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Previous work has demonstrated that perceived surface reflectance (lightness) can be
modeled in simple contexts in a quantitatively exact way by assuming that the visual
system first extracts information about local, directed steps in log luminance, then
spatially integrates these steps along paths through the image to compute lightness
(Rudd and Zemach, 2004, 2005, 2007). This method of computing lightness is called
edge integration. Recent evidence (Rudd, 2013) suggests that human vision employs
a default strategy to integrate luminance steps only along paths from a common
background region to the targets whose lightness is computed. This implies a role for
gestalt grouping in edge-based lightness computation. Rudd (2010) further showed the
perceptual weights applied to edges in lightness computation can be influenced by the
observer’s interpretation of luminance steps as resulting from either spatial variation
in surface reflectance or illumination. This implies a role for top-down factors in any
edge-based model of lightness (Rudd and Zemach, 2005). Here, I show how the separate
influences of grouping and attention on lightness can be modeled in tandem by a cortical
mechanism that first employs top-down signals to spatially select regions of interest
for lightness computation. An object-based network computation, involving neurons that
code for border-ownership, then automatically sets the neural gains applied to edge
signals surviving the earlier spatial selection stage. Only the borders that survive both
processing stages are spatially integrated to compute lightness. The model assumptions
are consistent with those of the cortical lightness model presented earlier by Rudd (2010,
2013), and with neurophysiological data indicating extraction of local edge information in
V1, network computations to establish figure-ground relations and border ownership in
V2, and edge integration to encode lightness and darkness signals in V4.

Keywords: lightness, brightness, achromatic color, cortical ventral stream, neural computation

INTRODUCTION
In this paper, I outline a theory of object-based neural lightness
computation occurring within the ventral stream of visual cortex
(Figure 1) and apply this theory to problems of gestalt group-
ing and individual differences in lightness perception. The theory
includes bottom-up, top-down, and mid-level computations that
are identified respectively with: (1) early sensory encoding of local
oriented contrast occurring along the pathway from retina to V1;
(2) task-specific top-down cortical feedback modulation of the
early neural contrast code in V1; and (3) neural circuit computa-
tions in V2 that perform functions related to image segmentation.
A neural representation of surface reflectance (“lightness” for
short) is constructed by a long-range spatial integration of the
cortical responses to oriented contrast, or edges, whose neural
gains are adjusted prior to spatial integration by the top-down
and mid-level computations occurring in cortical areas V1 and
V2. The long-range edge integration is proposed to occur in
area V4. The achromatic colors assigned to each image location

are computed by a mechanism that compares the output of the
long-range integrator neurons in V4.

I will begin by discussing a simplified version of the model and
show how this model accounts for classical and recent data on
effects of spatial context on lightness, including the dependence
of lightness induction on distance and differences in induction
strength for increments and decrements. The model produces
lightness filling-in phenomena as a byproduct of edge inte-
gration. After presenting this simplified, or “basic,” model, I
explain the need to incorporate additional computations related
to attentional selection and image segmentation. I show how
the elaborated model accounts for individual differences in the
staircase-Gelb lightness paradigm. I close by discussing some
outstanding problems for the theory.

THE BASIC NEURAL EDGE-INTEGRATION MODEL
One of the simplest of all lightness illusions is simultaneous con-
trast: a mid-gray paper viewed in the context of a black surround
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Rudd Object-based lightness

FIGURE 1 | Cortical stages of lightness computation in the neural edge

integration model.

looks lighter than the same paper viewed in the context of a white
surround (Chevreul, 1839/1967). Simultaneous contrast has been
studied for 175 years, yet there are still disagreements regarding
its correct interpretation. One common explanation is that the
visual system does not care about luminance per se, but rather
about luminance ratios, or relative luminance. In fact, early visual
neurons in the retina and cortex do recode pointwise image lumi-
nance into a local contrast code. At sufficiently high light levels,
the retinal output is proportional to the local Weber contrast �I/I.
Thus, cortical mechanisms tasked with perceiving reflectance of
the gray papers in the simultaneous contrast display receive a neu-
ral signal telling them that the intensity of the gray paper differs
from the surround intensity by a given fraction of the surround
intensity. Retinal ON cells relay information about the relative
luminances of image regions whose luminances are higher than
that of the surround; whereas, OFF cells relay information about
the relative luminances of regions whose luminances are lower
than that of the surround.

Wallach (1963) found that human observers, when asked to
match in appearance two dark disk targets surrounded by annuli
of higher luminance, set the disk/annulus luminance ratios to be
approximately equal for a match. This is mathematically equiv-
alent to setting the local Weber fraction at the disk/annulus
edges equal in order to achieve an appearance match. Wallach’s
experiments were performed around the same time that neuro-
physiological evidence for Weber fractional neural encoding by
ON cells and OFF cells was discovered (Kuffler, 1953) and Wallach
suggested that his observers’ ratio matches might be explained on
the basis of this finding.

Further support for this idea comes from data showing that
the appearance of a region of homogeneous luminance is strongly
influenced by the luminance contrast at the region’s border. If
appearance is determined solely by neural activity at the edge,

then an additional neural mechanism is needed to reconstruct—
or “fill in”—regional appearance on the basis of edge contrast. I
return to this point below and propose that “filling-in” of surface
percepts in natural vision is related to perceptual illusions of color
spreading from borders, such as the Craik-O’Brien-Cornsweet
(O’Brien, 1958; Craik, 1966; Cornsweet, 1970) and Watercolor
(Pinna et al., 2001) illusions.

To build a quantitative theory of lightness filling in from edges,
one has to consider the fact that a large asymmetry exists in the
strength of the induction effect produced by the size of the lumi-
nance step at the edge, depending on the contrast polarity of
the border: that is, whether the region is light inside, or dark
inside, relative to the surround. A lighter surround has a very
great impact on the appearance of a dark region, while a darker
surround has a much smaller impact on the appearance of a light
region (Heinemann, 1972; Rudd and Zemach, 2004, 2005, 2007;
Vladusich, 2013a,b). Gilchrist (1988) measured the relative influ-
ences of dark and light surrounds on identical gray papers in a
simultaneous contrast display and concluded that most of the
illusion was accounted for by darkness induction from the light
surround to the decremental paper.

To account for this marked asymmetry in the relative
strengths of lightness and darkness induction, Wallach—and later
Gilchrist—proposed a perceptual principle, known as “highest
luminance anchoring” which asserts that any surface having the
highest luminance among a group of commonly-illuminated sur-
faces will be perceived as white. Furthermore, the lightnesses of
all other surfaces appearing within the group of commonly illu-
minated surfaces are determined by the surface’s luminance ratio
with respect to the white point (Wallach, 1963; Cataliotti and
Gilchrist, 1995; Gilchrist et al., 1999; Gilchrist, 2006; Gilchrist and
Radonjić, 2010). Importantly, the highest luminance rule predicts
a very strong asymmetry between the strengths of lightness and
darkness induction when the target and surround are the only
surfaces appearing within an illumination framework. In that
case, the highest luminance rule predicts a complete absence of
a surround effect for incremental targets because the target itself
is then the highest luminance within the illumination framework
containing only the target and surround.

