-
able for structure–function mapping. Depending on the methods
employed, resolution can be lost by as much as a factor of 50
or even 100 (i.e., the smallest resolvable unit is in the order of
magnitude of 50–100 voxels of the original acquisition). In the
following paragraphs we describe the data preprocessing proce-
dures that lead to this net reduction of resolution, and discuss
what this implies scientifically.

SPATIAL SMOOTHING
In most fMRI studies which use the previously introduced brain-
mapping framework, Gaussian spatial smoothing is applied to
the data as a preprocessing step (Carp, 2012b). After smooth-
ing, each voxel contains a mix of its own signal and the weighted
signal of surrounding voxels. The full width at half maximum
(FWHM) of the smoothing kernel determines the contribution of
surrounding voxels to the voxel of interest; larger kernel sizes give
greater contributions from neighboring voxels. This smoothing
procedure was proposed at a time when the only available method
for functional brain imaging in humans was positron emission
tomography (PET).

Smoothing was needed:

(i) to enhance the signal-to-noise ratio (SNR) by effectively
averaging data across several adjacent voxels

(ii) to allow statistical inference using the theory of Random
Gaussian Fields

(iii) to enable averaging across the spatially normalized brains of a
subject group

At this point it should be highlighted that the sole justifica-
tion for each of the above points is pragmatic usefulness. From
a biophysical point of view, there is no first-principle reason
that requires averaging the blood-oxygenation-level dependent
(BOLD) signal over space.

In practice, spatial smoothing appears to improve the statistical
sensitivity, as higher statistical scores are achieved when includ-
ing smoothing. However, spatial smoothing brings severe side
effects.

The first side effect of spatial smoothing is an incorrect esti-
mation of the true spatial extent of brain activations (Sacchet and
Knutson, 2013). This effect becomes especially apparent in ultra-
high resolution fMRI at 7T (Heidemann et al., 2012), as shown
in Figure 3. It can be readily observed that separate and, most
critically, distinct activations progressively merge together, dilat-
ing into a smaller number of larger activations. Spatial smoothing
thus drastically distorts the extent and location of true activa-
tions. In particular, voxels that can never produce a real BOLD
activation (e.g., because they lie within white matter or cere-
brospinal fluid) may receive signals from its surroundings and
appear active. Thus, these voxels erroneously display activation,
induced solely by the spatial smoothing procedure. Furthermore,
spatial smoothing may combine adjacent but distinct activations
into one single activation (Geissler et al., 2005). The peak of such
a combined activation, however, may be located in a region which
never exhibited signal. For example, as depicted in Figure 3,
even applying a rather mild 1 mm smoothing kernel can create
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FIGURE 3 |The effects of spatial smoothing illustrated on an ultra-high

field fMRI data set at a field strength of 7Tesla and an isotropic

resolution of 0.65 mm. The scanning paradigm comprised a visual
checkerboard stimulation (see appendix) and the analysis was based on a
simple general linear model. In the left column, the results are displayed in
terms of a t -statistic (i.e., significance of activations). In the right column,
the corresponding effect sizes are shown (i.e., amplitude of activations). We
depicted the original results and four levels of spatial smoothing. When
smoothing is omitted, fine-grained activation patterns are visible on the
cortical surface (i.e., within gray matter regions). While spatial smoothing
increases the statistical significance of the results, both the effect size and
spatial accuracy of the results are drastically reduced. Noteworthy, the
intrinsic SNR would be increased if a larger voxel size was used or more
repetitions were carried out. As result, a larger number of voxels would be
labeled active.

apparent “activations” in anatomically impossible regions. Thus,
spatial smoothing increases the numbers of false positive voxels,
since spatial smoothing is likely to produce spurious activity in
voxels that never originally contained relevant signal. The appar-
ent spatial extent is driven mostly by the somewhat arbitrary

choice of the smoothing kernel, so that cluster size and voxel
counts, quite often used in data analysis, have very little biological
meaning.

However, the opposite case (namely many false negatives) can
also result from smoothing, particularly when there are:

(i) isolated signals of a limited spatial extent
(ii) low-intensity signals (possibly of larger spatial extent) near the

non-active tissue.

In each situation, spatial smoothing will decrease the original
signal from the voxels considered. At the same time, neighboring
non-activated voxels will contribute perturbing noise. All in all,
this decreased effective SNR results in false negativity for either of
the above situations, a failure in the detection of true effects and
signals. This has far-reaching consequences: spatial smoothing can
make it practically impossible to detect activations of small extent
or small amplitude, even when these deviate enough from some
baseline to be considered significant if analyzed using more pow-
erful statistical methods. Arguably, spatial smoothing can provide
strikingly misleading interpretations of human brain function, as
the results are strongly biased towards the appearance of large-scale
activations which may be biologically implausible.

As we have discussed previously, after spatial smoothing, the
signal of a voxel is effectively a mix between the original signal
of that voxel and the weighted signal of the neighborhood. The
ratio of this mix depends on the smoothing kernel. For another
example of the smoothing’s drastic influence on localizability, we
depicted the ratio of the mix between local and neighborhood sig-
nal in Figure 4 for multiple levels of smoothing. Evidently, even for
rather small values for the FWHM (one voxel, e.g., FWHM = 3 mm
for a voxel size of 3 mm) the contribution of the voxel’s neighbor-
hood is twice as big as the contribution from the (original) signal
at this location. Traditionally the size of the smoothing kernel is set
between 8 and 10 mm for whole-brain studies, which returns the
most favorable results from a pragmatic point of view (Mikl et al.,
2008). More recently, however, kernel sizes of 6 mm have become
more customary. For imaging certain structures (e.g., subcortical
nuclei), it is normal to use even smaller smoothing kernels. How-
ever, it should be stressed that the theory of Gaussian random
fields provides reliable estimates of statistical significance only
when smoothing kernels have at least twice the voxel size (Worsley
and Friston, 1995). Given smoothing kernels of such dimensions,
more than 90% of the post-smoothing signal at any given loca-
tion does not stem from the original location but from voxels in
its neighborhood. Notably, this calculation holds for the overall
smoothness, which should not be equated with the size of the
smoothing kernel applied within the preprocessing: in fact fMRI
images may already exhibit an intrinsic smoothness, additive to the
smoothing procedure. The intrinsic smoothness may originate
both from biophysical properties of the BOLD signal (Malonek
and Grinvald, 1996; Kriegeskorte et al., 2010) and image interpo-
lations that take place in previous preprocessing steps (Kamitani
and Sawahata, 2010), such as motion correction or spatial nor-
malization to the standard space. Hence our depiction in Figure 4
is rather conservative, as the effective3 smoothness generally is

