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In the recent history of psychology and cognitive neuroscience, the notion of habit
has been reduced to a stimulus-triggered response probability correlation. In this paper
we use a computational model to present an alternative theoretical view (with some
philosophical implications), where habits are seen as self-maintaining patterns of behavior
that share properties in common with self-maintaining biological processes, and that
inhabit a complex ecological context, including the presence and influence of other habits.
Far from mechanical automatisms, this organismic and self-organizing concept of habit
can overcome the dominating atomistic and statistical conceptions, and the high temporal
resolution effects of situatedness, embodiment and sensorimotor loops emerge as playing
a more central, subtle and complex role in the organization of behavior. The model is
based on a novel “iterant deformable sensorimotor medium (IDSM),” designed such
that trajectories taken through sensorimotor-space increase the likelihood that in the
future, similar trajectories will be taken. We couple the IDSM to sensors and motors
of a simulated robot, and show that under certain conditions, the IDSM conditions, the
IDSM forms self-maintaining patterns of activity that operate across the IDSM, the robot’s
body, and the environment. We present various environments and the resulting habits that
form in them. The model acts as an abstraction of habits at a much needed sensorimotor
“meso-scale” between microscopic neuron-based models and macroscopic descriptions
of behavior. Finally, we discuss how this model and extensions of it can help us understand
aspects of behavioral self-organization, historicity and autonomy that remain out of the
scope of contemporary representationalist frameworks.
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1. INTRODUCTION
Our mental life is populated by myriads of often covert, fluid and
inconspicuous patterns of behavior that have slowly grown on us,
continuously sustained by repetition and scaffolded by reliable
environmental structures. Looking left or right before crossing
the road, lacing your shoes, or simply walking can be under-
stood as nested complexes of sensorimotor coordination patterns,
entrained by a history of subtle self-reinforcement, a history of
habit.

That habit is “second nature” was well understood by Greek
philosophers; i.e., that in contrast to the nature of vegetative
function, psychological nature was made of history-dependent
ecological (i.e., agent-environment relational) entities in which
physiological aspects of the organism (brain and body) were
intertwined, through practice, with environmental resources,
forming “natural” structures of behavior. In this sense, James
stated that “animals are bundles of habit” (James, 1890, p.104)
and considered habits to be the building block of the main object
of psychology (and neuroscience): “the Science of Mental Life”
(James, 1890, p.1). For a time, habits were the cornerstone of
psychology (and some early neuroscientific intuitions) until the

rise of cognitivism and the conception of the mind as computa-
tional processing of internal representations (see Barandiaran and
Di Paolo, 2014).

Unfortunately, the rise of computational representationalism
in neuroscience relegated the concept of habits to mere stimulus-
triggered response automatisms, far removed from the contem-
porary intellectualist interest in the rational, linguistic or con-
scious processes that are nowadays seen as the epitome of human
cognition. And yet, cognitive and neural sciences have been wit-
nessing a paradigmatic change for the last two decades, moving
away from the computer metaphor and becoming increasingly
aware of the role of sensorimotor interaction for neural func-
tion (Engel et al., 2013), of self-organization in brain dynamics
(Kelso, 1995; Freeman, 2001), plasticity and multiscale dynamics
(Hurley and Noë, 2003), or the role of embodiment for cognition
(Maturana and Varela, 1980; Pfeifer et al., 2007; Chemero, 2009).

The goal of this paper is to provide a simulation model
that works as an illustration and a proof of concept for a
theoretical reappraisal of a notion of habit that challenges
some of the contemporary assumptions and limitations, both
in behavioral neuroscience and cognitive science. This is why
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we provide considerable philosophical, historical and theoretical
background. It allows us to frame the value and contribution of
the model and to deliver an insightful theoretical interpretation
of the results. The use of simulation models with theoretical goals
follows the tradition of Cybernetics, Artificial Life and Cognitive
Science where opaque conceptual relationships (between micro
and macro, between mechanisms and behavior, philogeny and
ontogeny, etc.) can be disclosed and elaborated. Relatively sim-
ple (compared to natural systems) computational models can
help shifting strong philosophical assumptions (Dennett, 1994;
Di Paolo et al., 2000; Barandiaran and Moreno, 2006). In partic-
ular, this paper explores the idea of habits as embodied senso-
rimotor life-forms, extending upon several contemporary trends
in cognitive and neural science that take self-organizing and
self-sustaining living processes as the root of cognitive capaci-
ties (in opposition to the abstract and functionally disembodied
foundations of representational computationalism) (Damasio,
2003; Di Paolo, 2003; Barandiaran, 2008; Thompson, 2010).
We shall identify life-like properties of habit at the meso-scale
defined by sensorimotor contingencies and coordination dynam-
ics (O’Regan and Noë, 2001; Noë, 2006; Buhrmann et al., 2013):
that is, below the macroscopic level of modeling but above the
microscopic level of neuro-synaptic activity. It is at this meso-
scopic level that a first approximation to a continuous-time,
plastic and embodied conception of habit can be adequately
investigated using simulations of simple robots that, through
plastic sensorimotor controllers, explore and exploit their embod-
ied interaction with their environment thereby making possible
the emergence and self-organization of habits.

In the next sections we introduce the wider background and
motivation for this work, with a short historical introduction to
the notion of habit and its reappraisal in the context of contem-
porary neuro and cognitive sciences. We then introduce a new
modeling paradigm for habits: a node-based iterant deformable
sensorimotor medium. We couple this medium to a robots body,
situated in 1D and 2D environments and we show how it supports
the sensorimotor imprinting of habits and their spontaneous for-
mation, maintenance and development. We also point out some
possible extensions of our model, together with some reflexion
upon the advantages and possibilities of a habit-based robotics
modeling framework, before concluding with some general dis-
cussion about the nature of habits, the autonomy of behavior and
its link with neurodynamic identity, autonomy and freedom.

1.1. HABITS: FROM ARISTOTLE TO NEUROSCIENCE
The notion of “habit” was once (and for a very long time) a
central element of psychological and behavioral theory; either
as a unit of behavioral organization or as a mechanism of asso-
ciation of ideas, impressions, or other psychological units of
analysis. From Aristotle in the 4th century BC to Clark Hull in
the late 40 s, throughout Hume, Hegel, Lamarck, William James,
Dewey, Allport, Thorndike, Skinner, Merleau-Ponty or Piaget (see
Barandiaran and Di Paolo, 2014 for a general overview) they
all gave a privileged status to the notion of habit in psychologi-
cal, behavioral or neural theory. With behaviorism, however, the
philosophical and conceptual diversity and complexity of the con-
cept of habit collapsed down to the notion of a stimulus-response

probability correlation and the theoretical relevance of the con-
cept diminished radically with the rise of cognitivism and the
introduction of representations into the center of psychological
theorizing. Today, the mind is “officially” made out of representa-
tions and made by computations, but for a long time before that,
it was made out of habits and by habit.

