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1. INTRODUCTION
Entrained behavior coordinates, predicts,
and modulates multi-scale rhythmic ges-
tures with high spatio-temporal precision
even as it shows flexible adaptation in
response to perturbation (Clayton et al.,
2005; Altenmüller et al., 2006; Phillips-
Silver et al., 2010). The capacity for this
split-second, multi-scale timing is often
viewed as a highly-complex, specialized
virtuosity that emerged in the forges of
natural selection for evolutionary advan-
tage (Mithen, 2005; Knoblich and Sebanz,
2008; Merker et al., 2009). Entrainment
has found compelling mathematical mod-
els in the interaction of multiple dynamic
oscillators (Large, 2010) and convincing
neurological substrata in the electrophys-
iological resonance patterns that support
cognition (Nozaradan et al., 2011; Schaefer
et al., 2011). Further, entrainment-based
therapeutic interventions have been val-
idated in both quantative (Thaut and
Abiru, 2010) and qualitative (Aigen, 2008)
studies.

This paper aims to bolster the theoreti-
cal case for the transformational potential
of entrainment therapy by casting it in
the framework of contemporary engineer-
ing mathematics, in particular applying
the concepts of change of basis, Fourier
transform, and most importantly, the
growing body of work on Joint Sparse
Representation (JSR) (Bruckstein et al.,
2009). The paper aims to be a conceptual
introduction in the hopes of reaching a
wider audience that may want to make use
of the relationship between entrainment
and sparsity, and apply more engineering
mathematics to their analyses of entrain-
ment in therapy and performance.

2. THREE KEY CONCEPTS
2.1. CHANGE OF BASIS
Many of the engineering marvels around
us have, as a keystone of their math-
ematical foundations, a change of basis
(Kreyszig, 2007). A technical definition of
a mathematical basis is a set of linearly
independent vectors within a space that, in
combination, can span the entirety of that
space. For example, the Cartesian basis
for three-dimensional real space (aka R3)
is a set of three orthogonal (perpendicu-
lar) unit (length of one) vectors, pointing
along the x, y, and z axes respectively. In
vector notation the orthonormal Cartesian
R3 vectors are [1 0 0], [0 1 0] and [0 0
1]. We say these vectors span R3, as any
point in R3, for which we have the coor-
dinates [x y z], can be reached from the
origin using the vectors [x 0 0] + [0 y 0]
+ [0 0 z]. The Cartesian R3 basis is, in
other words, the way we might account
for spatial activity using rulers or graph
paper. Add a fourth dimension for time,
to span spatio-temporal activity, and the
same rules apply for any vector [x y z t].

2.2. THE FOURIER BASIS AND THE
FREQUENCY DOMAIN

This spatio-temporal Cartesian basis is our
most intuitive approach to representing
the world around us, but also a very poor
representation for solving many engineer-
ing problems. One of the most commonly
used changes of basis is the family of
Fourier or frequency-domain transforms,
in which a function is represented on a
basis of sinusoidal periodic functions rather
than units of Cartesian distance. In its dis-
crete form, a signal is transformed from a
series of consecutive sampled values into

a combination of sinusoids of different
amplitudes and frequencies.

While conceptually cumbersome at
first, Fourier transformation has many
advantages for not only the analysis, but
the storing and compression, of many kids
of data. Take, for example, a sample of a
single musical note, vibrating at a partic-
ular frequency, that would appear on an
oscilloscope as a complex periodic wave-
form. In the time domain, this signal will
be dense, that is, it will contain few if
any zeros and most of the signal will be
required for its reconstruction as speci-
fied by the the Nyquist-Shannon sampling
theorem (Shannon, 1949). If, however, the
signal is like most signals coming from a
musical instrument—a combination of a
fundamental frequency and a small num-
ber of overtone frequencies—then it can
be represented in the Fourier domain with
a small number of values, one for each
component frequency, leaving the rest of
the basis vectors at zero magnitude. The
signal vector thus meets the mathemati-
cal definition of sparse—most of its coef-
ficients are zero—and its representation
can be efficiently compressed, requiring far
less data for its representation than the
Nyquist theorem specifies. Figure 1A illus-
trates the relationship between a complex
periodic waveform and its sparse Fourier
transformation.