3The effective smoothness consists of the intrinsic (biophysical) smoothness and
the explicit smoothing applied as preprocessing step.
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FIGURE 4 | After the application of spatial smoothing, the signal of a

given voxel is a mix between its original signal and the weighted

average of its surroundings. Smoothing implies that for any given voxel
(A) the signal is “washed” into its neighborhood and (B) that signal of its
surroundings is washed into this voxel. (C) We display the ratio of this mix,
that is, how much of the original signal remains in the voxel versus how much
signal of the neighborhood is washed in. We computed this mix for different
smoothing kernel sizes (given in the dimension of voxels, for details see

appendix). The blue bars represent the original (internal) signal of a voxel; the
red bars illustrate the fraction of the (external) signal that stems from the
neighborhood of the voxel. It is visible that already for relatively small
smoothing kernels (e.g., two voxels, corresponding to a FWHM of 6 mm
given 3 mm voxels), more than 90% of the signal does not correspond any
more to the original signal at any given voxel but stems from the voxel’s
neighborhood. This implies a severe loss of spatial precision for functional
localization.

larger than the FWHM provided for spatial smoothing. Note that
the so-called“draining vein”effect (Turner, 2002), which can cause
mislocalization of BOLD signal, does not in general increase the
spatial smoothness, because pial veins are generally much smaller
in diameter than the size of the fMRI voxel. In any case, this mis-
localization only becomes severe in the unusual situation where
only a few veins drain a large area of activated cortex. Here the
spurious BOLD signal can often be identified as a linear structure
following veins that are visible on the structural image.

Together these issues indicate that brain activation maps pro-
duced with spatial smoothing should be interpreted with great
caution regarding the localization of brain activity. This is par-
ticularly true for larger smoothing kernels between sizes of 8 and
10 mm. Yet, however, despite these issues, virtually no authors
presently include a discussion regarding the underlying spatial
precision in the localization of brain function. The same holds for
the occasional extreme overestimation of spatial extent, as shown
in Figure 3.

Surface-based smoothing (Jo et al., 2007) mitigates some of
these issues. In particular, the spatial accuracy and sensitivity are
improved. For a given kernel width, the influence of a voxel’s
neighborhood is smaller and less signal is blurred out, thus
surface-based smoothing is gentler as compared to volume-based
procedures. Furthermore, the pitfall of smoothing across sulcal
banks is avoided. Besides these improvements, however, spatial
inaccuracies within the cortical plane remain.

Multivariate pattern analysis methods (Carlson et al., 2003;
Kamitani and Tong, 2005; Haxby et al., 2011) generally do not
require spatial smoothing of the fMRI data. However it should be
noted that in certain cases the analysis method itself systematically

introduces spatial smoothness, a loss of spatial precision. The
multivariate searchlight technique is an example of such meth-
ods (Kriegeskorte et al., 2006). It has been shown that this method
may lead to severe spatial inaccuracies (Viswanathan et al., 2012;
Etzel et al., 2013), such as apparent activations in white matter. In
particular, the searchlight method exaggerates the spatial extent
of informative areas, which is especially unwelcome for ultra-high
field fMRI (Stelzer et al., 2014).

CLUSTER-BASED STATISTICAL INFERENCE
The number of statistical tests carried out in typical fMRI exper-
iments is huge, as an individual statistical test is performed for
each voxel. Assuming an isotropic resolution of three millimetres
and whole-brain coverage at a field strength of 3T, the numbers of
voxels and thus individual tests is roughly 50,000. This necessitates
a correction for the large number of tests (known as correction for
multiple comparisons). Without a proper multiple comparisons
correction, many voxels may erroneously appear to be statistically
significant (solely due to the sheer number of tests). Traditional
multiple comparisons strategies, such as the Bonferroni correction
(Miller, 1981) are far too conservative (and yield false negatives).
The main reason for this lack of power is that the significance
of each voxel is tested separately, treating voxels as independent
from each other. However, neighboring voxels can exhibit spa-
tial correlation, especially after spatial smoothing, and thus there
is dependency structure between the tests. Cluster-based statistics
explicitly utilize these spatial dependencies. Clusters4 are generally

4The term “cluster” is used historically in fMRI research, however in general such
spatial structures are referred to as “connected components.” More generally and
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defined as spatially contiguous groups of voxels, all of which sur-
pass a fixed statistical threshold of activation. The underlying
rationale behind cluster-size inference states that it is more unlikely
to find two neighboring voxels both surpassing a statistical thresh-
old than one single voxel surpassing the same threshold (Forman
et al., 1995). Hence the unit of interest, on which the test statis-
tic is applied, is not each voxel, but a spatially contiguous region
(Heller et al., 2006). The crucial step in cluster-size inference is
thus correcting for multiple comparisons on the level of clusters
rather than voxels. This greatly reduces the number of tests that
need to be performed: instead of considering 50,000 statistical
tests (on each voxel), only a few dozen clusters require a correction
test. The statistical tests at the cluster level are then commonly
corrected using false-discovery rate (FDR) methods (Benjamini
and Heller, 2007; Chumbley et al., 2010). This decreased sever-
ity of the multiple comparisons problem may be the main reason
for the broad dissemination of cluster-based methods, as these
have been shown to be more powerful than voxel-based tests
(Hayasaka and Nichols, 2003). As an alternative to regarding the
spatial extent alone, unified statistical frameworks have been pro-
posed which also take into account peak heights (Worsley et al.,
1996). It should be noted, however, that the random field frame-
work and its derivatives critically rely on smoothed data, and
require strong and hard-to-verify assumptions (Genovese et al.,
2002).