The first scientific formulation of a habit as a self-reinforcing
repetitive pattern of behavior might be attributed to Thorndike’s
Law of Exercise which states that:

Any response to a situation will, other things being equal, be more
strongly connected with the situation in proportion to the num-
ber of times it has been connected with that situation and to the
average vigor and duration of the connections. (Thorndike, 1911,
p. 244)

Previously, similar formulations (albeit more speculative and
without explicit experimental basis) were made by Hartley, James,
and other associationists. Almost as early as the XVIIIth cen-
tury (Hartley, 1749; Buckingham and Finger, 1997), the notion of
habit was closely associated with neuronal properties. It took the
strong epistemological standards that logical-positivism imposed
upon psychology for behaviorism to completely give up on inter-
nal mechanisms and center habit research on purely externalist
grounds, avoiding any interpretation of the internal brain mech-
anisms that could sustain them. But, from their early conception,
these theories found a material basis for habit on the plasticity
of nervous “vibrations” or pathways, to be much later developed
into a scientifically mature hypothesis about synaptic plasticity
on what is now widely known as “Hebb’s rule.” But this neu-
ronal principle soon became almost exclusively applied within an
informational or representational framework in cognitive neuro-
science (Hebb, 1949) and the sensorimotor and embodied devel-
opment of this principles still remains relatively under-explored.

Despite the displacement toward more sensorimotor and
interaction-centered dynamical and embodied approaches to
cognition (Kelso, 1995; Thompson and Varela, 2001; Chemero,
2009), and despite the recent emphasis on the relation-
ship between life and mind in neuroscience (Damasio, 2003;
Thompson, 2010), the notion of habit has attracted little atten-
tion so far. And yet, this concept holds the potential to become
a blending category between the biological and the psycholog-
ical. Habits have the capacity to become a theoretical building
block for an organicist conception of mind that makes justice
to the recent focus on sensorimotor and embodied approaches
(Di Paolo, 2003) while it avoids the problems that the concepts of
information and representation have been shown to face in con-
temporary cognitive science (Hutto and Myin, 2012). In fact, if
we are to take mental life as the main object of study of human
(and animal) neuroscience, it is worth considering the deep anal-
ogy with life that the notion of habit makes possible in the realm
of psychology and behavioral neuroscience: just as self-sustaining,
far-from-equilibrium dissipative structures, such as auto-catalytic
metabolic chemistry, have been considered an essential build-
ing block of minimal living organization (Nicolis and Prigogine,
1977; Kauffman, 2000; Virgo, 2011), so could we explore the
possibility of self-sustaining, “far-from-equilibrium,” dissipative
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sensorimotor patterns as the most basic building blocks of men-
tal life (Barandiaran, 2007, 2008)1. What different forms of life
share (at the most basic or fundamental level) is the presence of
spontaneously emerging self-organized patterns (Bedau, 1997),
and habits can be conceived as a paradigmatic example of these.
They can be conceived as precarious, self-maintaining “mental
life-forms” that can persist through repetition in the space of
behavioral neuro-dynamics.

Ever since Hebb’s work and the rise of computationalism, the-
oretical neuroscience has made considerable progress through
the use of computer simulations of neural dynamics and the
use of robots to embody and test different theoretical princi-
ples (Grey Walter, 1950; Ruppin, 2002; Edelman, 2007). Current
embodied and situated simulation techniques (Beer, 2003; Froese
and Ziemke, 2009) might help a reappraisal of a richer concep-
tion of habits that takes their sensorimotor lifelike properties as
a departure point. But how can habits, as behavioral life-forms,
be modeled? What is the simplest and most direct (yet open-
ended) implementation for a robot controller capable to display
spontaneous habit formation, self-maintenance and evolution?

1.2. MODELING HABITS, A NEW APPROACH
Historical and contemporary attempts to model and formalize
habits (Hull, 1950; Sutton and Barto, 1998; Dezfouli et al., 2012)
share some of the following features: (a) they assume a probabilis-
tic stimulus-response approach with a discretized set of stimuli
and responses, (b) they assume a neural network level of imple-
mentation and/or (c) they implement an explicit and decoupled
reward system (i.e., sensorimotor coupling is modulated by a
reward function that is independent from sensorimotor dynam-
ics, that is, they are dependent on the result of actions but not
on the very dynamics of behavior). Here, instead, we attempt a
modeling approach that departs from a different set of assump-
tions: (a) we leave aside how habit formation and activation might
be supported by neural networks and different forms of synap-
tic plasticity, and develop the model directly at a mesoscopic
level of sensorimotor dynamics, (b) we assume a continuous
sensorimotor space (i.e., we do not accept a discretized or pre-
specified input or output spaces in the form of symbolic input
or pre-defined action outputs); and, (c) the system allows for
the self-organization of macroscopic patterns of sensorimotor
coordination by repetition. In a nutshell, we model directly at
a mesoscopic level of continuous sensorimotor contingencies or
coordination dynamics (Noë, 2006; Buhrmann et al., 2013) with
a plastic controller that is shaped by the very trajectories of the
sensorimotor flow.

In this paper we identify micro, macro and mesoscopic lev-
els of modeling of habits. The micro-meso-macroscale distinction
can be applied to a variety of phenomena, and, in turn, to each
level of modeling we might be interested in. So, for instance,

1Biological life has also been reduced or studied through the exclusive lenses of
information theory and representation; and the debate around the origins and
definition of life suffers a parallel divide between the so called “replication-
first” and “metabolism-first” schools of thought, the former advocating for
genes or replicators as informational templates, the latter advocating for a net-
work of far-from-equilibrium chemical reactions (Szathmáry, 2000; Shapiro,
2006)

Freeman (2000) identifies the microscopic level of modeling for
neurodynamics with individual neuronal activity and the macro-
scopic level with behavioral or cognitive states and focuses his
research on a mesoscopic level of brain regions (as identified
by EEG signals) 2 . For the case of habit modeling, the most
widespread macro level is the level of functionally distinguish-
able and discretizable stimuli and responses (e.g., food colors or
spatial landmarks as stimuli and eating or ignoring the food, turn-
ing left or right as macroscopic descriptions of the response).
The microscopic level of modeling of habits might correspond
to a neuronal level of implementation, where different sensory
or effector neurons, for example, strengthen their connection
with an interneuron following Hebb’s rule or some other synap-
tic strengthening process. Interestingly, most of habit modeling
frameworks assume a one-to-one mapping between the macro-
scopic and microscopic levels of description/modeling, such that
specific environmental features or stimuli correspond to a specific
neurons or ensembles of neurons, and the same goes for rein-
forcers and responses (e.g., a neuron might represent the action
of turning left or the reward value of an action outcome). What
we mean by a mesoscopic level of modeling for habits is one that is
above the neuronal details yet below the macroscopic discretized
and individualized stimulus and response units. Our goal is to
develop a modeling framework where those macroscopic units
emerge as unified patterns out of a continuous sensorimotor flow
by means of iterating reinforcement processes without explicit
neuronal assumptions.

Thus we propose a sensorimotor architecture that permits pat-
terns of sensorimotor contingencies to self-organize in a manner
analogous to the way in which human trails are formed in nature
(Helbing et al., 1997): the more the path is used, the more grass
struggles to grow; the less grass, the more likely for a human
to choose that path, so the more the path is used the more
likely it will be used again. For the exploratory purpose of this
paper, we take habits to be instances of a similarly self-reinforcing
process; the more frequently a pattern of behavior (i.e., senso-
rimotor coordination trajectory) is performed, the more likely
it will be repeated in the future. With this idea in mind we
take the following working definition of habit: “a self-sustaining
pattern of sensorimotor coordination that is formed when the
stability of a particular mode of sensorimotor engagement is
dynamically coupled with the stability of the mechanisms gen-
erating it” (Barandiaran, 2008, p. 281) and we add the property
of reinforcement by repetition.

