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Human reaction time (RT) can be defined
as the time elapsed from stimulus pre-
sentation until a reaction/response occurs
(e.g., manual, verbal, saccadic, etc.). RT
has been a fundamental measure of the
sensory-motor latency at suprathreshold
conditions for more than a century and
is one of the hallmarks of human per-
formance in everyday tasks (Luce, 1986;
Meyer et al., 1988). Some examples are
the measurement of RTs in sports sci-
ence, driving safety or in aging. Under
repeated experimental conditions the RT is
not a constant value but fluctuates irreg-
ularly over time. Stochastic fluctuations
of RTs are considered a benchmark for
modeling neural latency mechanisms at
a macroscopic scale (Luce, 1986; Smith
and Ratcliff, 2004). Power-law behavior
has been reported in at least three major
types of experiments. (1) RT distributions
exhibit extreme values. The probability
density function (pdf) is often heavy-tailed
and can lead to an asymptotic power-
law distribution in the right tail (Holden
et al., 2009; Moscoso del Prado Martín,
2009; Sigman et al., 2010). (2) RT vari-
ability (e.g., variance) is not bounded and
usually shows a power relation with the
mean, with an exponent β close to unity
(Luce, 1986; Wagenmakers and Brown,
2007; Holden et al., 2009; Medina and
Díaz, 2011, 2012). This relationship is a
manifestation of Taylor’s law (also called
“fluctuation scaling”) (Taylor, 1961; Eisler
et al., 2008), although departures from
power law have been reported (Eisler et al.,
2008; Schmiedek et al., 2009). And (3), the
mean RTs decay as the stimulus strength
increases (Cattell, 1886), an issue that is

well-described by a truncated power func-
tion written in the form of Piéron’s law
(Piéron, 1914, 1920; Luce, 1986):

tn + 1 = tn + d

Sp
(1)

tn + 1 indicates the mean RT, S is the
stimulus strength (e.g., loudness intensity,
odor concentration, etc.), tn represents the
asymptotic component of the mean RT
reached at very high stimulus strength and
d and p are two parameters (Luce, 1986).
The sub-index n denotes the time step
or order and it indicates a causal pro-
cess: tn + 1 grows from the previous stage
tn by an additive factor that depends on
the stimulus strength S (Medina, 2009).
The previous stage tn contains those pro-
cesses at the threshold at an earlier time
and tn + 1 in Equation (1) describes those
processes at suprathreshold conditions at
a later time (Norwich et al., 1989; Medina,
2009). The origin of power-law behav-
ior in RTs has been a long-standing issue.
Considerable effort has been dedicated in
modeling each power relation separately.
While it might be plausible that power laws
in RTs could share a limited number of
mechanisms, a successful theory remains
unresolved. The ubiquity of power laws
in many biological and physical systems
has revealed the existence of multiple gen-
erative mechanisms (Mitzenmacher, 2004;
Newman, 2005; Sornette, 2007; Frank,
2009). Research on a unifying frame-
work that links power laws in RTs is an
important issue for better understanding
the emergent complex behavior of neural

activity in simple decisions and in dys-
functional states.

We propose that type (3) power laws
govern the threshold for RT; and it fol-
lows consequently that power laws gov-
ern suprathreshold fluctuations in RT.
Piéron’s law is valid for each sensory
modality (Chocholle, 1940; Banks, 1973;
Luce, 1986; Overbosch et al., 1989; Pins
and Bonnet, 1996; Bonnet et al., 1999),
and in both simple and choice reaction
times (Schweickert et al., 1988; Pins and
Bonnet, 1996). Instead of diffusion mod-
els (Luce, 1986; Smith and Ratcliff, 2004),
we use elements from information the-
ory and statistical physics as the principal
conceptual tools. We also discuss random
multiplicative processes as an important
approach to Piéron’s law and power laws
in RTs.

In our information-theoretic formal-
ism, the information entropy function
H always expresses a measure of uncer-
tainty within a sensory neural network.
High information entropy values indi-
cates high uncertainty and vice versa.
Information is related to the drop of
uncertainty (measured, e.g., in bits). It
is postulated that sensory perception is
not an instantaneous act but it always
takes time (Norwich, 1993). Initially, for
a given external input signal, the sensory
system encodes the stimulus efficiently
and then, it adapts and transfers informa-
tion over time. Therefore, the H-function
depends explicitly on the time to repre-
sent a continuous process of sensory adap-
tation (Norwich, 1993). The human RT
can be re-defined as the time needed to
accumulate �H bits of information after
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efficient encoding (Norwich et al., 1989;
Norwich, 1993):

�H = H

(
1

t0

)
− H

(
1

tn + 1

)
> 0 (2)