Cluster-size thresholding usually results in a minimum clus-
ter size that is deemed statistically significant; larger cluster sizes
surpass and smaller clusters are rejected. However, the gain
in overall statistical power comes at a price, which, although
being obvious, is nevertheless heavy: all clusters that are smaller
than the minimum cluster size are sifted out. In other words,
the power of detecting small-scale activations is greatly dimin-
ished. In fact, the power to detect activations smaller than the
minimum size drops to zero. Hence methods explicitly consid-
ering the connectedness of voxels are a potential source of false
negativity.

The frequency of false negative voxels at small spatial scales
induced by cluster-size thresholding on the one hand, and spa-
tial smoothing on the other, is unfortunately additive. To visualize
this, we used simulations (see Figure 5) to compute the depen-
dence on underlying image smoothness of the minimum cluster
size. The minimum cluster size corresponded to a probability
p < 0.05 of occurrence. It is clear that the minimum cluster size
depends monotonically on increasing smoothness. Moreover, the
dependency is non-linear; given our simulations, doubling the
smoothness effectively quadruples the minimum cluster size. This
may result from multiple separated clusters merging into fewer,
larger ones. In the worst case, clusters can be declared signifi-
cant, which span multiple distinct anatomical regions (Woo et al.,
2014), and are thus hard to interpret in a scientifically meaningful
way.

Hence it can be concluded that spatial smoothing and clus-
ter size inference act together, in regard firstly to generating
misleading information about spatial location and extent (false

particularly in the context of unsupervised learning, clusters are referred to as groups
of similar objects.

FIGURE 5 |The effects of combined spatial smoothing and

cluster-based statistics are additive. We used simulations to depict the
minimum cluster size which is determined as significant for various levels
of smoothness (see appendix). Clusters of smaller extent than this
minimum size fail to reach significance and are effectively sieved out. For
instance, if an overall smoothness of 4 voxels is assumed in the underlying
images, only clusters that are larger than about 80 voxels are taken into
consideration (i.e., are corresponding to an uncorrected cluster
p-value < 0.05). It should be noted, however, that this uncorrected cluster
p-value is still subject to a multiple comparisons correction; hence
depending on the number of overall clusters the final minimum cluster size
may actually be considerably larger than the value we depict here.

positive attributions), and secondly to increasing the number
of false negative voxels at small spatial scale. When both meth-
ods are combined (which is common practice), it becomes
virtually impossible to detect spatial activations smaller than a
certain size. Thus, due to this combination of methodologies,
small activations are a priori excluded from contributing to the
spatial representation of mental states. Noteworthy, what we
designate here as “small spatial scale” (ranging from 50 to 100 vox-
els) in reality reflects on the order of 50–100 million cortical
neurons.

GROUP ANALYSIS–MAPPING THE EFFECTIVE OVERLAP
Group-level analysis has become the standard practice in cog-
nitive neuroscience for localizing brain functions. The main
theoretical motivation to study brain function at the group
level is to identify universal processes of human brain func-
tion and cognition (Friston et al., 1999). The identification of
universal mechanisms within a given population has been very
fruitful for fields of biology, particularly in physiology. Con-
sider for instance the study of an internal organ of the human
body: Following the assumption of a universal mechanism, it
is possible to abstract general features and principles of func-
tionality that are shared amongst the human population. Using
these abstracted features, the role of the organ, its constituents
and the interaction with the overall system can be investigated
and understood in a general sense. Furthermore, it is pos-
sible to delineate and characterize inter-individual differences,
which may themselves be linked to genetic or environmental
factors.
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Aside from this theoretical motivation, in the domain of neu-
roimaging there are further rather pragmatic reasons to carry out
studies at the group level. Most importantly, if perfect coregis-
tration of the corresponding areas of subjects’ brains could be
guaranteed, the power of statistical tests (i.e., the ability to detect
neuronal activations), would be substantially higher at the group
level than at the single-subject level. For somatosensory stimula-
tion, where the location of the relevant brain areas is known to
be well conserved across individuals, the power has been shown
to increase for larger number of subjects tested within a study
(Desmond and Glover, 2002).

A major reason for this gain in statistical power with group
size is the high level of variance typically found in experimen-
tal neuroimaging data. Critically, this variance is interpreted as
nuisance or noise (Horn et al., 2008). It is commonly assumed
that by averaging over subjects the noise-related part of the signal
is diminished, allowing true effects to emerge.

However, the apparent gain in statistical power for group-level
studies gives rise to rather severe drawbacks, in the form of both
false negative and false positive attributions. These drawbacks
are a direct consequence of the (implicit) assumption of univer-
sality mentioned before. In neuroimaging, this assumption can
be formulated more sharply as: the spatio-temporal dynamics of
brain functions have a high degree of uniformity within a popula-
tion. This implies that, at their core, brain dynamics (and their
governing activation patterns) are assumed to be largely similar
across subjects, both temporally and spatially. Critically, devia-
tions from this universal “fingerprint” of a given brain function
are then ascribed to the noisy character of the underlying brain
dynamics.

Although there is excellent reason to attribute universality
within and even across species at microscopic levels of brain func-
tion, namely at the level of single neurons, there is no good a
priori reason for attributing universality to more complex brain
functions, taking place at the level of interacting large-scale net-
works. What if there is often little uniformity in the neuronal
representation of human brain function at higher levels (thought
and cognition), which involve networks of billions of neurons?
What impact would non-uniformity have on the validity of stan-
dard group statistics, which fundamentally rely on the uniformity
assumption?