To capture this kind of self-organization of sensorimotor tra-
jectories in a computational model, we developed the notion
of an Iterant Deformable Sensorimotor Medium (IDSM). The
IDSM is a construct that plays a role similar to the grass in
the above metaphor; it is imprinted by paths taken through

2But the very neuronal level (what Freeman identifies as microscopic level)
could also in turn be divided into its own micro-meso-macro levels, molecu-
lar mechanisms constituting the micro level, neuronal input-output dynamics
constituting the macro level and intermediate levels being those that include
statistical aspects of the molecular level (e.g., chemical dynamics) and the spa-
tial configuration of the neuron to generate a specific action potential. For
each case the level of detail, the spatiotemporal scales, the degree of abstraction
or generality might determine what micro, meso and macro means.
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it, and it influences subsequent paths such that they are sim-
ilar to those that have been taken in the past. Similar to
how an imprintable ground, such as grass, is necessary for
self-reinforcing trail-formation, the IDSM makes possible the
existence of self-reinforcing sensorimotor trajectories.

A sensorimotor space defines all possible sensory and motor
states of an agent, where each point indicates a single state of
every motor and sensor of the agent. An organism (e.g., a bacte-
ria) with a single photoreceptor and a single flagellar motor (that
can rotate clockwise or counter-clockwise) has a 2D sensorimo-
tor space where an organism with three chemoreceptors and five
muscles has an 8D sensorimotor space.

A sensorimotor medium defines, for each sensorimotor state
(i.e., for each point in the sensorimotor space), what the next
motor state will be. A sensorimotor medium is deformable when
the mapping between the sensorimotor state and the next motor
state (or the rate of change of the motors) changes in time in
a state-dependent manner. This deformation could be plastic
(where deformations are conserved) or elastic (where deforma-
tions tend to recover the original shape of the medium). And
we call a deformable sensorimotor medium iterant when defor-
mations caused by trajectories reinforce the pathways taken by
those trajectories, that is, when iterations or repetitions of the
trajectories through the sensorimotor space increase the likeli-
hood of subsequent trajectories being similar. This way we get to
the notion of Iterant Deformable Sensorimotor Medium (IDSM): a
mapping between current sensorimotor state and the next motor
state that is modified so as to reinforce or strengthen those tra-
jectories that are iterant or repetitive. We can think of an IDSM
as similar to a river’s drainage basin (that both channels the
future flow of water and, at the same time, is molded by it)
or the trail formation example above: the more a trajectory is
taken, the “stronger” it becomes, i.e., the higher the tendency
of similar states to fall into the same pathway and the harder
for this trajectories to deviate from the previously traversed
course.

To our knowledge no previous attempts have yet been made
to model behavior with an IDSM. The rise of situated robotics
in the 90 s (Brooks, 1991; Steels, 1993) was centered on sub-
sumption architectures where specialized control circuits gave
rise, in embodied interaction with the environment, to spe-
cific behavioral patterns. Neural network controllers (Ruppin,
2002; Edelman, 2007) and more specifically Continuous Time
Recurrent Neural Networks (Beer, 2003), and particularly the
work with plastic CTRNNs (Di Paolo, 2000, 2003) came closer to
our notion of IDSM, but they don’t quite capture the properties of
iterant deformation we want to explore, in particular, they do not
sufficiently facilitate the explorations of habits as self-maintaining
patterns of behavior.

There are many ways that an IDSM could be mathemat-
ically formulated and computationally implemented. We have
experimented with several such architectures. The model pre-
sented below remains an experimental and preliminary design,
but one that already presents interesting dynamics demonstrat-
ing the idea of habits as self-sustaining behavioral patterns, and
allowing us to view habit-formation, habit-maintenance, and
habit-based behavior from a richer dynamical perspective than

the classical stimulus-response, reinforcement learning or various
neural network models.

2. MODEL
For the purpose of this paper we take habits to be pat-
terns of behavior (i.e., sensorimotor coordination) that are
reinforced by their repetition. To model these properties in
a sensorimotor-focused framework, we developed an Iterant
Deformable Sensorimotor Medium (IDSM), a plastic, self-
modifying dynamical system that when coupled to a robots
sensors and motors, (1) causes the robot to repeat behaviors
that it has performed in the past, and (2) allows for the rein-
forcement of patterns of behavior through repetition, such that
the more frequently and recently a pattern of behavior has
been performed, the more likely it is to be performed again in
the future. The remainder of this section explains in technical
detail how we implemented an IDSM. Then, in Section 3, we
present a series of experiments where the IDSM controls a sim-
ulated robot. In these experiments self-maintaining mechanisms
of behavior emerge that share properties in common with living
systems, and in this way the IDSM is demonstrated as a useful
model for investigating habits seen as self-maintaining patterns
of behavior.

The IDSM operates by developing and maintaining a history
of sensorimotor dynamics. This history takes the form of many
“nodes,” where each node describes the SM-velocity at a SM-state
at some point in the past. As the agent behaves, and its SM-state
changes, nodes are added, such that a record is constructed of how
sensors and motors have changed for various SM-states during
the system’s history. These are used in a continuous, dynamical
framework to determine future motor-actions such that when a
familiar SM-state is encountered, the IDSM produces behavior
that is similar to the behavior that was performed when the agent
was previously in a similar situation.

More formally, each node is a tuple of two vectors and a scalar,
N = 〈p, v, w〉, where p indicates the SM-state associated with the
node (referred to as the node’s “position” in SM-space), v indi-
cates a velocity of SM-change, and the scalar, w indicates the
“weight” of the node, a value that partially determines the over-
all influence of the node as described below (Table 1 provides
a list of all symbols with brief descriptions). We shall refer to

Table 1 | Symbols and brief descriptions.

Symbol Description

x Current SM-state

Np SM-state associated with node N (in normalized
SM-space coordinates)

Nv SM-velocity indicated by node N (in normalized
SM-space coordinates)

Nw Weight of node N

d (x, y) Distance function between two SM-states

ω(Nw ) Function describing how the weight of a node scales its
influence

φ(y) Function describing the local density of nodes of
SM-state y
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these components using a subscript notation, where the position,
SM-velocity, and weight of node N are written as Np and Nv and
Nw, respectively.

2.1. CREATION AND MAINTENANCE OF NODES
As a robot controlled by the IDSM moves through SM-states, new
nodes are created recording the SM-velocities experienced at dif-
ferent SM-states. More formally, when a new node is created, its
“position,” Np is set to the current SM-state; its “velocity,” Nv is
set to the current rate of change in each SM-dimension, and its
weight, Nw is set to 0 (note that slightly unconventionally, in this
model a weight of 0 does not mean that the node is ineffectual,
but rather that is “neutral,” i.e., neither stronger nor weaker than
when initially created). The two vector terms (Np and Nv) are
calculated in a normalized sensorimotor space, where the range
of all sensor and motor values are linearly scaled to lie, in each
dimension, between 0 and 1.

New nodes are only added when the density of nodes near the
current SM-state, as described by the function φ, is less than a
threshold value, φ(x) < kt = 1. This density function, φ, can be
thought of as a measure of how many nodes there are near to
the SM-state x, and how heavily weighted those nodes are. It is
calculated by summing a non-linear function of the distance from
every node to the current SM-state d(Np, x), scaled by a sigmoidal
function of the node’s weight ω(Nw), as described in Equations
(1–3) and Figure 1.