While anchoring theory emphasizes the grouping of surfaces
for purposes of lightness computation by regions of common illu-
mination, it ignores the perceptual evidence for other grouping
principles in lightness (Bressan, 2006). In particular, it ignores
a large body of literature suggesting that the influence of spatial
context on lightness declines with distance up to about 10 deg
of visual angle (Diamond, 1953; Reid and Shapley, 1988; Rudd
and Zemach, 2004) and, thus, that some type of grouping-by-
proximity rule contributes to lightness perception. My colleagues
and I have shown that lightness computation in simple contexts,
including disk-annulus and simultaneous contrast displays, can
be characterized in a quantitatively exact way by a mathematical
theory in which weighted sums of luminance steps at edges—with
the steps measured in units of log luminance—are summed in the
direction of the target surrounding over a spatial window of about
10◦ (Rudd, 2001, 2003, 2010, 2013; Rudd and Arrington, 2001;
Rudd and Popa, 2007; Rudd and Zemach, 2004, 2005, 2007).
In what follows, I will refer to this theory as edge integration
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FIGURE 2 | Perceptual edge integration demo. The disks and annuli on
the two sides of the display have the same luminance, so the luminance
ratio at the disk/annulus edge is the same on the two sides. The shallow
luminance gradient across the background field produces outer annulus
edge ratios of opposite sign on the two sides of the display. The outer
annulus edge on the right signals to the brain that the annulus is darker
than the background field; whereas, the outer edge on the left signals that
the annulus is lighter than the background field. The key observation is that
the polarity of this edge influences the appearance of both the annulus and
the disk that is embedded inside it. The disk appearance cannot be
explained by a filling-in mechanism that diffuses from the outer annulus
border and is stopped by the disk/annulus edge. The filling-in signal must
be able to reach the region of the disk. This fact is explained in the model
by the mechanism of cortical edge integration.

theory, and to the more speculative neural theory proposed here
to account for the mathematical properties of edge integration as
neural edge integration theory. A demonstration of the perceptual
phenomenon of edge integration is shown in Figure 2.

From the mathematical standpoint, edge integration can be
equivalently described as a process that produces lightness values
from a weighted sum of logarithms of luminances ratios (here-
after, log luminance ratios) at edges. The log luminance ratio, or

log Ln + 1
Ln

(where the subscripts n and n + 1 denote the sequence of
luminances encountered along the path over which the log lumi-
nance ratios at edges are spatially summed) is closely related both
to the logarithm of the Weber fraction at the edge—because the
luminance ratio is just the Weber fraction plus 1—and to the
logarithm of local Michelson contrast (Reid and Shapley, 1988).
A weighted sum of log luminance ratios is also closely related to
the (unweighted) sum of log luminance ratios that determines
lightness in Land’s retinex theory of color constancy (Land and
McCann, 1971; Land, 1977; Rudd, 2010, 2013). In fact, edge inte-
gration theory can be thought of as a modified version of retinex,
in which the perceptual weights assigned to contextual edges for
the purpose of computing lightness depend on distance.

An additional factor, other than distance, that has been
demonstrated to influence the weight given to a particular con-
textual edge in determining the lightness of a target is the edge
contrast polarity, defined here as whether the dark or light side
of the edge points in the direction of the target whose light-
ness is being computed (Rudd and Zemach, 2004, 2005, 2007;
Rudd and Popa, 2007; Vladusich et al., 2006a; Rudd, 2010, 2013).

Whereas, anchoring theory asserts that there should be a strong
contrast induction from the surround luminance on the light-
ness of a decremental target, but no contrast induction from
the surround on the lightness of an incremental target (Gilchrist
et al., 1999; Gilchrist, 2006), edge integration theory asserts that
the difference in the relative strengths of lightness and dark-
ness induction is one of degree, rather than all-or-none (Rudd
and Zemach, 2004, 2005, 2007; Rudd, 2010, 2013), and can be
explained as a results of the different perceptual weights assigned
to edges depending on the edge polarity. Overall, the evidence
suggests that weights associated with edges whose light side points
toward the target are only about 1/3 as large as weights associ-
ated with edge whose dark sides point toward the target, after the
effects of distance have been taken into account (Rudd, 2013).

The most “basic” edge integration model imaginable would
therefore combine the fact that different perceptual weights are
given to edges of opposite contrast polarities with the fact that
these edge weights also tend to fall off monotonically with dis-
tance from the target. I will refer to the “basic” model as one
that incorporates distance and contrast polarity as independent
factors to determine the total weight associated with an edge in
computing a target’s lightness.

Rudd (2013) proposed that the polarity dependence of the
edge weights may arise from separate power law transforma-
tions of the neural Weber ratio responses to incremental and
decremental luminance occurring early in visual processing, such
that ON cell responses to incremental luminance are propor-
tional to the cube-root of incremental intensity, while OFF cell
responses to decremental luminance are linearly proportional to
decremental intensity. The compressive nonlinearity that applies
to ON responses only could originate as early as the cone pho-
toreceptors, which exhibit a rapid compressive adaptation when
exposed to light and a release from this compressive adaptation
when subsequently exposed to darkness (Angueyra and Rieke,
2013). An early cube-root ON cell response to incremental lumi-
nance would also explain a host of other visual phenomena,
including Stevens’ brightness law, according to which brightness
varies in proportion to the cube root of luminance (Stevens,
1975), and the fact that simple reaction time (Pieron, 1914;
Luce, 1986) and critical duration (Raab, 1962; Rudd, 1996) for
incremental luminance both vary inversely with the cube root
of luminance. If this hypothesized power law stage of sensory
encoding that gives rise to these laws was followed at a subse-
quent stage of neural processing by a logarithmic transformation,
the 1/3 power law exponent that applies to incremental inten-
sity at the early encoding stage would be converted into a gain
factor of 1/3 that would multiply the neural response to incre-
ments at the subsequent, post-log-transform stage. Furthermore,
if the neural response to decremental luminance at the early stage
was linear, as hypothesized, the gain factor applying to decre-
mental luminance at the post-log-transform stage would be 1
in the case of decrements. Then the neural “weight” associated
with incremental luminance steps would then be 1/3 the size of
the weight associated with decremental steps. Rudd (2013) dis-
cussed how this differential weighting could be realized in neural
processing.
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The hypothesis that the initial sensory response to incremental
and decremental luminance is subject to a logarithmic transfor-
mation at a later stage of neural processing is consistent with a
number of pieces of evidence, both of a neural and perceptual
nature. Simple cells in cortical area V1, which are often modeled
as linear spatial filters followed by a threshold nonlinearity—have
also been alternatively modeled as having a linear dependence on
log luminance (Kinoshita and Komatsu, 2001; Vladusich et al.,
2006b), or log contrast (Tolhurst et al., 1983, their Figure 1).
This suggests that the hypothesized logarithmic transformation
might occur prior to the simple cell stage in V1. A proportional
neural response to log contrast at the cortical level would also
help to explain the findings of Whittle (1994) that the bright-
ness (perceived intensity) of both incremental and decremental
targets is described by a function of the log-transformed Weber
fraction for targets whose luminances are sufficiently close to
that of the surround. The brightness of higher contrast targets
is proportional to log of the target’s luminance ratio with respect
to the surround (Whittle, 1992). However, recent evidence from
an fMRI imaging study alternatively suggests that the cube-root
compressive nonlinearity is maintained at least up to the level
of V1 (Kay et al., 2013). So the particular neural stage as which
the logarithmic transformation occurs is still an open question.
From the standpoint of the computational lightness model, what
is important is that the 1/3 power law compression applies only to
increments, while the response to decrements is linear, and that a
logarithm transformation occurs at some cortical stage to convert
the respective power law exponents corresponding to increments
and decrements to gain factors that multiply a neural response
that is proportion to steps in log luminance.