From a structural point of view, the practice of warping indi-
vidual brains into a standard space imposes limitations here. In
particular, cortical areas often exhibit sharp boundaries (Clarke
and Miklossy, 1990; Schleicher et al., 1999; Geyer et al., 2011),
while on the other hand, the morphology and folding patterns
may differ strikingly across subjects (Rademacher et al., 2001; Fis-
chl et al., 2008). Current methods for warping the functional data
into the standard volumetric space (e.g., MNI space) cannot take
this into account. Such methods imply an irreversible loss of infor-
mation in regards to the brain architecture, effectively conserving
only large-scale features (Turner, 2013). The same arguments
holds for surface-based methods (Fischl et al., 1999), as long as
they are based the geometric similarity of the folding patterns.
It should be noted that surface-based registration of myeloarchi-
tectonic features, as revealed in T1 maps of the cortex (Tardif
et al., 2013; Van Essen and Glasser, 2014) promises to provide

far more precise registration of functionally congruent brain
areas.

From a functional point of view, another set of problems arises.
Following the assumption of universality, mixed- and random
effects group-level methods in neuroimaging (Penny et al., 2003;
Mumford and Nichols, 2006) treat overlapping activations shared
across subjects as true activation. Critically, activations that are
not shared across the group and only emerge in a small subset of
the tested population are implicitly considered noise. However,
if the assumption of uniformity is not true and subjects exhibit
fundamental differences in their spatio-temporal representations
of brain function, it would be premature to label voxels activated
only in a subset of the subjects as noise. We have outlined this sce-
nario in a thought experiment that assesses some brain function
Y invoked by task X in a group of three subjects (Figures 6A–C).
Crucially, as this is a thought experiment, we know the ground-
truth involvement of brain areas that the experimental task X
causes for each subject (displayed in red, green and blue). When
commonly practiced group statistics are employed, the group acti-
vation pattern will be subject to substantial erosion (as compared
to the ground-truth activations for each single subject): only at
locations where all subjects feature an involvement, the group-
level inference indicates a reliable activation (as marked by the
orange blobs in Figure 6D). Much in the sense of an “effective over-
lap,” only these common areas are revealed as the final result of a
group analysis, while all other activations are considered noise and
are discarded. Consequently, only the overlapping region will be
ascribed the brain function Y of carrying out the specific task (the
brain region is often then termed as the “center of Y ”). However,
in light of our thought experiment (which assumes a violation of
the uniformity assumption) the overlap areas were not sufficient
to carry out the ascribed brain function Y on their own. From a
conceptual point of view, there is no a priori reason (other than the
assumption of uniformity) why overlapping regions should have a
special role in task performance. In point of fact each subject may
critically rely on an orchestrated interplay of all brain areas that
had been involved.

The above considerations reveal the potential fallacy of group-
level statistics on a rather theoretical premise. In particular, the
thought experiment demonstrated the hypothetical weakness of
the assumption of uniformity of brain function across a popu-
lation. In summary, the aim of the thought experiment was to
portray the consequences of a naïve group-level analysis if large-
scale uniformity does not hold. Critically, both registration errors
(when normalizing individual data into a common stereotactic
space) and true underlying functional differences may contribute
to the violation of the uniformity assumption.

From an empirical point of view, the validity of the uniformity
assumption (on a large spatial scale) remains contentious. On the
one side, evidence does suggest a certain degree of uniformity. For
instance it is possible to train pattern recognition algorithms to
distinguish two brain-states in one subject and then successfully
apply the learned model on another subject (Shinkareva et al.,
2008; Clithero et al., 2011; Kaplan and Meyer, 2012). Such a cross-
subject classification can only be possible if the spatio-temporal
patterns of brain activation are quite similar across different sub-
jects. These findings thus indicate that at least some aspects of
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FIGURE 6 |Thought experiment considering the activation patterns for

three subjects (A,B,C). The individual (ground truth) activations of the three
subjects are displayed in the colors red, green, and blue. Critically, we
assume the true activations to be variable across the subjects. If standard
group statistical procedures then are applied on this scenario, only the
effective overlap of the subjects is revealed (D). We display this effective

overlap in an orange “blob-like” tone in (D), for the sake of illustration we
marked the overlap also in the individual subject patterns (A,B,C) using white
dots. Under the assumption of high inter-individual variance, this illustration
shows the fallacy of spatial group statistics: for none of the subjects the
overlap regions were sufficient for representing the brain state, as each
subject relied on the involvement of further regions.

FIGURE 7 |Test and retest study, where two participants (JK and MM)

were scanned on two separate sessions, held months apart. The arrows
in between the participants and sessions denote the cross-correlation
between the (uncorrected) patterns of brain activity, thus indicating their
degree of similarity. While the spatial patterns remain relatively similar
within a subject (across both sessions), the similarity across subjects is
comparably low. Reprint with permission from Miller et al. (2012).

brain organization indeed show a degree of generalization or
uniformity within a given population.

In contrast to such findings, test and retest studies where the
same subjects are being scanned repeatedly reveal a strikingly dif-
ferent picture. For instance, Miller and colleagues (Miller et al.,
2009, 2012) have shown that within the same subject the encoding
brain areas for a memory retrieval task remained highly similar
between two scanning sessions separated by months. However,
in contrast, the degree of similarity across subjects was substan-
tially lower, as shown in Figure 7, reprinted from their paper.

Among other conclusions from this finding is the direct refutation
of the ascription of noise to voxels outside of the “effective over-
lap,” that is, those voxels which are not consistently active across
subjects. It is most unlikely that these voxels would show activ-
ity in another fully independent measurement several months
later if they were due to spurious activity. Consequently, the
regions not shared between subjects (which erode in group-
level analysis) in all likelihood exhibit functional relevance. Most
importantly, this functional relevance cannot be easily generalized
within a population, as other subjects did not feature involve-
ment of the same areas. Hence, ultimately, this empirical evidence
contradicts the naïve assumption of large-scale universal brain
function.