Mathematically, a signal and its Fourier
transform are one-to-one mappings. The
frequency-domain representation of the
signal is often much more efficient, how-
ever, in the sense that far more of the signal
information is packed into a small subset
of the vectors that span the basis. JPEG
(Skodras et al., 2001) and MPEG (Le Gall,
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FIGURE 1 | (A) A dense periodic discrete signal may have a sparse
representation when transformed into the Fourier domain (DCT-II
transform). (B) Image of Edinburgh Castle, with Spatial (Cartesian
basis), Discrete Cosine Transform (frequency domain basis) and

Singular Value Decomposition (least-squares optimal basis)
compression applied at decreasing compression rates. Source: Stuart
Caie, CC BY 2.0 license. Reproduced grayscale with described
modifications.

1991) compression schemes, for example,
discard well over 90% of the information
within a signal in part by transforming that
image into the frequency domain (DCT in
the case of MPEG and Daubechies wavelet
in the case of JPEG 2000) and eliminat-
ing the many frequency bands of near-
zero magnitude. The resulting compressed
data formats still retain enough of the
significant information to have become
the lingua franca of images and music,

respectively. An example of data compres-
sion in the spatial frequency domain is
seen in Figure 1B.

Frequency-domain transform is hard-
wired into the anatomy of the cochlea,
whose hair cells of varying stiffness res-
onate with stimuli of specific frequencies,
triggering action potentials via auditory
transduction. The inner ear thus per-
forms a frequency transform of incom-
ing auditory information across a small

temporal window, known in its simplest
form as a short-time Fourier transform
(STFT), though actual observed perfor-
mance resembles a somewhat more com-
plex transform known as time-frequency
reassignment (Auger et al., 2013).

2.3. SPARSE OVERCOMPLETE CODING
If sufficient information about the sig-
nal can be deduced from a small portion
of a signal via a mathematical transform,
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then the benefits to the actor are obvious.
Both computationally and metabolically,
the organism that can reduce processing
demands by such a large amount can
expect to reap benefits. If frequency-
domain and similar bases yield such
improvements in information coding effi-
ciency, the key question for modeling neu-
ral coding is to ask how that information
might be coded to its optimum.

The optimal basis for a signal in
a least-squares sense is its Singular
Value Decomposition (SVD) (Strang,
2007). A comparison of spatio-temporal,
frequency-domain and SVD data com-
pression is shown in Figure 1B. The
frequency-domain images show many
more features at each level of compres-
sion than the Cartesian (nearest-neighbor)
compression, while the SVD images show
substantially more than either.

However, the SVD of a single signal
is not necessarily the sparsest representa-
tion of that signal in the context of a set
of signals such as that encoded in neural
memory. Much greater compression can
be attained through the re-use of com-
mon basis vectors to transform many sig-
nals. In this approach the process of neural
memory is modeled as manipulation of
a set of learned basis vectors known as
a “dictionary,” in which incoming signals
are decomposed in the sparsest possible
way using the atomic vectors or “atoms”
that make up the dictionary (Rubinstein
et al., 2010). This operation is non-linear
but many efficient algorithms have been
developed for sparse dictionary coding,
primarily through L1-norm minimization
(Donoho and Elad, 2003). The most effi-
cient dictionary systems are found to be
“sparse overcomplete,” that is, they con-
sist of many more basis vectors than nec-
essary for the set of signals, but have
great flexibility to maximize the sparsity
with which an incoming signal is encoded
(Bruckstein et al., 2009; Rubinstein et al.,
2010).

Finally the atoms of the dictionary
must adapt to the new signals in accor-
dance with the principles of Hebbian
and Bayesian learning. Efficient algorithms
have been discovered for this process as
well, whether the classic K-SVD (Aharon
et al., 2006) or more recent parametric or
multiscale dictionary updating algorithms
(Rubinstein et al., 2010).

Perhaps unsurprisingly, there is abun-
dant experimental evidence for such sparse
coding in human and animal brains
(Olshausen and Field, 2004). Evidence
supporting a sparse coding model has
been found in studies of visual (Olshausen
and Field, 1997; Vinje and Gallant, 2000),
auditory (Hromádka et al., 2008), olfac-
tory (Ito et al., 2008; Poo and Isaacson,
2009), haptic (Jadhav et al., 2009; Crochet
et al., 2011) and motor (Hahnloser et al.,
2002) processing. Sparse coding models
relate to the neuroanatomical observation
that progressive stages in signal process-
ing have increasingly redundant amounts
of neurons that each fire increasingly
rarely (Olshausen and Field, 2004). This
is no longer projected to lead to signal-
specific “grandmother cells” but rather to
a maximally sparse and overcomplete rep-
resentation of the world given metabolic
constraints.