Once the incremental and decremental responses have been
neurally recoded in terms of log luminance, then all that is
required to account for edge integration in lightness perception
is a long-range spatial integration mechanism that appropriately
sums responses to steps in log luminance at edges. A long-range
mechanism that sums log-transformed neural responses to edges
whose dark sides point toward the receptive field center of the
long-range mechanism would compute an integrated darkness
signal. A long-range mechanism that sums log-transformed neu-
ral responses to edges whose light sides point toward the receptive
field center of the long-range mechanism would similarly com-
pute an integrated lightness signal. Separate subpopulations of
neurons in V4 having at least some of the properties required to
instantiate these separate long-range lightness and darkness com-
putations have recently been identified (Bushnell et al., 2011).
These neurons receive input from V1 both directly and through
V2, have sufficiently large receptive fields to account for the spa-
tial range of contextual effects in lightness, and respond only
to stimuli that are either luminance increments or decrements,
respectively. However, the key question of whether these neurons
actually sum directed steps in log luminance across space has not
yet been examined. Other neural subpopulations in V4 respond
only to chromatic, rather than achromatic, spatial contrast, sug-
gesting that one function of V4 may be to instantiate an edge
integration process that accounts for the effects of spatial context
on color, more generally. If V4 neurons do perform edge inte-
gration in separate “lightness” and “darkness” channels, then the

perceived achromatic color at a given spatial location within the
input image could be computed from the relative responses of the
lightness and darkness neurons having receptive fields centered
on the specified location (Rudd, 2010, 2013). Presumably, this
would occur beyond V4, mostly likely in area TEO or TE: areas
that mark the end of the line within the ventral stream and con-
tain representations of objects and surfaces that can be accessed by
consciousness and stored in memory through interactions with
entorhinal cortex (Murray et al., 2007). Figure 3 illustrates the

FIGURE 3 | Cortical architecture of the basic edge integration model

showing its response to an incremental disk-annulus display.

(A) Lightness neurons in V4 integrate the outputs of simple cells in V1
having asymmetric receptive fields that detect edges whose light sides
point toward the lightness neuron’s receptive field center. The red dots
indicate the positions of V1 neurons that respond to edges having higher
luminance on the left side; and the blue dots indicate the positions of V1
neurons that respond to edges having higher luminance on the right side.
The diagonal lines fanning downward from layer V4 to layer V1
schematically represent the V4 receptive fields that spatially integrate the
outputs of V1 neurons to edges of appropriate contrast polarity in order to
activate separate “lightness” and “darkness” units in V4 signaling the
magnitudes of lightness and darkness at the location of the V4 receptive
field centers. The linear receptive field profile should not be taken literally;
the actual profile is unknown. In fact, the profiles is more likely to have the
form of a decaying exponential because edge integration models that have
been applied to disk-annulus stimuli suggest that edge weights fall off
linearly with the logarithmic of distance to good approximation from the
target (Rudd and Zemach, 2004). I(x) indicates the locations within the
lightness neuron’s receptive field of the inner and outer annulus edges of a
“double-increment” disk-annulus display, that is a display whose inner and
outer annulus edges are both of the light-inside contrast polarity type, such
as the one illustrated on the left side of Figure 2 (Rudd and Zemach, 2007).
The labels “disk” and “annulus” indicate the locations of the disk and
annulus regions in a one-dimensional cross-section of the disk-annulus
display. (B) Darkness neurons in V4 similarly integrate the outputs of simple
cells having asymmetric receptive fields that detect edges whose dark
sides point toward the darkness neuron’s receptive field center.
A double-increment disk annulus display contains no edges that stimulate a
darkness neuron. In the most general case, some of the edges in a
lightness display will excite lightness neurons, and some will excite
darkness neurons. The achromatic color assigned to a given location in the
image will depend on the difference in the excitation levels of the V4
lightness and darkness neurons whose receptive fields are centered on
that location (Rudd, 2010).
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way in which the lightness of the incremental disk-annulus stim-
ulus shown on the left side of Figure 2 would be computed by the
cortical edge integration theory described to this point and pro-
vides a schematic representation of the cortical edge integration
theory, more generally.

Clearly, additional neural machinery would be required to give
a full account of lightness perception, since nothing has been
said so far here about perceived illumination, figural organiza-
tion scission, or the three-dimensional world, to name but a few
other factors that are known to influence lightness. But the model
described to this point includes the most basic neural properties
required to explain edge integration phenomena in lightness. In
what follows, I will show how lightness judgments in somewhat
more complex perceptual paradigms can be modeled by further
elaborating this basic model to include additional neural mecha-
nisms that perform mid- and high-level computations related to
image segmentation and attention. My goal here is not to present
a complete model of lightness computation, but rather to sketch
out a skeletal model of a cortical circuit by which lightness might
be computed in the ventral stream of visual cortex, starting with
edges and ending with representations of surfaces and objects.

LIGHTNESS FILLING-IN AS A BYPRODUCT OF EDGE
INTEGRATION
An important implication of the model shown in Figure 3 is that
it predicts that percepts of lightness and darkness should appear
to radiate spatially from the light and dark sides of luminance
steps. The model exhibits this behavior because the model light-
ness and darkness neurons in V4 are activated by edges that can,
in general, be a considerable distance away from the receptive field
center of the V4 neuron. The receptive field center is assumed
be the point to which the spatially integrated lightness or dark-
ness value computed by the neuron is assigned in the overall
computation of achromatic color.

The exact spatial distribution of the radiating patterns of light-
ness and darkness will depend on the shape of the lightness and
darkness neuronal receptive fields. In Figure 3, I have illustrated
the receptive field weighting function as a linearly decreasing
function of distance from the receptive field center. But there is
reason to believe—on the basis of psychophysical data concerning

the spatial extent of lightness induction—that the actual spatial
profile of the receptive field may a decaying exponential or some
other function that decreases rapidly near the receptive field cen-
ter and more slowly further from the center (Stevens, 1967; Rudd
and Zemach, 2004). The reader may get some intuition for the
rate of falloff by carefully examining the light and dark colors that
appear to spread from either side of the central vertical edge in
Figure 4A.

Whatever the profile of the spatial decay of lightness and
darkness induction signals from edges, the model provides at
least a partial explanation of the achromatic color filling-in
that occurs in illusions like the Craik-O-Brien-Cornsweet effect
(Figures 4A,B); and—by extension to the chromatic domain—
other color filling-in phenomena, such as the Watercolor effect
(Figure 4C). In filling-in phenomena, a false color is induced by
the contrast at a regional border and appears to fill the region
lying between borders. Neural mechanisms that have previously
been proposed to account for perceptual filling-in include low
spatial frequency channels whose filter scales span the spatial
extent of the region between the borders (Blakeslee and McCourt,
1997) and diffusive neural filling-in signals that spread dynam-
ically from borders to fill in regions lying between borders in a
topographical neural map of the visual environment (Grossberg
and Mingolla, 1985). In diffusive filling-in models, the spreading
color signal induced by a border is stopped when it encounters
the next border in the topological map, which blocks the diffusing
signal.