In summary, the assumption of universal brain function has
been neither validated nor fully disproved. While there is undeni-
ably some inter-subject consistency, different subjects may have
substantial discrepancies in terms of anatomy and, in addi-
tion, utilize their brain in quite distinctive ways. It appears
conceivable that this diversity of brain representations depends
on the level of brain function. Lower-level brain function may
feature less variability across subjects than high-level mental
functions (e.g., executive functions, cognitive control, social
behavior). Indeed, the inter-subject variance of deeper cortical
folds (which are the first to form in human development) has
been shown to be lower than the variance of shallower ones
(Lohmann et al., 2008; Fischl, 2013). On the other hand, this
does not imply that low-level sensory areas cannot vary sub-
stantially across subjects. For instance, the surface area of early
visual areas may vary by a factor larger than two across individ-
uals (Dougherty et al., 2003). Sources for inter-subject variability
at a range of spatial scales include genetic makeup, epigenetic
differences, and neuroanatomical variability due to general life
experiences (Horn et al., 2008). It is vitally important to rec-
ognize that brain mechanisms, whether actual or modeled, can
only operate in individual living brains. Averaging brain func-
tion across subjects thus creates an abstraction of brain function
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that is assumed representative for the population. However, as we
have argued, the assumptions for this abstraction are not met
and hence such abstractions are inappropriate for mechanistic
explanation.

This argument suggests that maps of brain activations are
likely incomplete, and miss important elements. In other
words, common group-analysis methods can result in many false
negative findings (which may be spatially widely distributed)
because true individual activations may not be adequately cap-
tured in group maps. This fully justifies the terminology of
false negatives, defined as the failure to detect true effects
which may be critical for brain functionality. Furthermore, the
functional role of the overlap region is unclear, as the overall
areas involved with specific functions may substantially dif-
fer across subjects. Thus it may be difficult to interpret the
role of areas which show good overlap after group statistical
analysis.

Group-level inference may also create false positive voxels
(i.e., an erroneous ascription of activity). In earlier examples
we described group-level statistics as a method that delineates
the “effective overlap” of activity within a given population (see
Figure 6). This analogy, in the mathematical sense, implies that
within this perimeter all subjects exhibit an involvement of the
respective brain area. This leads in turn to the question whether
such group-level activations can be observed in situations where
only a proportion of the subjects feature a sufficiently strong acti-
vation while the remaining subjects do not activate this brain
area.

To investigate this empirically, we simulated a statistical assess-
ment of group-level activity, with a random-effects analysis,
carried out on 20 (virtual) subjects. Importantly, the subject
group was heterogeneous in its composition and consisted of a
subgroup of responders (exhibiting an effect) and a subgroup of
non-responders (where the effect was absent). Using our simula-
tion, we varied the fraction of non-responders within the group,
ranging from a pure responder group to a full non-responder
group. Furthermore, we also varied the size of the effect (within
the responder subgroup) to investigate its dependency on the
group-level inference.

Results of this simulation in Figure 8 show that a specific activa-
tion is not necessarily co-localized even in a majority of subjects to
achieve a highly significant result at the group level. Depending on
the underlying effect size, high significance may be reached even
if only half the subjects show an effect. This implies that the other
half of the subjects showed no involvement of this brain area. Nev-
ertheless, on the group level, typical fMRI studies ascribe an effect
at such a given position in the entire subject group – and hence
in the population from which the group is selected. The concept
of an “effective overlap” is thus imprecise. What the typical anal-
ysis reveals is only the “effective overlap of a subset of subjects that
show a sufficiently large effect size.” When subject groups are het-
erogeneous – and without looking at individual subject data, this
heterogeneity remains unknown–standard strategies for group-
level inference indeed generate false positive voxels, erroneously
generalizing a localized effect in some subjects to the entire group.

The explicit consideration of inter-individual differences, on
the other hand, offers interesting further possibilities for research.

Given that there are differences across subjects, it is worthwhile
to compute comparisons between individual activation patterns
(Thirion et al., 2007). Furthermore, it is highly interesting to sys-
tematically investigate the origin of such variations in brain activity
within a population (MacDonald et al., 2006; Horn et al., 2008;
Kherif et al., 2009; Miller et al., 2012), which may interestingly
reflect inter-individual cognitive styles and strategies.

Yet another problem arises in relation to spatial smoothing
and averaging across subjects. This relates to the irreversible loss
of information that this entails, which also has a bearing on
the likelihood of false positives. In theory, the process of Gaus-
sian smoothing can be reversed using deconvolution with the
same kernel (Kamitani and Sawahata, 2010). Once smoothed data
have been averaged across subjects, however, the original detail
of any given subject is no longer retrievable by a deconvolution
operation, especially if the smoothing kernel is much larger than
the voxel size (as is the custom) and data are somewhat noisy. Com-
bining smoothing and averaging then becomes an irreversible,
effectively non-linear, operation. Furthermore, such methods
are coupled with the extreme non-linearity of thresholding at a
specified level of statistical significance, which transforms a con-
tinuously varying t-score into a binary variable defining whether
or not a given voxel is significant. Taken together, it is easy to
see that the final extracted parameters such as location and spa-
tial extent may have a very limited relationship with the original
data.

In summary, we propose that inter-subject variability should
be considered in most neuroimaging studies (i.e., in addition to
intra-subject effects). Studying such variations offers rich insights
and allows drawing a much more complete and realistic picture of
human brain function, from which models of neural mechanisms
can be postulated. Studies ignoring such inter-subject variations
should be interpreted with far greater caution, as they may present
many false positive and false negative findings.

MODEL AND RELIABILITY ISSUES
Statistical parametric maps of neuroimaging data aim to visualize
the involvement of brain regions in a given task, which is hypoth-
esized to be associated with specific postulated brain mechanisms.
Typically, this is achieved by fitting a response function to the neu-
roimaging data. The quality of the fit between this model and the
experimental data is then evaluated using various statistical mea-
sures. For instance, in the case of the GLM, a response function
is constructed by convolving a generic hemodynamic response
function with the onset timing of each task or condition. The
parameters giving the best fit between the generated response func-
tion and the experimental neuroimaging data are then statistically
further evaluated.