φ(x) =
∑

N

ω(Nw) · d(Np, x) (1)

ω(Nw) = 2

1 + exp( − kωNw)
(2)

d(Np, x) = 2

1 + exp(kd||Np − x||2)
(3)

kd = 1000; kω = 0.0025

After a node is created, its weight changes according to differential
Equation (4), where the first term represents a steady degrada-
tion of the node’s influence, and the second term represents a
strengthening of the node that occurs when the current SM-state
is close to the node’s position. This latter term allows for the self-
reinforcement/self-maintenance of patterns of behavior, such that

FIGURE 1 | Non-linear functions used to calculate the node-density of

a SM-state, and to scale the influence of nodes by their proximity to

the current SM-state (Plot A) and by their weight (Plot B). See main
text for details.

when SM-states are revisited, the nodes there are reinforced and
thus, patterns of behavior that are repeated are more likely to
persist than those that only occur once.

dNw

dt
= −1 + r(N, x) (4)

r(N, x) = 10 · d(Np, x); (5)

2.2. NODES INFLUENCE THE MOTOR-STATE
A short period of time after creation (10 simulated time-units),
nodes are activated, meaning that they are added to the pool of
nodes that influence the motor state. If this delay were absent, any
newly created nodes would more strongly influence the next SM-
velocity than the nodes created during previous SM-trajectories,
which would prevent the system from accomplishing the desired
SM-trajectory reinforcement described above. Every activated
node influences the motor state, but at any one time only a sub-
set of these will have a substantial influence, for the influence of
a node is scaled non-linearly by its distance from the current SM-
state by the same distance function used in φ above. The influence
of each node is also scaled by its weight, and thus nodes that
are close to the current SM-state and nodes with higher weights
have a greater influence. We shall look into the influence of node
weight in greater detail in a moment, but first let us look at how
the nodes influence the SM-state.

The influence of a node upon the motors can be broken down
into two factors: a “velocity” factor and an “attraction” factor.
The velocity factor (Equation 6) is simply the motor components
of the Nv vector. The attraction factor (Equation 7), is slightly
more complicated. It is a “force” that draws the system toward the
node. This tends to result in a motion in SM-space toward regions
of SM-space that are familiar, i.e., for which there is a higher
density of nodes. Figure 2 provides a visualization of the influ-
ence of a single, activated node, located at Np = (0.5, 0.5) with
Nv = (0, 0.1) in a hypothetical 2-motor, 0-sensor IDSM. Because
Nv is exactly vertical in this example, all horizontal motion is

FIGURE 2 | The influence of a single node. This plot shows the combined
influence of single node, located at Np = (0.5, 0.5) with Nv = (0, 0.1) in a
hypothetical 2-motor, 0-sensor IDSM. The Nv is exactly vertical, so all
horizontal motion is due to the attraction factor, and vertical motion is due
to the velocity factor. See Equations (6–9) and main text for details.
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due to the “attractive force” of the node. The attraction influence
draws the SM-state toward the node and the velocity influence
pushes the SM-state away from the node. To prevent the attrac-
tion influence from interfering with the velocity influence, the
component of the attraction influence that is parallel to the node’s
velocity vector is removed [as described by the � function used in
Equations (7 and 10) and defined in Equation (8)].

To calculate the total influence of the IDSM upon the
motor state, the velocity and attraction influences of every node
are scaled by the node’s weight and distance to the SM-state
(Equations 6 and 7), and then these are all summed before
being scaled by the density of the nodes at the current SM-state
(Equation 9) such that the influence of all the nodes is averaged
and not cumulative. Obviously, the IDSM only has direct con-
trol of its motors and the sensor-components of the SM-state
are determined by the systems interaction with its environment.
Accordingly, the superscript-μ notation in the equations below
indicates where we are only using the motor-components of the
indicated vector terms.

V(x) =
∑

N

ω(Nw) · d(Np, x) · Nμ
v (6)

A(x) =
∑

N

ω(Nw) · d(Np, x) · �(Np − x, Nv)μ (7)

�(a, Nv) = a − a · Nv

||Nv|| (8)

dμ

dt
= V(x) + A(x)

φ(x)
(9)

The repetition of terms in Equations (6,7) allows us to combine
and simplify Equations (6–9) into the following more concise
formulation:

dμ

dt
= 1

φ(x)

∑
N

⎛
⎝ω(Nw) · d(Np, x) ·

⎛
⎝ Nv︸︷︷︸

Velocity

+ �(Np − x, Nv)︸ ︷︷ ︸
Attraction

⎞
⎠

μ⎞
⎠

(10)
Figure 3 provides a visualization of how the weight of a node
impacts its influence in a hypothetical 2-motor, 0-sensor IDSM.
To generate this figure, we manually added four nodes in relative
proximity, and plotted the flow field generated by the influence

of these nodes. Each plot shows the field with the weight of the
rightmost node set to the value indicated at the top of the figure.

Figure 4 provides a visualization of the influence of many
nodes. To generate this plot, we simulated a IDSM-controlled
robot with two motors and no sensors. For 20 time-units we
(externally) assigned its motor state (m1, m2) according to the
following time-dependent equations,

m1 = 0.75 · cos

(
2π

10
t

)
; m2 = 0.75 · sin

(
2π

10
t

)
(11)

and then generated stream plots indicating the motor trajectories
that would be taken if the IDSM were “frozen” at t = 20 (i.e., if the
weights of nodes did not change and no new nodes were added).
The left and center plots show how the velocity and attraction
influences affect different sensorimotor states if the other influ-
ence were absent, and the rightmost plot shows the combination
of the two influences. At t = 30, we randomized the two motor
values to the state indicated by the star, and allowed the IDSM to
control the motor states. The blue trajectory shows that the IDSM
returned the robot to the motor behavior that it was externally
forced to perform at the start of the trial. In the next section, we
will see this capability of the IDSM in more detail.

3. EXPERIMENTS AND RESULTS
3.1. RECREATING PREVIOUS SENSORIMOTOR BEHAVIOR
To elaborate upon how the IDSM maintains a history of pre-
vious SM-trajectories and how it uses these records to recreate
previously performed patterns of behavior, we now present a sce-
nario involving a simple IDSM-controlled robot. In this scenario,
the robot first undergoes a training phase, where it is driven to
perform a specific behavior, and then a free action phase where
the IDSM has control of the robots motors and it recreates the
patterns of behavior performed during the training phase.

The robot is embedded in a one-dimensional environment
with a single point light-source located at the origin. It has a sin-
gle motor that allows it to move forward or backward and a single
non-directional light sensor. The robot’s velocity, ẋ, is equiva-
lent to the state of its motor m ∈ [−1, 1]. The activation of the
light sensor is inversely proportional to the square of the distance
between the robot and the light according to the following equa-
tion s = 1

1+x2 . The robot has one sensor and one motor, so its
SM-space is two-dimensional.

FIGURE 3 | Nodes with lower weights have less influence on

system-dynamics. These plots show how the influence of a node decreases
with its weight. Each plot shows the dynamics of the same in the same

2-motor, 0-sensor IDSM with four activated nodes, each given a weight (Nw )
of 0, except for the circled node on the right, which has the weight indicated
at the top of each plot.
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FIGURE 4 | Three snapshots of the 2-Motor IDSM as a fixed dynamical

system. The left plot indicates the influence of the velocity term, the central
plot indicates the influence of the attraction factor, and the right plot indicates

the combination of the two. In the final plot, a randomly selected initial
condition (star) is shown to have a trajectory (blue curve) that approaches the
trained cycle of motor activity (gray circle).

FIGURE 5 | Training and performance of an oscillatory behavior. The top plot shows the position of the robot, and the bottom three plots indicate
SM-trajectories and the motor components of activated IDSM-nodes (arrows) for different time-periods in normalized SM-space. See main text for details.