An argument against the idea that color filling-in phenom-
ena result from the activation of a low spatial frequency visual
channel is that the spatial extent of filling-in is larger than the
distance spanned by the lowest spatial frequency filters in human
vision, which are centered on a frequency of about 0.5 cycle/deg
and have a bandwidth of about one octave (Wilson and Gelb,
1984). A low spatial frequency channel could therefore account
for color spreading over a range of a few degrees, at most. But
the Watercolor effect has been shown to spread perceptually over
distances as large as 45◦ (Pinna et al., 2001), a spatial range
that is about one order of magnitude larger that the range that
could be explained by low spatial frequency filtering of the input
image.

FIGURE 4 | Examples of lightness and color filling-in phenomena.

(A) Craik-O’Brien-Cornsweet illusion. The vertical luminance edge at the
center of the figure generates a lightness illusion that appears to fill in the
regions on either side of the edge, filling in the region on the dark side of
the edge with darkness and the region on the light side of the edge with
lightness. A one-dimensional horizontal cross-section of the actual

luminance profile of the perceptually filled-in region is shown at the
bottom of the panel. (B) Same as (A) except with the region of the
vertical edge masked out. (C) Watercolor illusion. The sinuous
high-contrast chromatic edge creates an illusory percept of filled-in color
within the regions lying between the edges, whose tints are consistent
with the colors of the regional borders.
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An argument against the second, diffusive filling-in, explana-
tion of perceptual filling-in is that the colors generated by the
borders in Figure 4C do not appear to leak from the open ends
of the perceptually filled-in regions, even though there is no bor-
der there to stop the spreading color signals. Another argument
against diffusive filling-in—one that is of prime importance in
the current context—is that filling-in signals that are stopped at
borders cannot provide a basis for explaining the fact of percep-
tual edge integration (Rudd, 2010). The achromatic colors of the
disks in Figure 2 depend not only on the luminance step at the
edge between the disk and annulus, but also on the luminance
step at the edge between the annulus and the background. To
account for both of these influences with an edge-based theory of
color induction requires a mechanism that can sum the influences
of edges located at multiple distances from the target. For this to
happen, it cannot be the case that an edge induction effect pro-
duced by the more distant edge—in Figure 2, the disk/annulus
edge—is blocked by a border that lies closer to the target—in
Figure 2, the disk border itself. The hierarchical edge integration
model shown in Figure 3 provides a parsimonious explanation of
perceptual filling-in in that it can account for both filling-in and
edge integration with one mechanism.

The mechanism by which filling-in and edge integration occur
in the present model is further illustrated by Figure 5. The figure
shows the responses of the model lightness and darkness neurons
whose receptive field centers are located within the interior of a
dark disk surrounded by a lighter annulus, as well as the response
of a hypothetical mechanism located somewhere beyond V4 that
computes the difference of the lightness and darkness neuronal
responses at a given location to arrive an overall computation
of the achromatic color assigned to that location, which mod-
els the observer’s percept. As mentioned above, the differencing
mechanism is likely located in cortical area TEO or TE, at or
near the end of hierarchical ventral processing stream. According
to the model, the achromatic color of the disk that is perceived
by the observer depends on the difference between the activa-
tions of lightness and darkness neurons located with the disk
interior. These activations, in turn, depend on the distance and
contrast polarity of the lightness- and darkness-inducing edges of
the annulus/background and disk/annulus borders. A key differ-
ence between the current theory and alternative filling-in theories
based on diffusing color signals that diffuse from borders but get
stopped at the next border that they encounter is that the lightness
induction from the annulus/background border can affect the
disk lightness. Furthermore, though the disk appears dark relative
to the lighter surround, it is actually computed from a difference
of separate darkness and lightness components originating from
the disk/annulus and annulus/background borders. In fact, this
assumption is needed to explain the quantitative edge integration
data modeled by Rudd and Zemach (2004), including the influ-
ence on disk lightness of the distance of the annulus/background
border from the target disk.

The model in Figure 5 predicts that the disk percept
would change dramatically if the influence of either the
darkness-inducing disk/annulus edge or lightness-inducing
annulus/background edge was removed from the neural compu-
tation of achromatic color. If the disk/annulus edge was removed,
the stimulus would look like the spatial pattern of activation L(x)

FIGURE 5 | Schematic diagram of neural activations at various stages

of the cortical lightness computation model in response to a

decremental disk-annulus stimulus. From bottom to top (following the
convention of Figure 3). (A) One-dimensional cross-section of the
luminance profile I(x) of a decremental disk-annulus stimulus. (B) The
spatial pattern of activation L(x) of lightness neurons in V4 in response to
the stimulus in (A). (C) The pattern of activation D(x) of darkness neurons in
V4 in response to the same stimulus. (D) The pattern of activation AC(x) at
some subsequent stage of neural processing (likely located in cortical area
TEO or TE) at which the activation pattern D(x) is subtracted from L(x) to
compute perceived reflectance, or achromatic color. Note that the
activation patterns L(x) and D(x) are constructed solely from induction
signals based on edges pointing in the direction of the disk center. The
rationale for excluding other edge-based induction signals from the
computation of disk lightness is discussed later in the paper. Note also that
the predicted lightening of the disk center, illustrated as a local peak of
activity in the AC(x) activation pattern at the location of the disk center is
observed in actual experiments (i.e., Rudd and Zemach, 2004; not
previously reported), although the spatial profile of the lightened region has
more the form of an inverted meniscus, as would be predicted by a model
in which the receptive field profiles of the lightness and darkness neurons
in V4 fell off exponentially, rather than linearly, with distance from the
receptive field center.

of the lightness neuron layer in V4. If the annulus/background
edge were removed, the stimulus lightness would look like an
upside-down version of the pattern of activation D(x) of the dark-
ness neuron layer in V4. These model predictions are consistent
with data from a recent perceptual study by Anstis (2013), who
used a flicker masking technique to selectively remove the percep-
tual influence of either the disk/annulus or annulus/background
edge. Masking out the annulus/background edge changed the
stimulus percept to that of a small, now darker, disk with no sur-
rounding annulus, whereas masking out the disk/annulus edge
changed the percept to one of a large, light disk, whose light
achromatic color perceptually filled in across the (now missing)
disk/annulus border (see Anstis, 2013, Movie 6). Anstis’s results
are thus predicted by the neural model on the assumption that
flicker masking has the effect of fatiguing the responses of neu-
ral edge detector units located in V1 or V2, before lightness and
darkness filling-in occur in V4.