Crucially, the data explained by the overall model is consid-
ered signal, while the remainder is considered noise. This practice,
however, raises a few issues. In particular, the generative models
may only explain a very small fraction of the signal’s variance.
However, instead of reporting the quality of the fit in terms of
explained variance or effect size, results are often reported exclu-
sively on the basis of the probability of the rejection of the null
hypothesis. Low p-values (i.e., high t or Z-values), however, should
not be confused with large effect sizes or an adequate fit between
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FIGURE 8 | Data simulation investigating the effects of a

heterogeneous subject group (in terms of responders and

non-responders). We computed group statistics (t -based) for one single
location using a group of 20 “virtual” subjects (see appendix). This
group consisted of two subgroups, firstly responders and secondly
non-responders. The former were sampled from an effect distribution
(normal distribution with an offset) and the latter from a null distribution
(normal distribution). We varied the composition of the group (i.e., the

number of responders versus the number of non-responders) and also
the size of the effect (the offset). For each level (20 levels of group
composition and six levels of effect sizes) we repeatedly computed a
t -based one-sample random-effects analysis, as used in common group
level inference. We displayed the resulting statistical significance levels
in different colors: green for mild significance (0.01 < p < 0.05), blue
for moderate significance (0.001 < p < 0.01) and red for high
significance (p < 0.001).

the model and the data – in fact highly significant models can
go hand in hand with a non-existent model fit (Lohmann et al.,
2012). Hence the ascription of noise (often termed physiological
noise) to the portion of data that remains unexplained may be
premature. Much of this noise has indeed been shown (Biancia-
rdi et al., 2009) to arise from spontaneous fluctuations of neural
activity. For instance, Lohmann and colleagues (Lohmann et al.,
2010) used fMRI data from several language and non-language
experiments and regressed out all model contributions derived
from a GLM approach. Using only this residual “noise” data,
it remained possible to identify temporally correlated networks
that were present exclusively for the language experiments, net-
works that are suggested to form part of a general framework
in the language domain. Importantly, the time-locked experi-
mental variance (which was regressed out) only accounted for
a comparably minor fraction of the variance in the empirical
data.

The results of neuroimaging studies thus critically depend on
the choice of analysis model. It is more than likely that simplis-
tic analysis methods, such as GLM-based methods, are unable

to reveal the full picture. In particular, such massively univariate
methods consider neuronal communication processes only indi-
rectly as they mainly evaluate whether significant activity occurs
at any specified voxel. Since the major functional role of neu-
rons is to transmit co-ordinated activity to separate places in the
brain, more sophisticated analysis methods which consider simul-
taneously the BOLD signal at multiple voxels may thus be better
suited to analyze human brain function (Lohmann et al., 2013b).
It is vital to recognize, however, that not all multivariate models
considering neuronal communication (e.g., in terms of effective
connectivity) are free of problems. In particular, dynamic causal
modeling (DCM) has been shown to be especially problematic
due to several critical methodological flaws (Lohmann et al., 2012,
2013a; Friston et al., 2013). Taken together these issues severely
limit the scientific validity of the conclusions that can be drawn
when using DCM.

The analysis model, however, is not the only factor yielding
diverging results. The particular choice, order and parameters of
the preprocessing steps (e.g., spatial normalization, motion cor-
rection etc.) have also been shown to have a considerable impact
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on the resulting activation maps (Carp, 2012a). The amplitude and
location of the peak activation have been shown to be especially
unstable and subject to considerable variability. This issue becomes
especially problematic for two reasons: firstly, many authors do not
describe design and analysis decisions in sufficient detail (Carp,
2012b). Secondly, this variability of outcome can easily tempt
researchers to implement various different sets of preprocessing
pipelines (in a trial-and-error fashion) and to selectively report
the most favorable results (Carp, 2012a).

Furthermore, the extent of brain activation can be severely
underestimated using traditional scanning paradigms. In a recent
ground-breaking study, Gonzalez-Castillo et al. (2012) demon-
strated that traditional fMRI paradigms may suffer from inade-
quate power in detecting true effects. Instead of scanning a large
number of subjects for a relatively short time period, the com-
monly used procedure, they scanned very few subjects for a long
cumulative duration, over many scanning sessions. In total, an
unconventional number of 100 runs per subject were acquired
(achieved by concatenation over about ten scanning sessions per
subject). For the experiment, the subjects performed a simple
visual discrimination task. The authors then systematically inves-
tigated how the resulting activation maps (derived by a GLM
analysis without spatial smoothing) depended on the number of
runs included in the analysis. This was achieved by inputting only
a subset of the runs into the analysis, and then averaging over
this subset. When including a conventional number of runs (i.e.,
about five to ten), the resulting activation maps were sparse. This
is well in line with previous imaging studies, which indicate that
only a small fraction of all voxels becomes active for such basic
tasks. The situation changed however, more runs were included.
Generally, the number of activated voxels increased monotonically
when more runs were taken into the analysis. Interestingly, when
all of the 100 runs were included into the analysis, about 70% to
90% of all voxels were labeled as active. The number of significant
voxels furthermore depended on the response model used for the
GLM analysis; the number of significant voxels was higher when
allowing more unconventional response shapes (e.g., in the form
of deactivations). Furthermore, the number of active voxels failed
to converge within the tested regime, for either of the different
GLM response models.

The study thus indicates possible brain-wide modulations of
BOLD activity in response to tasks that are not of random nature.
This result raises the fundamental issue that virtually every fMRI
study may have overlooked the involvement of many brain areas,
simply because there was not sufficient power (i.e., scans) avail-
able. In other words, the study suggests that there is a substantial
false negativity problem, inherent to all spatial scales. The second
important issue regards the interpretation of results; if it is true
that even for a simple task the entire brain becomes involved, then
the dichotomy of labeling brain areas as active or inactive is no
longer meaningful and scientifically relevant. To put it pointedly,
these results may herald the end of qualitative activation-based
neuroimaging.