Figure 1A represents the entropy function
H in Equation (2). At least two stages can
be differentiated. The H-function evolves
from a previous state of maximum uncer-
tainty reached at the encoding time t0,
H (1/t0), to a final adapting stage with
a lower uncertainty H (1/tn + 1) where a
reaction occurs, (tn + 1 > t0). Maximum
production of entropy and then, a reduc-
tion of uncertainty in �H as a func-
tion of time are concepts introduced from
statistical physics, the latter as expressed
by Boltzmann (Norwich, 1993). Based on

FIGURE 1 | (A) Schematic representation of the information entropy function H (1/t) (in bits) as a
function of the time t (Norwich, 1993). The transfer of information �H is defined in Equation (2)
from the encoding time t0 until a reaction occurs at tn + 1. (a.u.) = arbitrary units. (B) Schematic
representation of a model of hyperbolic growth in reaction times based on Piéron’s law and
analogous to Michaelis-Menten kinetics in biochemistry (i.e., the Hill equation) (Pins and Bonnet,
1996). In Michaelis-Menten kinetics, an enzyme E is bounded to a substrate U to form a complex
EU that is converted into a product D and the enzyme E. In Piéron’s law, those neurons tuned at
the time tn are bounded to those neurons that perform the formation of an internal threshold S0 in
bn = (

S0/S
)p to form the term tnbn that is converted into the product tnbn plus the time tn. Red

double arrows indicate that the “reaction” is reversible whereas green single arrows indicate that
the “reaction” goes only in one way.

an analytical model of the H-function
(Norwich, 1993), the gain of informa-
tion �H is connected with the formation
of an internal threshold in Equation (1)
(Norwich et al., 1989; Medina, 2009):

d = tnS
p
0 (3)

Piéron’s law can be written as follows:

tn + 1 = (bn + 1) tn, (4)

where bn = (S0/S)p. The parameter S0

represents an estimation of the inter-
nal threshold that controls the RT: an
external incoming signal S exceeding S0

leads to a RT response (Norwich et al.,
1989). Furthermore, S0 varies based on
several factors and provides the sensitivity

(1/S0) of the sensory system (e.g., in
vision the human contrast sensitivity func-
tion) (Felipe et al., 1993; Murray and
Plainis, 2003). The model of Piéron’s law
in Equation (4) sets a number of impor-
tant properties. First property, Equation
(4) indicates the existence of multiplicative
interactions in a cascade between differ-
ent time scales: the mean RT is expressed
in terms of the asymptotic time, tn, and
Piéron’s law is written in multiples of
threshold S0. That is, we work with dimen-
sionless ratios of S0/S (Norwich, 1993).
Different interpretations of the exponent
p have been reported. S

p
0 could be inter-

preted as the transfer or transducer func-
tion between neurons (Copelli et al., 2002;
Billock and Tsou, 2011) at the threshold.
The exponent p usually takes non-integer
values and could indicate a signature of
self-organized criticality in a phase tran-
sition (Kinouchi and Copelli, 2006). Here
the concept of phase transition does not
deal with the classical view of different
states of matter in thermodynamics (e.g.,
liquid vs. gas), but with different states
of connectivity between neurons as mod-
eled by branching processes (Kinouchi and
Copelli, 2006). Alternatively, power func-
tions S

p
0 can be derived from Mackay trans-

forms (Mackay, 1963) and the exponent
p could represent oscillatory synchroniza-
tion states between neurons (Billock and
Tsou, 2005, 2011). The model of Piéron’s
law in Equation (4) is a useful alternative
approach and optimal information trans-
fer is related with the entropy function
H (Norwich, 1993). Low values of p will
promote a minimum in �H after efficient
encoding, i.e., an Infomin principle at the
macroscopic scale (Medina, 2011, 2012).

Second property, the threshold bar-
rier S0 is not a fixed static value but
unstable and fluctuates over time due to
the presence of endogenous or internal
noise (Faisal et al., 2008). Consequently,
RTs are influenced and modified by neu-
ral noise. Therefore, Equation (4) is not
deterministic and is included in a general
class of discrete-time stochastic equations
that has been used in many applications
such as in epidemics, finance, etc. (Levy
and Solomon, 1996; Sornette and Cont,
1997; Takayasu et al., 1997; Newman,
2005; Sornette, 2006). The term bn is a
random and positive multiplicative factor
that depends on the temporal fluctuations

Frontiers in Human Neuroscience www.frontiersin.org August 2014 | Volume 8 | Article 621 | 2