The model shown in Figure 5 cannot, however, explain all
aspects of achromatic color filling-in. For example, it cannot
explain filling-in phenomena in which regions formed by illusory
borders—such as the Kanizsa triangle figure shown in Figure 6
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FIGURE 6 | Kanizsa triangle. Here, three black pac-men inducers generate
in the brain of the observer the percept of an upside-down white (Kanizsa)
triangle. The Kanizsa figure appears to partially occlude three black disks
and upright triangular outline whose borders appear to complete behind the
Kanizsa triangle. The straight edges of the pac-men induce an illusory
contour that completes the borders of the Kanizsa figure. The area of the
Kanizsa figure appears somewhat whiter than the regions just outside its
borders that have the same luminance in the retinal image.

(Kanizsa, 1979)—fill in with a color that is different from the
background color: in this case, somewhat lighter. To explain the
fact that the Kanizsa triangle appears lighter than the background
would require additional neural mechanisms that complete the
perceptual borders of the triangle and segment it from the back-
ground. But this idea is consistent with the cortical circuit that
is here proposed to underlie perceptual filling-in, because neural
circuits that support border completion and image segmentation
are known to exist in area V2 (von der Heydt et al., 1984), at a
stage of cortical processing that comes before the proposed edge
integration stage in V4 that performs color filling-in and surface
completion, according to the lightness model. So the basic edge
integration model could be extended to account for the percep-
tual filling-in of illusory figures like the Kanizsa triangle by taking
these mechanisms into account. I will return later in the paper to
the issue of how cortical circuits that perform image segmentation
and other functions related to perceptual organization contribute
to lightness computation after first discussing the role of visual
attention.

NEED FOR TOP-DOWN INTENTIONAL CONTROL OF EDGE
WEIGHTS
Arend and Spehar (1993a,b) demonstrated that more than one
type of lightness judgment can be performed with simple stimuli
comprising a target region embedded in a homogeneous sur-
round. They used computer-generated displays, but instructed
their observers to imagine that the stimuli were made of real
papers. The luminance of the surround field was varied and the
observers were told to imagine that the luminance variation was
due either to a change in the reflectance of the surround paper, or
to a change in the illumination lighting both the target and sur-
round. Ideally, a change in the surround reflectance should not
influence the target lightness. On the other hand, with the target
luminance held constant, a change in the perceived intensity of

the illumination lighting both the target and its surround should
produce a compensatory change in perceived target reflectance,
according to the equation L = R × I, where L is retinal lumi-
nance, R reflectance, and I illumination. In the actual experiment,
the different instructions produced lightness judgments roughly
in accord with these two ideal observer models.

Rudd (2010) quantified the actual lightness matches made
under these different lightness matching instructions using side-
by-side target and matching disk-annulus stimuli displayed on
a computer monitor. The luminance of the right annulus was
experimentally varied and the observer adjusted the left disk
luminance to match the right disk in lightness. The ideal observer
predictions for the two instruction sets are associated with dif-
ferent ideal edge weight settings in the edge integration model
(Rudd, 2010). When an observer is instructed to interpret a
change in the annulus luminance as a reflectance change, the
outer and inner edges of the annulus should both be interpreted
as reflectance edges and therefore both should contribute to the
perceptual representation of the disk reflectance. The inner edge
provides information about the reflectance ratio between the disk
and annulus; and the outer edge provides information about the
reflectance ratio between the annulus and the background. If this
information is known on both sides of the display—and if it rep-
resented veridically by the visual system—then the reflectances of
the two disks can be accurately compared by integrating the steps
on log reflectance from the background field to each target disk. If,
on the other hand, the observer is instructed to interpret changes
in the annulus luminance as signifying changes in the illumina-
tion lighting both the disk and annulus on that side of the display,
then the outer edge of the annulus should be interpreted as an
illumination edge and it should not contribute to a calculation
that attempts to relate the disk reflectance to the reflectance of the
background field. Only the luminance ratio at the disk/annulus
edge should contribute to that calculation. Figure 7 illustrates the
predictions of the ideal observer models for the case in which the
outer edge of the annulus is a reflectance edge and the case in
which the outer annulus edge is an illumination edge. Figure 8
shows how the computations corresponding to each situation
could be performed with the proposed cortical edge integration
mechanism through the strategic control of top-down inhibitory
feedback to neural edge detectors in V1. Note that this inhibition,
when active, eliminates from the edge integration computations
the luminance step corresponding to the annulus/background
edge (because it is assumed to be an illumination edge, rather
than a reflectance edge). This impacts the response of the light-
ness model in the same way that masking the outer annulus
border in Anstis’s contour adaptation experiment does.

The actual lightness matches made under the two differ-
ent sets of assumptions about the correct interpretation of the
luminance step at the outer annulus border were approximately
consistent with these ideal observer predictions. When given
the “change in reflectance” instructions, the luminance ratios
at the inner and outer annulus edges both contributed to the
observers’ lightness matches, in roughly equal proportion, as
would be expected if both borders were interpreted as reflectance
edges. When given the “change in illuminance” instructions, the
observers placed considerably more weight on the luminance
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FIGURE 7 | Ideal observer predictions for lightness matching in a

disk-annulus display under two different assumptions about the

nature of the illuminant. When the luminance step at the outer edge of
the annulus is judged to be the result of a change in surface reflectance, it
will ideally contribute to an edge integration computation of lightness
(perceived reflectance). The goal of such a computation is to veridically
relate the target disk reflectance to the reflectance of the background field
and, by extension, to the reflectance of another, matching, disk, viewed
against the same background. The computation is carried out by spatially
integrating the two luminance steps. Since no illumination variation is
assumed, both disks are implicitly assumed to be viewed under the same
illumination conditions and a reflectance match corresponds to a luminance
match. When the luminance step at the outer edge of the annulus is judged
to be the result of an illumination change, on the other hand, the luminance
step at the outer annulus edge should not be included in a computation
that seeks to relate the disk reflectance to that of the background field. In
this case, the “annulus” is interpreted to be a differently illuminated region
of the background field and not a separate surface with a different
reflectance, The disk lightness can thus be related to the background by
computing the disk/annulus luminance ratio—in log units, the step in log
luminance at the disk/annulus edge, alone. The luminance matching and
ratio matching predictions corresponding to the two interpretations in
which the outer annulus edge is either seen as a reflectance edge or
illumination edge are indicated by straight lines with slopes of 0 and -1,
respectively, on this log-log plot.

ratio at the disk/annulus edge, but the outer annulus edge also
made a contribution to the disk lightness, consistent with the
idea that this border was interpreted as likely being due to a
change in illumination. Since the physical stimulus was identical
in the two instruction conditions, any changes in the percep-
tual weight given to the outer annulus edge must have been due
to a top-down, task-specific, influence on the edge weights. If,
as hypothesized, these weights are manipulated by neural gain
control applied to simple cell responses in V1, then it must be
the case that observers can utilize top-down gain modulation to
V1 to reconfigure the results of the subsequent neural lightness
computations at later stages of ventral stream processing. The
observer’s intentional control of top-down feedback to carry out
these instruction-specific lightness judgments might, in princi-
ple, be instantiated by direct connections from the frontal lobe
that have been recently demonstrated to be capable of shutting
down the gain of cortical columns in V1 (Massimo Scanziani, talk

FIGURE 8 | A cortical mechanism that utilizes top-down feedback to

perform different lightness judgments given different assumptions

about the illumination with the same disk-annulus stimulus. The
proposed cortical circuit by which the luminance step at the outer annulus
edge in an incremental disk-annulus display is either included or excluded
from the computation of the disk lightness to instantiate either of the two
ideal observer models whose behavior is illustrated in Figure 7. When the
outer annulus edge is interpreted as an illumination edge, the responses of
edge detector neurons in V1 are suppressed by a top-down neural gain
control. This inhibitory gain control may originate from prefrontal cortex and
act either directly on V1 neurons—by shutting down cortical columns
containing neurons that encode edges tuned to a particular orientation and
contrast polarity, and located in the parts of the visual field corresponding to
the outer edges of the annulus—or indirectly via IT (see text for further
details). Similar inhibitory connections are assumed to project to all edge
sensitive neurons in V1, but only the connections that are relevant to the
lightness matching task for incremental disk-annulus stimuli are shown.

given at the University of Washington, Department of Physiology
and Biophysics, October, 2012) or by feedback projections from
prefrontal cortex to V1 that are relayed through inferotemporal
cortex (Gilbert and Li, 2013).