CONCLUSION
In our article we have outlined the most important sources of false
positive and false negative attributions that are inherent to widely

used techniques for human brain mapping (as shown in Figure 2).
We have argued that the quantity of false attributions incurred
by these techniques is unacceptably large, and thus provides a
misleading impression of human brain function. This, in turn,
may lead to quite unrealistic models of brain mechanisms, and
severely limit the validity of the scientific conclusions that can be
drawn from brain mapping studies. The intrinsic unreliability of
traditional methods that involve spatial smoothing, warping to a
template and averaging may render the process of scientific theory
and hypothesis testing inherently problematic.

In particular, the qualitative nature of the inference process
may limit reliability and validity of brain-mapping studies. On
one hand, the location and extent of the resulting thresholded
activations (“blobs”) depends sensitively on the parameters and
order of preprocessing and analysis procedures (such as smooth-
ing, spatial normalization and statistical thresholding). On the
other hand, the extent of activation maps strikingly depends on
the available power of signal detection, as impressively demon-
strated by the recent findings of Gonzalez-Castillo et al. (2012)
that show that the number of activated voxels may – under opti-
mized conditions – cover almost the entire brain. All in all this
brings into question the adequacy of qualitative brain mapping:
What can we usefully learn from the binary labeling of brain
areas as active or inactive, if the entire brain may be involved
in the representation of even the simplest tasks and associated
functions?

Moreover, even the notion of an abstract brain5 is beset by
problems. Such an abstract brain arises from generalizing from
individual brains to a “group brain” representing group brain
activity. The resulting findings and proposed mechanisms may
never be adequately reflected in the individual brain, the only
place where specific neurophysiological mechanisms can actually
operate. Rather than being considered as a source of nuisance vari-
ables, the individual brain and its own inherent dynamics should
be regarded as providing a gold standard for the investigation of
functional mechanisms. The acid test of any proposed mechanism
should be: Does it work in an individual brain?

IMPLICATIONS ON THE EPISTEMOLOGICAL LEVEL
Above we have summarized our criticisms at the level of a
single study viewed in isolation. In the following, we discuss
the implications of our critique on a broader level of scientific
inference.

Within the discussion section of neuroimaging papers, the
supra-threshold group-level findings (“blobs”) of the respective
studies generally are put into perspective with previous literature.
This corpus of literature usually has examined either similar brain
functions or found similar brain regions to be involved.6 In other
words, neuroscientific inferences and conclusions for the interpre-
tation of the present findings are drawn from a network of related
evidence regarding structure–function mappings. Unfortunately,
however, the overwhelming majority of the studies comprising this

5Such “abstract brains” are typically also the object of Dynamic Causal modeling.
6Noteworthy, this form of reverse inference is controversial, as the functional rele-
vance of brain activations is not necessarily comparable across studies (Poldrack,
2006).
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network of references suffer from exactly the same methodological
weaknesses as those we have described here. These weaknesses are
consequently carried over onto a broader level of scientific infer-
ence. “Garbage in, garbage out”is the dictum of data analysis—and
the custom of spatial smoothing has the unfortunate effect of
transforming good data into garbage. This may severely spoil any
qualitative theory or meta-analysis that compiles and integrates
structure–function relationships across studies. Above all, the lack
of resemblance of the averaged data to the results from any of the
individual subjects may severely hamper the testing of hypotheses
and theories.

From an epistemological perspective further rather general
issues arise. On this broader level, the qualitative argumentation
and inference process for establishing structure–function relation-
ships is prone to problems: as the number of fMRI experiments is
ever increasing (as shown in Figure 1), it is frankly impossible for
researchers to link and discuss the relation of their present findings
with the entire relevant corpus of literature (namely studies con-
cerning similar brain functions or revealing similar activations).
Consequently, the reasoning can never be based on the full pic-
ture, but rather on a sparse selection of articles. Ultimately, there
may be a temptation for researches to include studies which rather
support their particular qualitative theory, as opposed to findings
that cannot be integrated satisfactorily into their relevant explana-
tory framework. Large-scale data mining projects, collecting and
making searchable results from neuroimaging studies, are likely to
mitigate the dangers of such practices. Most critically, such data
mining should not be based on the reported results of individ-
ual studies [such as the Neurosynth project (Yarkoni et al., 2011)],
because their results suffer from the same plethora of false positive
and negative voxels, and mislocalization of activation maxima. To
avoid these pitfalls, data mining efforts should be based on the
actual raw fMRI data.

TERMINOLOGY OF PSYCHOLOGY
Apart from the methodological issues concerning fMRI-based
brain mapping experiments, it is worthwhile mentioning contro-
versies regarding the terminology of cognitive neuroscience. This
primarily considers the factors that differentiate the experimental
conditions (see Figure 2A) and their interpretation. Unfortu-
nately, many widely used terms are ambiguous (Poldrack et al.,
2011), as miscellaneous definitions are used in the literature. How-
ever, it cannot be emphasized strongly enough how important
an objective terminology is when it comes to adequate scientific
reasoning. Consider for instance terms from neuroscience such
as synapse, neuron, action potential, cortical column, gyrus and
sulcus (Turner, 2012). It is easy to define such terms objectively,
thus allowing qualified scientists to identify and investigate the
object of research. This is, however, not always the case for terms
used in cognitive neuroscience: consider for instance terms such
as perception, consciousness, attention and altruism. These terms
are often vaguely defined, if at all. Thus, the employed terminol-
ogy is often beyond objective scientific definability (Turner, 2012).
Curiously enough, there are even cases where the terminology of
brain-mapping studies closely resembles Gall’s phrenology (Pol-
drack, 2010). Finally, the terminology of cognitive neuroscience
may depend on the cultural background and the current Zeitgeist.

It thus remains unclear whether a consensus ontology is achievable
at all.

BEYOND BASIC BRAIN MAPPING
There have been encouraging recent developments that may help
to avoid some of the most egregious misuses of fMRI and MRI
data. We describe what we consider to be the most promising
perspectives.