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Medina et al. Power laws in reaction times

of S0 and thus, on �H. It has been
demonstrated that the model of Piéron’s
law in Equation (4) produce type (1)
power laws. RT pdfs obey a transition from
a log-normal distribution into a power law
in the right tail (Medina, 2012). If RTs are
longer than the asymptotic term, tn, the
RT pdf is distributed as a power law with
an exponent γ that depends on the expo-
nent p of Piéron’s law (Medina, 2012):γ =
1 + (

c/p
)
, c being a constant. Two differ-

ent regimes are observed: for those val-
ues p > 0.6 the central moments diverge
and if p ≤ 0.6 they are finite (Medina,
2012). Therefore, long RTs compared to
the asymptotic term tn are considered
intermittent events over time. Their dis-
tribution is characterized by power law
pdfs that might have finite or infinite
variance. A cautionary note should be
mentioned here. The magnitude of p could
also depend on the metric of the stimu-
lus strength S selected and values different
from the boundary p ∼= 0.6 might be pos-
sible. For instance, this is important when
testing power law RT pdfs in color vision
because an appropriate color contrast met-
ric has not been established (Medina and
Diaz, 2010).

Third property, the reciprocal of
Piéron’s law is invariant under rescal-
ing (Chater and Brown, 1999; Medina,
2009). Taking the reciprocal of the
mean RT, R = 1/tn + 1. and the recipro-
cal of the irreducible asymptotic term,
Rmax = 1/tn in Equation (4), then,
R = Rmax

[
1 + (S0/S)p

]
. Therefore, the

reciprocal of the Equation (4) defines
an affine transformation over multiple
time scales that can be mapped into
the Naka-Rushton equation at the cel-
lular level (Naka and Rushton, 1966)
and the Michaelis-Menten equation in
enzyme reactions at the sub-cellular level
(Michaelis and Menten, 1913; Pins and
Bonnet, 1996). This suggests that some
general properties of RT patterns gov-
erned by Piéron’s law could be mirrored
in part into the dynamics of the Naka-
Rushton equation and/or the Michealis
kinetics (Medina, 2009, 2012). The Naka-
Rushton equation represents a canonical
form of non-linear gain control in neural
responses before saturation (Albrecht and
Hamilton, 1982; Billock and Tsou, 2011;
Carandini and Heeger, 2012). Threshold
normalization in the Naka-Rushton

equation is often modeled as a pool of
many neurons tuned to different stimulus
properties (Heeger, 1992; Carandini and
Heeger, 2012). In the Michaelis-Menten
equation, the normalization factor is the
Michaelis constant and indicates the sub-
strate concentration at a reference value.
The Michaelis constant is related with the
substrate’s affinity for the enzyme and
depends on many factors (Murray, 2002).
Figure 1B represents a schematic model of
RT growth based on Piéron’s law and an
analogy with enzyme kinetics.

The exponent p of Piéron’s law could
be related to the scaling exponent β of
the variance-mean relationship in type
(2) power law. A power law relation-
ship between variance and mean of the
stimulus population has been proposed
in the H-function (Norwich, 1993) and
this relationship could be compatible
with the RT variance-mean relationship
in the regime around p > 0.6 (Medina,
2011, 2012). Alternative approaches have
explored α-stable processes to relate type
(1) power laws and long-range correla-
tions (Ihlen, 2013). Tweedie exponential
dispersion models are also able to describe
type (2) power laws in many biological
and physical processes (Eisler et al., 2008;
Kendal and Jørgensen, 2011; Moshitch
and Nelken, 2014). However, a connec-
tion between Piéron’s law and α-stable and
Tweedie models remains unknown.

In summary, maximum entropy H and
then, adaptation over time in Equation
(2) leads to a type (3) power law,
Piéron’s law Equation (1). The H-function
also explains many empirical relations of
sensory perception (Norwich, 1993). An
important message of the entropy func-
tion H is that the term d in Piéron’s law
depends explicitly on a sensory thresh-
old S0 by the power law Equation (3).
There is also experimental evidence that
RTs and threshold-based sensitivities are
mediated by common sensory processes
(Felipe et al., 1993; Murray and Plainis,
2003). Therefore, temporal fluctuations at
the sensory threshold S0 affect RT fluc-
tuations at suprathreshold conditions and
this can be described by means of a
simple random multiplicative process in
Equation (4). The same multiplicative pro-
cess produces non-Gaussian RT distribu-
tions and type (1) power law RT pdfs. The
model of Piéron’s law in Equation (4) also

generates fractal-like behavior that extends
to smaller time scales. The reciprocal of
Equation (4) provides a direct link with
neural gain control in single neurons as
exemplified by the Naka-Ruston equation
and a possible analogy with enzyme kinet-
ics within neurons as exemplified by the
Michaelis-Menten kinetics.
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