INFLUENCE OF FIGURE-GROUND SEGREGATION ON
LIGHTNESS AND MID-LEVEL COMPUTATIONS IN V2
Gelb (1929) showed that a single achromatic paper illuminated
by an intense spotlight appears white, regardless of the paper’s
actual gray level. A charcoal paper viewed in isolation in the
spotlight will look just as white as will a mid-gray paper or an
actual white paper. However, if a gray paper is added to a spot-
light already containing a charcoal paper, the gray paper will now
appear white and the charcoal paper will appear darker by com-
parison. If a third, actual white, paper is added to the spotlight, the
appearances of the gray and charcoal papers will be further dark-
ened. This effect has been explained by Gilchrist (2006; Gilchrist
et al., 1999) as a consequence of highest luminance anchoring:
the surface with the highest luminance in the spotlight appears
white and the lightnesses of the other surfaces in the spotlight are
scaled relative to the white point. Rudd and Zemach (2005; Rudd,
2013; Kingdom, 2011) proposed an alternative anchoring rule—
highest reflectance anchoring—that can also account for the effect.
The meaning of highest reflectance anchoring is that the high-
est reflectance in the scene always appears white, but the highest
reflectance may not always be the same as the highest luminance
due to lightness induction exerted by a lower-luminance context,
which can differ for different highest luminance patches, as shown
by Rudd and Zemach (see also Rudd, 2013). A recent study of the
Gelb effect, Vladusich (2013a) found that such lightness induc-
tion from lower luminance contextual elements can change the
appearance of even the region with the highest lightness, a result
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FIGURE 9 | Allowed and unallowed edge integration paths in

disk-annulus and staircase-Gelb lightness paradigms. (A) Disk-annulus.
(B) Staircase-Gelb. For both types of stimuli, edge integration takes place
only along direct paths from the common background, or surround, field to
the target whose lightness is begin computed. Edges whose weighted log
luminance ratios are integrated to compute target lightness are indicated by
solid red lines. The X’s indicate edges that do not participate in edge
integration.

that may call both of these anchoring rules into question. In the
absence of any type of anchoring, the edge integration theory
described below would predict that lightness of the Gelb papers
would grow in proportion to the cube root of reflectance.

Cataliotti and Gilchrist (1995) measured the individual light-
nesses of a series of achromatic papers shown together in such
a spotlight, an experimental paradigm known as the “staircase-
Gelb paradigm” (Gilchrist et al., 1999; Gilchrist, 2006). They
discovered the scale of paper lightnesses to be strongly com-
pressed relative to their actual physical reflectance scale. Rudd
(2013) re-analyzed their data and showed that the lightness scale
is related to scale of the paper luminances in the observer’s image
of the scene by an equation having the same form as Stevens’
brightness law, only here lightness—rather than brightness—is
related to luminance by a power law of exponent 1/3. This find-
ing again argues that lightness and brightness perception share
some common underlying neural substrates. In another exper-
iment, Cataliotti and Gilchrist discovered that surrounding the
Gelb papers with a white frame greatly alters the lightness scal-
ing of the papers, an effect that they named insulation. With the
white frame present, lightness varies as a linear function of both
reflectance and luminance; in other words, lightness varies as a
power law of luminance in which the power law exponent is 1,
rather than 1/3.

Anchoring theory cannot explain either the compression or
insulation effect. To explain these, Rudd (2013) elaborated the
neural edge integration theory described above. The elaborated
model posits that the only edges that participate in the edge inte-
gration process in V4 are edges that lie along a direct path from
the common background to the target whose lightness is being
computed. In the case of the staircase-Gelb stimulus, the relevant
edges are those forming the interface between each paper and the
dark surround or white frame. The borders between individual
Gelb papers are excluded from participating in edge integration
(Figure 9).

Unlike anchoring theory, Rudd’s elaborated edge integration
theory assumes that lightness is computed by comparing each
target’s luminance to the same common background field, rather

than to the highest luminance surface appearing within the tar-
get’s illumination framework. Steps in log luminance along the
path from the common background to the target paper are spa-
tially summed to place the target on the same lightness scale as
the rest of the Gelb papers, whose luminances are also compared
to the common background region to compute their lightnesses.
Perceptual distortions, such as compression, may be introduced
in the process of mapping the physical reflectance scale to a com-
mon lightness scale. Distortions arise when the weights assigned
to edges are not equal to 1, which occurs in the model because
of the contrast polarity- and distance-dependency of the edge
weightings. Importantly, the elaborated theory is consistent in
terms of the edge-weighting principles that it uses to account for
the quantitative magnitudes of the lightness illusions produced
in the Gelb effect, simultaneous contrast, disk-annulus lightness
paradigms (Rudd, 2013).

If edge integration only occurs along paths from the common
background to the target, then the brain must have some spe-
cial circuitry that perceptually organizes the image into figure and
ground, and excludes some edges from participating in edge inte-
gration. This circuitry must lie somewhere along the path from
the edge encoding neurons in V1 to the long-range edge inte-
gration mechanism in V4. Consistent with this requirement, von
der Heydt and his colleagues (Zhou et al., 2000; von der Heydt
et al., 2003) have demonstrated the existence of “border owner-
ship” neurons in V2 that have the right properties to distinguish
between edges that separate figural from background regions and
edges that do not. Such neurons respond only to the borders
belonging to a closed figure. Border ownership neurons appear to
derive their properties through feedback interaction with higher-
level pattern recognition networks in the inferotemporal cortex
(IT) (Craft et al., 2007). In principle, these networks might be able
to differentiate between the border surrounding the entire series
of papers in a staircase-Gelb display—that is, the border between
the papers and the common background—and the borders sur-
rounding each individual paper. If so, they could form the basis
for an edge integration computation that gives nonzero weights
only to borders lying along a path between a common back-
ground and target regions (that is, the border surrounding the
entire set of papers). In the following section, I further elaborate
this idea to suggest that the outputs of border ownership circuits
in V2 can be modulated by top-down attentional feedback to give
nonzero weights to either the local borders of a Gelb paper or the
larger border separating the Gelb series as a whole from the com-
mon background. Because such a mechanism is required by the
model but has not yet been demonstrated, the existence of a corti-
cal mechanism by which attentional modulation can select either
the larger border surrounding the entire set of Gelb papers, or the
local border surrounding an individual paper, as the target border
for a border ownership signal in V2 is a prediction of the model.