A desirable trend is to publish entire data sets, including the
fMRI raw data and behavioral paradigms (Poldrack et al., 2013).
Critically, this would allow other researchers to re-analyze data
with the help of new methodological developments and further-
more help to assess the reliability and stability of the results.
Additionally, data-mining efforts can be based on such databases.

Changing the order in which the statistical analysis of fMRI
data is carried out may help the interpretability of the data. In
principle, what should be averaged across subjects are the model
parameters extracted from analysis of each subject (Turner, 2013).
This directly allows one to examine inter-subject variation, and
hence to decide whether the model is worth pursuing further.
In particular, it would be possible to test whether the proposed
mechanisms actually take place in the individual brain. In practice,
conjunction analysis (Heller et al., 2007) may be of great usage
here, as the functional variability across subjects is taken explicitly
into account. Crucially, such analysis allows reporting effects on
the group level but at the same time how frequently the effects
actually are found in the individual brains. In the same breath
cross-validation procedures should be mentioned, as these allow
testing for the reliability of effects across subjects. The procedure
may reduce the type I error rate while at the same time maintaining
high levels of sensitivity.

This requires, however, a spatially precise normalization to a
group template. An important step towards this can be achieved
by explicitly taking into account the individual myeloarchitecture
(Tardif et al., 2013). Ultimately, single-subject cortical parcella-
tion enabled by in vivo observation of myeloarchitecture may offer
the most reliable results (Geyer et al., 2011; Bazin et al., 2014);
however, this would not result in a spatial map of brain activity.

Preprocessing of the data should omit spatial smoothing. Thus,
multivariate approaches are a natural choice for data analysis,
as no smoothing is required here (Carlson et al., 2003; Kamitani
and Tong, 2005; Haxby et al., 2011). Furthermore, integrating
information from many brain locations may be more sensi-
tive for identifying brain mechanisms as compared to univariate
approaches (Norman et al., 2006). Particular mention is to be
made in regards to the ongoing rapid development of multivariate
machine-learning methods, although Nishimoto et al. (2011) have
already shown that sequences of stimuli can be reconstructed from
the measured fMRI data. Network modeling may come to be a key
strategy for identifying relevant functional structures in the human
brain (Sporns, 2013). Effectively, such network-based approaches
may help to characterize the brain on its own terms as a com-
plex dynamic system (Lohmann et al., 2013b). Simulation of brain
dynamics using biophysically realistic simulations (Deco et al.,
2008; Markram et al., 2011; Gerstner et al., 2012) offers promise
for the identification and understanding of brain mechanisms, in
particular by bridging all spatial scales.
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APPENDIX
PUBMED.ORG SEARCH STRING (FIGURE 1)

We used the identical search as used by Carp (Carp, 2012b) string
on pubmed.org for counting the number of human fMRI studies
per year (substituting YYYY with the year of interest).

“YYYY”[Date - Publication] AND (fMRI[Title/Abstract] OR
functional magnetic resonance imaging[Title/Abstract] OR func-
tional MRI[Title/Abstract]) AND brain[Title/Abstract] AND
humans[MeSH Terms].

7T fMRI (FIGURE 3)

We used experimental data from an ultrahigh-field experiment
at 7T, recorded by Heidemann et al. (2012) using a voxel size of
0.65 mm isotropic (the detailed scanner paradigm can be found
at the original publication). The functional paradigm consisted of
a simple visual stimulation, realized by blocks of 28 s stimulus-
on and 28 s stimulus-off. In total 15 epochs were used and the
total acquisition time was 14 min. The stimulus-on blocks con-
sisted of a flickering black and white checkerboard (at 8 Hz),
while for stimulus-off, an isoluminant gray background was pre-
sented. One single representative subject was selected for the
presentation in our results. We applied five levels of smoothing
(no smoothing, 1 mm, 2 mm, 4 mm and 8 mm) and after-
wards fitted a standard GLM model using LIPSIA (Lohmann et al.,
2001) on the data. For the t-maps, we applied a statistical thresh-
old of p < 0.001, without incorporating a multiple comparisons
correction.

SIGNAL MIXING DUE TO SMOOTHING (FIGURE 4)

We created a volume of the dimension 101 × 101 × 101 (voxel
size = 3 mm) filled with zeros. The central voxel then was manually
set to the value of 1. Next we applied spatial smoothing on this

original volume, using different values for the size of the smooth-
ing kernel, ranging from 0 to 5 voxels in steps for 0.5 voxels (i.e.,
0–15 mm in steps of 1.5 mm). The value of the center voxel indi-
cated how much of the original signal remained at this position.
The sum over the entire volume discarding the central voxel then
represents the fraction of the signal spreading outside the center
voxel.

MINIMUM CLUSTER SIZES (FIGURE 5)

We constructed 500 original volumes by sampling each voxel’s
value from a Normal distribution N(0,1). The volumes were then
smoothed using different smoothing kernel sizes. The kernel sizes
(FWHM) ranged from 0 to 5 voxels in steps of 0.5 voxels. After this,
the volumes were rescaled using a global factor so that the variance
was equal to 1. The volumes were binarized by the application of a
z-threshold of 2.33 (i.e., voxel i was set to 0 if its value xi < = 2.33
and set to 1 if xi > 2.33). Next we counted the resulting cluster sizes
s of the binary images and computed their histogram H. After nor-
malizing this histogram so that

∑∞
s=2 H(s) = 1, we determined

the smallest cluster size u for which
∑u

s=2 H(s) > 0.95 (i.e., clus-
ter sizes with a probability of occurrence smaller than 5%). The
procedure was repeated for each level of smoothness.

HETEROGENEOUS SUBJECT GROUP SIMULATION (FIGURE 8)

For each level of considered effect size s (s = 0, 1,. . .,5) we sampled
n values representing non-responders (n = 0, 1,. . .,20) from a
Normal distribution N(0,1) and r values representing responders
(r = 20 – n) from a Normal distribution N(s,1) with an offset s
(representing the effect). We computed a t-test against zero using
this combined sample of 20 values. For each value of n and s, the
procedure was repeated 500 times and the resulting p-values were
averaged.
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