We start with the robot located at x = −2.5. For the first 20
time-units of the simulation, the motor is not controlled by the
IDSM, but is instead determined by the training controller, which
sets the motor state according to the time-dependent equation
m = cos(t/2)/2. This causes the robot to move back and forth,
but remain on one side of the light. The physical position and
sensorimotor trajectory during this training phase are plotted as
dotted curves in Figure 5. As the robot moves through the train-
ing trajectory, the IDSM adds nodes to its record, describing the
change in SM-state for experienced SM-states. The motor compo-
nent of activated nodes are shown as gray arrows in the SM-plots
of Figure 5, with only every 25th node plotted for clarity.

At t = 20, the training phase ends, and we give control of the
motors to the IDSM. We can see in Figure 5 that the robot con-
tinues to perform a behavior that is very similar to the pattern
of behavior experienced during the training regime, oscillating at

approximately the same amplitude, frequency and distance from
the light. How does this occur? During the training phase, several
nodes were created describing how the SM-state changes for var-
ious encountered SM-states. After training ends and the IDSM
takes control of the motors, the velocity-factor of these nodes
causes the motors to change in response to the SM-state in the
same way that they changed when in a similar SM-state experi-
enced during training. Simultaneously, the attraction-factor pulls
the system toward SM-states that it has experienced before. This
latter influence attracts the system toward familiar SM-states so
that potentially, if the system finds itself in an unfamiliar SM-
state, it would modulate its motors in such a way that it is more
likely to return to a familiar SM-state. It also can correct an
SM-trajectory in the sense that when perturbations or devia-
tions from the trained SM-trajectory occur, the attraction-factor
can compensate for them, allowing for the pattern of activity to
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recur (perhaps in a slightly different form and provided that the
environment continues to allow the SM-trajectory) and thus the
pattern of behavior is somewhat robust to varied environments.
These influences of the attraction factor are demonstrated in the
simulation at t = 35, when we relocated the robot to its starting
location and the although after the perturbation the robot is at
a new SM-state (see bottom-right plot in Figure 5), the robot
rapidly returns to the trained behavior, oscillating at the same
amplitude and frequency and distance from the light.

There are many possible patterns that could be trained and that
would remain stable. During our experimentation we observed
that the system could be trained to oscillate at a different dis-
tance from the light source, or to move in oscillations of larger or
smaller magnitude (details not presented). However, the IDSM
cannot be trained to re-enact any pattern of behavior. For
instance, it would be impossible for the IDSM to recreate a behav-
ior that varies completely independently of the SM-state. An
example of this would be a training phase that consisted of oscil-
lating at 33 Hz in front of the light at one amplitude for 10 s and
then oscillating at the same frequency, but a different amplitude
for the next 10 s. The switch between amplitudes is a function of
time and it is independent of the sensorimotor-state, in that it
does not always occur at a specific sensorimotor state, and that
sensorimotor states where it does occur do not always correspond
to a switch. Without a modification to the IDSM, such as the addi-
tion of a sensory-state variable that indicates the passage of time,
the IDSM would be unable to recreate that behavior as the switch
from one oscillation to the other could not be encoded into the
IDSM. Several factors determine which patterns of behavior can
be re-enacted and which can not: the update rules of the IDSM,
the form of the environment and its relationship with the form of
the body of the robot, i.e., how its motors change the robots inter-
action with its environment thereby influencing the activation of
its sensors. If any of these were to change, for instance, if the light
were mobile, or if there were no light at all, or if the robot were
simulated as having inertia, etc., the set of possible stable trainable
patterns would be different.

3.2. TRAINING FUNCTIONAL HABITS
In a further demonstration of the dynamical properties of the
IDSM, we shall now show that when it is coupled to an envi-
ronment through the sensors and motors of a simulated robot,
it can be trained to have self-maintaining patterns of behavior
(“habits”) and that these habits can be functional, in the sense
that they can accomplish a task. To do this, we shall use a slightly
more complicated IDSM-controlled robot that is embedded in a
two-dimensional spatial environment, with two directional light
sensors and two independently driven motorized wheels. The
motion of the robot is determined by the differential equa-
tions ẋ = cos(α)(ml + mr); ẏ = sin(α)(ml + mr); α̇ = 2(mr −
ml), where x,y is the robots spatial position, α ∈ [−π, π ] is the
robots orientation and ml ∈ [−1, 1] and mr ∈ [−1, 1] are the
robots left and right motor speeds. The robot’s directional light
sensors are located at x + r · cos(α + β),y + r · sin(α + β), where
r = 0.25 is the robot’s radius and β = ±π/3 is the angular offset
of the sensors from α, the heading of the robot (see Figure 6), and
the activation of each sensor is determined by

FIGURE 6 | Robot with two motors and two directional light sensors.

s = (b · ||c||)+
1 + D2

, (12)

where b = [cos(α + β), sin(α + β)] is a unit vector indicating
the direction that the sensor is facing, c is the vector from the
sensor to the light, which is placed at (x = 0, y = 0), and D is the
distance from the sensor to the light. The arena is of width 4, with
periodic boundary conditions. The robot has two motors and two
sensors, and thus a four-dimensional sensorimotor space.

We used Braitenberg vehicle-inspired controllers (Braitenberg,
1986) to train the IDSM-controller to produce two different
phototactic (light-seeking) behaviors and a photophobic behav-
ior. The motor activity for these trained behaviors all involve a
fairly direct motor response to sensory input. In the “simple-
phototaxis” case, the connection is inverse and ipsilateral, result-
ing in a motion of the robot toward the light that slows to
a stop as it approaches the light. The “sinusoidal-phototaxis”
behavior, employs the same equations as simple-phototaxis, but
with the addition of time-dependent sinusoidal functions that
cause the robot to wiggle back and forth as it approaches the
light. Finally, the “photophobic” behavior involves equations
similar to those used in the simple-phototaxis case, but with
contralateral rather than ipsilateral connections between sen-
sors and motors. This results in a steady forward motion that
turns away from the light whenever the robot approaches it.
The equations below describe the target left and right motor
values (χl, χr) given sensory input values (σl, σr) for the three
behaviors, which are limited to lie in the range [−1.0, 1.0]
and then used to update the left and right motors (ml, mr) to
approach these target values in a smooth transition according to
Equation (19).

Simple phototaxis:

χ l = 1 − 1.5
√

σ l (13)

χ r = 1 − 1.5
√

σ r (14)

Sinusoidal-phototaxis:

χ l = 1 − 1.5
√

σ l + sin(2t)/2 (15)

χ r = 1 − 1.5
√

σ r − sin(2t)/2 (16)
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Photophobia:

χ l = 1 − 1.5
√

σ r (17)

χ r = 1 − 1.5
√

σ l (18)

Motor update:

dm

dt
= (χ − m) (19)

Similar to the previous experiment, the motor-state of the robot is
determined by one of the above sets of training equations for the
first 100 time-units, and after this training phase, the robot enters
a free-action phase, where the motor state is determined entirely
by the IDSM. To train the robot from a variety of initial con-
ditions and to demonstrate the system’s behavior after training,
every 50 time-units, the robot is relocated to a random position
and assigned a random motor-state.