TOP-DOWN MODULATION OF EDGE WEIGHTS AND
INDIVIDUAL DIFFERENCES IN LIGHTNESS
Rudd and Zemach (2005) performed a lightness matching study
using the same disk-annulus displays that were later used in the
study by Rudd (2010) but without giving their observers any
special instructions regarding how to interpret changes in the
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annulus luminance. The lightness matches varied considerably
across the three observers in the study. One showed almost no
lightness induction, while the other two exhibited induction
effects of moderate size. In light of the later findings from the 2010
study, it seems likely that the wide range of inter-observer differ-
ences in the 2005 study resulted from different interpretations of
meaning of the change in annulus luminance.

The neural edge integration theory proposed here attributes
these individual differences to changes in the strength of the top-
down gain control applied to the outer edge of the annulus. As
discussed above, when an observer interprets the outer annu-
lus edge as an illumination edge, he should ideally exclude this
edge from his computation of disk lightness because an illumi-
nation edge is uninformative with respect computing a map of
the relative reflectances of surfaces within the visual scene (Rudd,
2013). He should therefore set the weight given to that edge to
zero and base his disk lightness judgments strictly on the lumi-
nance ratio between the disk and annulus because this is the only
ratio that signals a reflectance change along path from the com-
mon background of the two disk-annulus patterns in the display
and the target disk whose lightness was being computed. If, on
the other hand, the outer annulus edge is interpreted to be a
reflectance edge, then it should make a large a contribution to
the calculations of the disk luminance as the inner annulus edge.

In this special case of disk-annulus displays, the outer annulus
edge could either be included or excluded from the disk lightness
computation simply by varying the size of a spotlight of atten-
tion, which could be realized by a top-down attentional gain field.
A small spotlight would assign a gain of 1 to V1 neurons respond-
ing to the edge between the disk and annulus, and a gain of 0
to the edge between the annulus and background field. A large
spotlight would assign a gain of 1 to both edges. In the edge
integration theory of lightness judgments in the Gelb paradigm
proposed in Rudd (2013), it was posited that only the common
border between the Gelb papers and the background that sur-
rounds the entire set of papers participates in the computation
of each paper’s lightness. This is equivalent to saying that the
observer compares each paper to the same common background
field in order to compute the paper’s relative reflectance. Since all
of the papers are compared to the same background field, the per-
ceived reflectances of the Gelb papers will be placed on the same
perceptual scale.

Alternatively, we might imagine that the observers in the
staircase-Gelb experiment differ in the way they judge the paper
lightnesses. An observer with a narrow attentional spotlight might
focus his spotlight on a single Gelb paper, comparing that paper
only to the immediately adjacent image regions. An observer with
a large attentional spotlight, on the other hand, might take the
entire set of papers into account, comparing each paper to the
same common background, as proposed by Rudd (2013). These
alternative perceptual analyses are illustrated in Figure 10.

According to edge integration theory, a narrow attentional
spotlight would mean that only the immediate borders of the tar-
get paper would survive the top-down gain modulation of simple
cell responses in V1. The border ownership computation in V2
therefore would not have the full border surrounding the entire
set of Gelb papers to operate on. The immediate borders of the

target paper could potentially be identified as forming a closed
border, but the larger border surrounding the set of papers could
not. A border ownership circuit in V2 would therefore not be able
to discover the figure-ground relation that segregates the set of
papers from the background. It follows that the only edges that
would be input to edge integration computation in V4 for the
purpose of computing the target’s lightness would be the imme-
diate edges of the target. The lightness computed by the narrow
spotlight observer would be based on a sum of the luminance
steps (in log units) computed at the four edges of the target
paper.

In the case of a wide attentional spotlight—one large enough
to include the entire series of Gelb papers—the border owner-
ship computation in V2 would have the full border surrounding
the Gelb papers to operate on. In theory, neural circuits involv-
ing V2 could identify this border as a border that surrounds an
“object” consisting of the whole Gelb paper series. According to
the edge integration model, only this border will then contribute
to the computation of each paper’s lightness. Thus, for a wide-
field attender, the lightness of any given paper will be determined
entirely by the luminance ratio at the borders between the paper
and the common surround in which the larger object consisting
of the entire series of papers Gelb is embedded. This is the situa-
tion that I showed earlier leads to an explanation of the 1/3 power
law compression that characterizes the Cataliotti and Gilchrist
data. Thus, the Cataliotti and Gilchrist results are explained on
the basis of an edge integration model in which the observer is
assumed to have a wide attentional spotlight.

A primary motivation for anchoring theory was the lack of evi-
dence in Cataliotti and Gilchrist’s study for any influence on target
lightness of the papers that neighbored it. They demonstrated
the absence of such an effect by showing that scrambling the
order of the Gelb papers made no difference to lightness matches
made to the individual papers; only the highest luminance paper

FIGURE 10 | Narrow-field vs. wide-field attentional processing of the

paper lightnesses in the staircase-Gelb experiment. The observer
suppresses through top-down feedback to V1 the responses of simple cells
lying outside his field of spatial attention. When the observer examines the
Gelb papers as a gestalt (attentional spotlight = blue oval), border
ownership circuits in his cortical area V2 identify the border surrounding all
five Gelb papers (blue rectangle); lightness is computed by comparing the
luminance of each paper to the luminance of the common background field.
When the observer focuses his attention on an individual paper (red oval),
his border ownership circuits identify the border of that paper only (red
rectangle); the paper lightness is computed by averaging the log luminance
ratios of the four borders of the paper.
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within the spotlight influenced the target matches. Again, this
is consistent with the edge integration prediction for wide-field
observers. But other experimenters have replicated their study
and found spatial ordering effects (Zavagno et al., 2004; Blakeslee
et al., 2009). The spatial ordering effects contradict anchoring
theory and therefore have been a source of controversy. Edge inte-
gration theory can explain the differences in the results obtained
across studies as effects of individual differences if it additionally
assumed that the studies demonstrating spatial ordering effects
were based on narrow-field observers, while the Cataliotti and
Gilchrist results were based on based on wide-field observers. It
is unclear whether the stimulus conditions in the different stud-
ies varied in ways that might have caused the observers to adopt
either a narrow- or wide-field attentional spotlight. A full anal-
ysis of the differences between experiments and the test of the
model for narrow-field observers against the data from the stud-
ies that yielded the scrambling effect are left for an upcoming
paper. Here, I simply note that intermediate spotlight sizes might
also be allowed, so a full analysis should consider whether any
spotlight size can explain the Gelb matching data from studies in
which a scrambling effect was obtained, under the constraint that
the weights given to positive steps in log luminance are always
1/3 and the weights given to negative steps in log luminance
are always 1, after controlling for the effect of distance from the
target.

SOME OUTSTANDING PROBLEMS FOR THE THEORY
In the natural world, observers are not usually given instructions
concerning whether to interpret spatial luminance variations as
the result of either reflectance or illumination variation; the pro-
cess is largely carried out at an unconscious level (von Helmholtz,
1866/1924). The checker-shadow figure of Adelson (Figure 11)
illustrates the basic problem that the visual system confronts in
trying to differentiate the separate causal effects of reflectance and
illumination in producing the retinal image. Here, checks A and B
have the same luminance, but A appears to be highly illuminated
surface with low reflectance, while B is seen as a white surface
viewed in shadow.