3. PUTTING IT ALL TOGETHER: THE
SPARSITY OF ENTRAINMENT

The sparsity argument for entrainment is
then as follows: Phenomena that contain
regularities are more efficiently encoded in
the frequency domain. We can therefore
expect that the optimal basis, such as that
obtained through SVD, would be much
more similar to the frequency-domain
mapping of signal, by a common simi-
larity measure such as tangent distance
(Simard et al., 1998), than the spatiotem-
poral mapping of the signal. Finally, over
time we can expect the atoms in the brain’s
sparse overcomplete dictionary to mini-
mize metabolic and computational costs
by reconstructing signals along bases that
are closer in tangent distance to the fre-
quency domain than the spatiotemporal.

Returning to the descriptions of
entrainment in the literature, many of
the characteristic behaviors found in
entrainment can be accounted for with
greater conceptual economy by apply-
ing sparsity-related concepts. Entrained
movement is not necessarily more skillful
than rhythmically independent move-
ment, but rather entrained movement
is more efficiently coded and less compu-
tationally demanding when projected onto
a frequency-domain basis. Entrainments
across multiple time scales (Large, 2010)
can be represented sparsely when trans-
formed, and therefore does not necessarily

pose much more computational challenge
than a single-scale behavior. Non-
linear coupled oscillators, such as those
hypothesized to underlie entrainment
(Large, 2010), have been shown to be
more efficiently coded and tracked in the
frequency domain (Buchli et al., 2008;
Orchard et al., 2013). Perceived persistence
of rhythmic structures in the absence of
updated information (Large and Palmer,
2002) is explained by pursuit of the spars-
est basis for the signal. Similarly, the error
minimization driving predictive coding
(Vuust et al., 2009) is accounted for by
the least-squares optimization properties
inherent in SVD diagonalization. Finally,
the long tradition of fascinating studies
showing that humans, while in communi-
cation with each other, synchronize from
head to toe (Condon and Ogston, 1966;
Trevarthen, 1979; Bernieri et al., 1988;
Couper-Kuhlen, 1993; Shockley et al.,
2003) is not necessarily describing a behav-
ior of great sophistication as much as a
process of economy: whatever information
is being communicated between subjects
is mapped internally, for each participant,
onto a mathematical basis that has trans-
formed space and time into multi-scale
frequency. Entraining together allows this
communication to take a more efficient
form than when the subjects retain rhyth-
mic independence. Entrainment is not
virtuosity, it is sparsity.

4. VALIDATING THE SPARSITY MODEL
What experiment might validate the
hypothesis that entrainment facilitates
sparse coding? While we cannot observe
information coding directly, we can
observe behavior, and while we do not
have access to the atomic dictionaries
within a subject, we can determine the
SVD of a subject’s actions. The singular
values of the SVD further provide an effec-
tive measurement tool for how sparsely the
information is encoded known as singu-
lar value entropy (SVE). If most of the
information is sparsely packed into a small
number of basis vectors, the entropy of
the singular value set will be low, as some
vectors will have very high singular values
and most will be very low. On the other
hand, if the information is encoded less
sparsely, the information will be spread
diffusely among the basis vectors, increas-
ing the entropy. If entrainment aids the
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neurally coded JSR of a movement, than
the distribution of values within the SVD
of the behavior is likely to shift. In partic-
ular, entropy of the singular values can be
expected to decrease, with increasing dom-
inance of the loadings of the first singular
values. If SVE of the kinematic vectors of
a behavior decreases while entrained, it
may be taken as evidence for a cognitive
re-mapping of the action.

From this hypothesis for the cognitive
impact of entrainment, a second hypothe-
sis for entrainment-based therapy may be
additionally derived: if the lasting result
of a repeated entrainment-based interven-
tion is a persistent shift in kinematic SVE
of a behavior, even independent of the
intervention, the SVE alteration is evi-
dence of entrainment-driven neuroplastic
change.

5. CONCLUSION
As the presence of the cochlea has
long suggested to anatomists, and as
neural coding theory now asserts, the
brain is much more aligned to the fre-
quency domain than our everyday, spatio-
temporal accounts of the world might lead
us to think. Consequently, the impact of
entrainment-based instruction and ther-
apy is likely much greater than that which
can be forecasted by spatiotemporal anal-
ysis of actions. Entrainment is everywhere;
entrainment is powerful; but perhaps most
importantly, entrainment is sparse. A spar-
sity model of entrainment therapy sug-
gests that entrainment therapy is much
more than a way to scaffold the re-
learning of movements: it is potentially
one of the most powerful approaches to
the changing of behavior in the contempo-
rary repertoire.
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