Figure 7, depicts the spatial trajectories of IDSM-controlled
robots trained with the controllers described above. The square
frames show the spatial trajectories of the robot during the time-
period indicated at the top of the column, with the filled circles
indicating the final position of the robot before a relocation took
place. Plotted underneath these is a bar-chart indicating the mean
distance of the robot from the light (located at the center of the
arena). It is clear from evaluating the trajectories and the final
location of the robots plotted in Figure 7 that the IDSM has been

substantially influenced by the pattern it was exposed to dur-
ing training. Both the two forms of phototaxis training result
in robots that tends to approach the light and the photophobe
training results in a robot that tends to avoid it. Moreover, the
way that these behaviors are performed is similar in the way that
it accomplishes the behavior; compare the sinusoidal approach
engendered by the sinusoidal-phototactic training agent to the
more direct approach to the light performed by the agent trained
with the simple-phototaxis algorithm.

In this scenario, we have the first clear example of a self-
maintaining pattern of behavior, i.e., a habit. To understand why
the pattern of behavior is self-maintaining, we must consider
the weight of the nodes, what causes these weights to change
(Equation 4), and how the influence of the node is affected by
the weight [Figure 1 and Equations (6–10)]. The weight of every
node steadily degrades (according to the first term in Equation 4).
This degradation can be counteracted by reinforcement which
occurs when the SM-state is close to Np, the node’s position
(second term of Equation 4). In the absence of reinforcement,
the nodes created during training would have degraded to the
point of being quite ineffectual and any new or reinforced nodes
would override the originally trained behavior. But, the nodes
influence behavior such that the SM-space near to those nodes
is repeatedly revisited, thereby reinforcing the nodes such that
even after a period of time longer than the non-reinforced effec-
tive “life-span” of the nodes, the nodes and the behavior itself
persist.

FIGURE 7 | Training of phototactic and photophobic behaviors and the

long term evolution of each of the trained behaviors. The square frames
show the spatial trajectories taken by a robot trained with the behavior
indicated to the left of the row, during the time indicated at the top of the

column. Robots are relocated to a random position and assigned a random
motor-state every 50 time-units. The light is fixed at the center of the arena.
The bar chart shows the mean distance of the robot from the light for each
behavior during each indicated time-period.
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In the long term, the IDSM-controlled robots fall into appar-
ently robust behavior that do not show any signs of changing.
There are many influences that determine which patterns of
behavior can become self-maintaining habits, and that influence
the robustness of these habits. These include many of the factors
that we mentioned when discussing the factors that determine
which patterns of behavior are trainable: the form of the IDSM,
the presence of other habits, the form of the environment and the
sensorimotor contingencies, etc. Determining the likely habits, or
evaluating the robustness of an existing habit is complex task.
In the next section we make a first step in this direction by
investigating the habits that form from an randomly initialized
IDSM.

3.3. EMERGENCE OF SELF-ORGANIZED HABITS
In this section, we show that with a randomly initialized IDSM,
patterns of SM-activity form that interact with the environment
in a self-stabilizing manner such that habits emerge. We shall
show that these habits are not purely random behaviors, but
relate to the environment, body and sensorimotor contingencies
of the agent, in that they involve repetitive structured patterns that
exploit agent-environment regularities.

In this experiment, the robot and environment are identi-
cal to those of the previous experiment. There is, however, no
training phase. Instead, we randomly initialized the IDSM with
5000 nodes. These nodes were generated by performing 100 ran-
dom walks in the 4-dimensional SM-space, each starting from
a random location within the SM-space and with subsequent
loci calculated according to the following equation, li + 1 = li + r,
where the components of r are selected from a flat distribution
[−0.05, 0.05] and where any components that would take li out
of the normalized SM-volume are inverted. Nodes were added at
each locus of the walk li with Np set to li, Nv set to Ii + 1 − Ii, and
Nw = 0. This random initialization of the IDSM is intended at
this stage as minimal-assumption, stand-in for other mechanisms
that would scaffold the formation of habits, such as reflexive
behavior, or parental scaffolding, etc.

The experiment consists of a sequence of trials, where for each
trial we observe the pattern of behavior that the robot falls into
after having had its sensorimotor state and position random-
ized. Each trial starts with the robot being placed at a random
location within the arena, with its motors set to random values
selected from the flat distribution [−1, 1]. The IDSM then con-
trols the motors of the robot for 100 time-units, and we record
the sensorimotor and spatial trajectories. At the end of the exper-
iment, we categorized the trials by hand, by comparing plots of
the spatial trajectories taken during the last 25 time-units of the
trial. This was accomplished by looking at the spatial trajecto-
ries plotted in Figure 8A and selecting by hand which trajectories
seemed similar to each other. Five categories were identified, and
colored red, green, blue, magenta and cyan. Figures 8B and 9
show the sensorimotor trajectories for the same trials as plotted
in Figure 8A.

From the randomly initialized IDSM, self-maintaining pat-
terns of behavior emerge, where the robot repeats behavioral
motifs such as the square-with-rounded-corners motion of the
robot around the light seen in red in Figure 8A. These patterns

FIGURE 8 | Spatial and sensorimotor trajectories of habits that have

emerged from a randomly initialized IDSM. The spatial plots (Plot A)
indicate the spatial trajectories taken by the agent during the last 25% of
the trial indicated in the lower right corner. Plot (B) shows a PCA
dimensional reduction projection of the sensorimotor trajectories for these
same trajectories, with colors used to group those trials that have a similar
spatial trajectory.

are repeated and although they take their form in part from the
random initialization of the nodes, they are not entirely random
in that they relate to the environment. Notice, for instance, how
each of the spatial trajectories keep the light within a fixed range
of distances. The agent plotted in Figures 8, 9 has a set of habits
that keep it close to the light, but other randomly initialized agents
had one or more habits that kept it away from the light, or a set
of habits where some habits kept the robot close to the light and
other(s) kept it away from the light.

Habits are not always attractors in the IDSM plus body plus
world system. Or, put another way: although the robot does
sometimes fall into self-maintaining patterns of behavior that will
last forever, there are also habits of repetitive behavior that natu-
rally transition into another habit. For instance, in a randomly
initialized IDSM (not plotted) we have observed behaviors where
the robot turns in a tight loop, but each time through the loop,
moves slightly closer to the light. Eventually, due to the motion
toward the light, the robot enters a new region of SM-space, and
a different set of nodes, perhaps a habit, take over.

4. DISCUSSION
4.1. HABITS AS SELF-SUSTAINING SENSORIMOTOR STRUCTURES
Following the tradition of defining life in terms of self-organized
autonomous processes (Varela, 1979; Maturana and Varela, 1980;
Kauffman, 2000; Ruiz-Mirazo and Moreno, 2004; Egbert et al.,
2009, 2010) we have used our computational model to develop
and investigate a view of habits, seen as self-maintaining pat-
terns of behavior that share properties in common with the
self-maintaining metabolic chemistry of living systems. Both
habits and metabolism are self-maintaining, precarious, dissi-
pative structures that rely upon cyclic processes to persist and,
in both cases, the processes of self-maintenance are contingent
upon the existence of an appropriate environment. Specifically,
metabolism (understood as a network of far-from-equilibrium
chemical reactions) relies upon an external energy-matter gradi-
ents and habits rely upon sensorimotor-contingency structures.
The environment makes possible the necessary flow of matter
and energy for dissipative chemical organizations. Similarly, it is
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FIGURE 9 | Exploration and re-visitation of sensorimotor regions in

habits that have emerged from a randomly initialized IDSM. To
generate this alternative view of the sensorimotor trajectories displayed
in Figure 8, we subdivided the SM-space into a 10 × 10 × 10 × 10

lattice and assigned a region ID number to each hypercube in order
that they were visited. We then plot the region ID number of the
current SM-state against time. Colors correspond to those used in
Figure 8.

the environment that provides the structure for the sensorimo-
tor flow that is necessary for the maintenance of habits. Where
basic autonomy is made of an organized set of dissipative, far-
from-equilibrium chemical reactions (Ruiz-Mirazo and Moreno,
2004), cognitive autonomy is made of habits (Barandiaran, 2007,
2008). The habits are dissipative structures, not in the thermody-
namic sense (there are no thermodynamics in the model) but in
the closely related dynamical systems sense that the IDSM dynam-
ics are irreversible or non-conservative (Nicolis and Prigogine,
1989). This is clear when we recognize that any existing habit only
persists via processes of reinforcing re-enactment of the pattern
of behavior. In the absence of this, all of the nodes in the IDSM
degrade and all patterns eventually cease to exist. Similar to how
Benard-cells disappear when a source of heat is removed, habits
disappear when the enactment of behavior is prevented. In this
sense, like chemical and physical dissipative systems are thermo-
dynamically open, the IDSM and the structures that are therein
created are open to a “sensorimotor flow” that they, together with
the structure of body and environment, make possible.

In our model, the formation of new nodes and their modifica-
tion and reinforcement, is determined by the system’s behavior in
an environment. Structured collections of nodes are reinforced
while others cease to have influence and thus, habits emerge
and are sustained by the behavior they create, in a circular self-
organized manner. It is in this sense that habits can be considered
to be some kind of mental or sensorimotor life-forms. And thus,
to say it with Di Paolo, “[w]e may invest our robots not with life,
but with the mechanisms for acquiring a way of life, that is, with
habits.” (Di Paolo, 2003, p. 32).

In the node-based IDSM, a habit should not be confused with
the collection of nodes that partially constitutes it. A habit also
includes the repeated enactment of the sensorimotor correlations,
for the nodes are only part of the self-maintaining system, i.e.,
part of the network of processes that maintains and is maintained
by their influence. This is made evident when we observe that if
a pattern of behavior is environmentally (or historically, due to
the paths taken by the robot) prevented from being performed,
then the nodes would not be reinforced, the behavior would not
be recreated and the whole self-maintaining system that is the
habit would cease to exist. The habit does not stand “purely in
the head,” but its conditions for existence extend out into body

and environment, involving internal mechanisms (modeled as
nodes in the IDSM) and interaction with the world through
sensorimotor behavior.

The formation and conservation of habits, on our model, is
implicitly constrained by several factors: (i) the properties of
the IDSM; (ii) sensorimotor contingencies, which are in turn
determined by the form of the environment and the robot’s
embodiment; (iii) the historical process and current structure of
the habit; and (iv) the history and present form of other habits.
The first two of these are fixed, in the sense that they are pre-
defined and static throughout the course of a simulation. The
last two are emergent and dynamic. Put another way: in most
cases, habits are constrained but not determined by factors (i)
and (ii); for almost any IDSM and any sensorimotor environment
(Buhrmann et al., 2013), there are many possible meta-stable
forms that a habit could take. But, once a habit has formed, the
set of possible future, or concurrent habits shrinks. Again, this
is reminiscent of a untouched pasture where, as animals walk
through it, paths are carved in the grass, decreasing the variety
of paths taken in the future.

The phototaxis training experiment (Figure 7), where the his-
tory of the agent influences its long term future, shows how the
habits in the IDSM are historical processes. The IDSM is deter-
ministic, and yet when coupled to an embodied robot situated in
a minimal environment, it provides us with a model of a rich form
of behavioral development where the present actions of the robot
are intricately and richly influenced by a long and detailed history
of its sensorimotor flow. It is not just that the robot will turn left
as it approaches the light if it has done that in the past, but more
that the behaviors that it has performed in the distant past have
influenced and constrained the behaviors that has performed in
the more recent past, which influence the behaviors it performs
now, and which habits will form or be destroyed, etc.

Instead of the mind relying upon computations of internal
representations of the external world, we can see how interest-
ing behaviors can emerge through a sort of “resonance” between
the plastic IDSM, the robot’s body and the environment. To
be precise, in our model, the agent is not resonating with the
environment in the conventional sense of the term “resonance”
as applied to oscillation. Yet the interaction between the IDSM
and the embodied, situated robot can be considered as a kind
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of resonant relationship, where complex patterns of behavior
dynamically adapt until they are entrained with the environ-
ment through reliable interactions; and we see how an agent can
accomplish adapted structured behavior without any isomorphic
mapping or representational relationship with the environment.
In this sense we can see habits as adapted to their embodied
habitats.

Just as there are a variety of ways in which living organ-
isms can be more or less adaptive, habits can also have different
degrees of adaptivity. Here we do not refer to the influence of
the habit upon the adaptivity of the robot that it controls, but
rather the adaptability of the habit itself, i.e., the habit’s abil-
ity to persist in a variety of conditions. Some habits may be
mildly adaptive, increasing the chances that they will reoccur in
the future. Others might be more impressively adaptive, modify-
ing parts of their organization such that they persist even when
faced with radical changes in their environment, but we have not
yet explored the adaptivity of habits in detail and this remains
future work.

Habits can be beneficial or detrimental to the “host” organ-
ism upon which they operate. And they can also influence the
viability of other habits. Just as is the case in ecosystems of biolog-
ical organisms, some habits might compete, while others might be
symbiotic, each increasing the chances of the other’s persistence.
How could this occur? In the most simple case, the presence of
a habit can influence what other habits can or will emerge and
what form they will take. For instance, a behavior that prevents
the robot from ever approaching the light will prevent it from
exploring the SM-states where the light sensor is highly activated,
preventing those habits from forming. Similarly, the absence of a
habit can be necessary for certain other habits to form.

The question remains open as to whether a single habit is
sufficient to speak of genuine autonomy and agency in the sen-
sorimotor domain or a full self-regulating ecology of interrelated
habits is required instead (Barandiaran, 2007, 2008). Further vari-
ations and experiments with more complex environments, higher
dimensional IDSMs or the addition of internal variables into the
IDSM can be used to make progress in these and other directions.
Still, the habits in the model share properties with real habits,
and they bear some significance upon human neuroscience and
the notions of sensorimotor identity, autonomy, agency, and,
ultimately, freedom.

Most of the contemporary attention on human freedom is put
on the deliberative capacity of humans to represent the conse-
quences of their actions and take decisions accordingly. Within
this standard and widespread position, habits, as the residue of
the behaviorist conception of mind, are found marginalized as
mere stimulus-triggered response probabilities, that at best play
a supportive role to our more impressive rational and delibera-
tive capacities. In the view taken here, the embodied brain is seen
as supporting a complex ecology of habits that can grow in com-
plexity, adaptivity and coherence in a path-dependent historical
manner, where the behavioral identity of the agent (the topology
of the IDSM) is both the cause and effect of the behavior. Habits
emerge and are sustained by the behavior they create, in a circular
self-organized manner, similar to other self-organizing aspects of
life. Our model opens up a way to re-position habits, understood

as sensorimotor neuro-ecological life-forms, back at the center of
the debate over our autonomy and agency.

4.2. A FRAMEWORK FOR HABIT MODELING AND HABIT-BASED
ROBOTICS

In this paper we have only just started to investigate the vari-
ous factors that influence the form of the habits. A great deal
of work remains to understand how the form of the environ-
ment, or interactions with other agents can scaffold the creation
of new habits or modification of existing habits, together with
the inclusion of aditional, non-sensorimotor, dimensions to the
IDSM. As part of the ALIZ-E project, we are currently investigat-
ing how habits can be influenced by essential variables (such as
blood-sugar) (Ashby, 1952), and in particular how homeostatic
adaptation can be accomplished in a system involving essential
variables, hormonal regulation and habit-based behavior (Avila-
Garcia and Cañamero, 2004; Egbert and Cañamero, 2014). The
goal is to better understand how good and bad habits can form,
and to look into methods for helping to transform unhealthy
habits into healthy habits. We are looking into questions such
as: How could habit formation be biased to perform behavior
that performs well at maintaining blood sugar within a healthy
range? How do unhealthy habits form and how can they be re-
structured into healthy habits, in particular in the context of
the behavioral management of diabetes (Lewis and Cañamero,
2014)? How does environment modulate the formation of habits?
In particular how can interaction with other agents scaffold
the formation of new habits and the modification of existing
habits? and how might fixed “instinctual” or “reflexive” behaviors
scaffold the formation of habits? At this stage, we are intention-
ally avoiding the investigation of explicit reward or punishment
mechanisms. We are instead focusing on how the form of the
IDSM, body (sensors and motors) and world result in particular
patterns of behavior being more or less likely to self-stabilize into
habits.

There also remains a great deal of work to be done to better
understand the influence of the model parameters and alterna-
tive designs to the IDSM. To carry this out it will be necessary
to develop new measures and visualization tools for categoriz-
ing and describing habits. In this paper we investigated IDSM
systems with two and four SM-dimensions. As the number of
SM-dimensions grows, it should be increasingly difficult for the
system to return to previously experienced SM-states. Alternative
SM-distance metrics may help and perhaps, the influence of sen-
sorimotor contingencies, reliable structures in the environment,
and the influence of habits upon subsequent habit formation
may mean that this is not be as big a problem as it initially
appears. Otherwise, this challenge may be addressed by using
more sophisticated plasticity rules. For instance, in the current
implementation, although each node stores the SM-velocity, only
the motor components of Nv are used. In future extensions, the
sensory components could also be used in a more sophisticated
reinforcement rule, where nodes that cause changes in sensory
state similar to change experienced in the past are more reinforced
than those that do not. It will also be interesting to investigate
how the scaling of the SM-dimensions can be accomplished in
a self-regulatory manner. Finally, it remains to be explored how
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additional non-sensorimotor dimensions can be added to the
IDSM, together with delayed reinforcement and richer timescale
deformations.

This research connects to, by now, classical developments
in the neuroscience of habits, where habits are seen as purely
stimulus-triggered responses that are not modulated or modi-
fied in response to a behavior’s outcome (Dickinson, 1985). The
paradigmatic example is the result of behavioral training of a rat
toward water sources where the salt deficient rodent is incapable
of selecting the route to the most saline water and selects the
most familiar or repetitive route instead. This is contrasted with
action-oriented behavior, where the performance of an action is
sensitive to different motivational values (e.g., salt deficiency) or
revaluations of the outcome of the behavior and manipulations
of the contingency that the action will have the desired outcome
(e.g., lower or more variable probability of finding water in one
of the routes). According to two recent reviews of habits Yin
and Knowlton (2006); Graybiel (2008), these two operationally
defined categories of behavior (habitual, stimulus-response or
S-R, and instrumental, action-outcome sensitive or A-O) have
been thought of as being supported by different brain regions,
both in rodents (Balleine and Dickinson, 1998) and humans
(Valentin et al., 2007), that underlie two different forms of learn-
ing. Breaking with this view, recent developments in experimental
neuroscience give reason to believe that these two systems are
more integrated than previously thought, and moreover that
it is not clear how they (or their underlying mechanisms) are
related to one another. The neuroscience has opened the door
to the more not-yet-understood interaction between habits and
A-O behavior and therefore also for the possibility that habits
are not just about “off-loading cognitive work,” but might have
an ongoing influence on even action-oriented behaviors. Our
dynamical sensorimotor model, unlike discrete action-selection
or S-R-probabilities based models, allows us to further investi-
gate these ideas. A mesoscopic level of modeling, where dynamic
sensorimotor reinforcement (as we modeled here) coupled to
additional dimensions and internal dynamics such as blood-sugar
levels (Egbert and Cañamero, 2014), might help exploring the
transition and interaction between S-R and A-O forms of behav-
ior. In this sense, the habit-based robotic modeling framework
we presented here might help neuroscientist to fill the need for “
(. . .) dynamic models in which activity can occur simultaneously
in multiple cortico-basal ganglia loops, not move in toto from
one site to another, and models in which, as the learning process
occurs, activity patterns change at all these sites.” (Graybiel, 2008,
pp. 337–389).

5. CONCLUSIONS
In this paper we have provided a proof of concept and a modeling
framework for a new conception of habits. We have introduced
the very notion and one possible instance of an iterant deformable
sensorimotor medium and shown its capacity as a medium that
supports sensorimotor imprinting and the spontaneous forma-
tion, transformation and evolution of self-maintaining patterns
of behavior, i.e., habits. Unlike previous habit modeling attempts,
we opted for a mesoscopic, continuous-time dynamic modeling,
where habits do not presuppose a specific set of discrete stimuli

to be linked (by reinforcement or repetition) to a given prob-
ability of triggering a specific response (from a set of available
actions). As a result, it is the fine-grained sensorimotor contin-
gency dynamics (that the embodiment and history of the agent
make possible) that define the emergence and self-maintenance
of habits, giving rise to a complex morphology of habits within
a specific body and world. This modeling framework affords for
a deeper conception of habits, where mental life emerges from a
sensorimotor substrata that makes possible the development of
an increasingly complex ecology of self-sustaining sensorimotor
life-forms.

There have been calls for non-computationalist and non-
intellectualist approaches to mind and even an explicit call for
habit-based robotics (Noë, 2009, pp. 97–98). We believe that fur-
ther development of the IDSM modeling framework could assist
on bringing forth a set of theoretical suggestions for enactive
approaches to human cognition and neuroscience (Varela et al.,
1974; Di Paolo, 2003; Barandiaran, 2004; Noë, 2006; Thompson,
2010). In contrast to standard engineering principles (where
functionally specific robotic performance is the goal) or classical
neuro-cognitive assumptions (where the use of internal repre-
sentations is the dominating modeling assumptions), habit-based
robotics (in the sense we explored along this paper) can open
up the way to target behavioral phenomena that often fall out
of general attention: history dependent identity formation, the
mutual shaping between an agent’s sensorimotor identity and the
sensorimotor environment it inhabits, etc.

Piaget’s approach to cognitive development considered higher
cognitive capacities to stir from the tendency to maximally equi-
librate sensorimotor habits, progressively stratified in the form of
schemas (see Di Paolo et al., 2014 for a dynamical interpretation
of these ideas). It shows that habits need not be understood as
opposed to higher cognitive capacities but as their pre-condition
and continuous support. Human freedom is not only about
the deliberative reflexion upon our actions, but about their re-
inscription, through practice and repetition, into the “invisible”
web of habits that constitutes our identity. Developing a mod-
eling framework that is suited to this conception of habit puts
us closer to attain a deeper conception of human freedom and
identity, one that acknowledges habits as the necessary origin of
neuro-cognitive capacities and as the necessary end of incorpo-
rating our virtuous ways of coping with the world back into the
second nature of habitual behavior.
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