One perceptual cue that may help differentiate reflectance
from illumination variation in Adelson’s figure is the sharpness
of the spatial luminance change. The reflectance edges in the fig-
ure are all “hard” edges, while the illumination edge is a gradient.
The purpose of edge integration is to map the surfaces within the
image to a common scale of perceived reflectance (Rudd, 2013).
For the purpose of computing relative reflectance, luminance
steps or gradients in the input image caused by illumination
variation should ideally be left out of the edge integration com-
putation. If an edge integration computation left out the change
in luminance across the gradient, it would effectively “discount
the illuminant” and correctly estimate the relative reflectances of
the surfaces depicted in the figure. Such a computation could
account, at least qualitatively, for the perceived lightness differ-
ence between checks A and B. An edge integration path from A to
B, for example, would not integrate the luminance gradient pro-
duced by the shadow. Thus, check B would appear “lighter” than
it would if the edge integration process integrated all luminance

FIGURE 11 | Adelson checker-shadow figure. A and B have the same
luminance but A appears as a brightly-lit dark surface, while B appears as a
light surface viewed in shadow. Copyright 1995, Edward H. Adelson. Used
by permission; http://persci.mit.edu/gallery/checkershadow.

steps. If on the other hand, all steps in luminance, including those
associated with gradients, were integrated perfectly, then checks
A and B would have the same appearance. So it is clear that the
visual system does not integrate all of the luminance steps.

Rudd (2010, 2013; see also Rudd and Popa, 2007) pointed out
that a neural mechanism that log transforms the pointwise lumi-
nances in the image prior to spatial filtering by Gabor-like simple
cell receptive fields in V1 would produce simple cell responses that
encode logarithms of luminance ratios at different orientations
over a range of spatial frequencies. Only low-spatial frequency
sensitive simple cells (i.e., large scale Gabor filters) would trans-
mit information about the presence of the illumination gradient
in Figure 11. Since the check edges contain information at high
spatial frequencies, reflectance edges could potentially be dis-
tinguished from illumination gradients on the basis of spatial
frequency. Thus, the perceived lightness of the checks could be
explained by a version of the edge integration model in which the
outputs of low spatial frequency-sensitive simple cells in V1 are
excluded from the long-range spatial edge integration in V4. This
hypothesis is consistent with the fact that the perceptual effects
of the shadow in Figure 11 cannot be intentionally “undone” by
the observer. That is, it is impossible to make checks A and B
look the same, even if you try. The case of the checker-shadow
figure is thus fundamentally different than case of the instruc-
tional effects studied by Rudd (2010), in which the outer annulus
edge in a disk-annulus display could be consciously interpreted as
resulting from either a reflectance edge or an illumination change,
and lightness judgments in line with these alternatively interpre-
tations made interchangeably. Both cases might be explained if
top-down feedback can either allow or suppress high spatial fre-
quency image content from entering into the edge integration
process; whereas, low spatial frequency content is automatically
given smaller perceptual weight, or perhaps excluded entirely,

Frontiers in Human Neuroscience www.frontiersin.org August 2014 | Volume 8 | Article 640 | 11

http://persci.mit.edu/gallery/checkershadow
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Rudd Object-based lightness

from the edge integration that occurs at a subsequent stage of
processing in V4.

If this explanation of the checker-shadow percept is correct,
then it raises the question of how we can even see the illumi-
nation gradient in the figure. One possibility is that the edge
integration the circuit in V4 is specialized to represent relative
reflectance independent of illumination, rather than to repre-
sent both reflectance and illumination. This interpretation would
appear to be consistent with studies of clinical patients with dam-
age to V4, who exhibit deficits in color constancy while retaining
their ability to make local luminance and wavelength discrim-
inations that could be performed by neurons in V1 (Zeki and
Bartels, 1999). Alternatively, V4 might receive input from either
low- or high-spatial frequency-tuned neurons—both not both at
once—for the purpose of processing reflectance or illumination,
respectively. This second hypothesis would be consistent with
evidence that diagnosticity changes the perception of stimuli con-
taining content at multiple spatial scales (Oliva and Schyns, 1997).
These alternative hypotheses raise important additional questions
both with respect to the nature of the neural mechanisms sup-
porting lightness and the locus or loci of the neural correlates
of conscious visual perception that should be explored in future
research.

COMPARISON WITH GAMUT RELATIVITY THEORY:
TRANSPARENCY AND “DIMENSIONS” OF LIGHTNESS
Vladusich (2013a) recently proposed an alternative theory of
lightness computation—gamut relativity theory—that addresses
some of the same issues and data addressed in the present paper.
The two theories converge in some ways, but differ fundamentally
in others. A significant point of convergence is the assumption—
now supported by a considerable amount of data—that darkness
induction is quantitatively stronger than lightness induction. The
existence of an asymmetry in the strengths of lightness and
darkness induction has long been recognized by psychophysi-
cists (Wallach, 1963; Heinemann, 1972; Gilchrist, 2006), but the
idea that this asymmetry is quantitative, rather than absolute,
is recent (Rudd and Zemach, 2004, 2005, 2007; Rudd, 2013;
Vladusich, 2013a,b). Edge integration theory and gamut relativ-
ity theory agree that darkness induction is quantitatively stronger
than lightness induction. However, the two theories differ in
their estimates of the specific degree of quantitative asymmetry
between light and darkness induction. Vladusich (2013b) derived
a lightness law exponent of 1/2 from theoretical principles and
modeled reflectance matching in the staircase-Gelb and related
paradigms on the basis of this assumption (Vladusich, 2013b).
The present model assumes a lightness law exponent of 1/3 on
the basis of Stevens’ power law for brightness (of increments)
(Stevens, 1975), as well as both direct physiological evidence of
a 1/3 power law compression in V1 (Kay et al., 2013) and indi-
rect evidence for a 1/3 power law transformation of incremental
luminance from studies of simple reaction time (Pieron, 1914;
Luce, 1986) and critical duration (Raab, 1962; Rudd, 1996). The
fact that an asymmetry in the magnitudes of neural ON and
OFF responses is seen even in the responses of cone photorecep-
tors (Angueyra and Rieke, 2013) further reinforces the idea that
the lightness-darkness asymmetry originates from one or more

neural transformations of the physical stimulus occurring early
in the stream of visual processing.

Edge integration theory and gamut relativity theory also dif-
fer in other, more important, ways. Perhaps most significantly,
they differ with respect to the status of the spatial integration
of spatially oriented lightness and darkness induction signals.
Gamut relativity theory models lightness and darkness as sepa-
rate dimensions of achromatic color, which remain distinct up to
the level of human awareness (Vladusich et al., 2007; Vladusich,
2013a). Edge integration theory, on the other hand, assumes that
positive and negative luminance steps can be neurally bound
to form a single dimensions of surface reflectance. Figure 12
presents a simple demonstration that refutes the idea that human
vision encodes lightness and darkness as separate dimensions.
Here, two identical disks are surrounded by annuli having the
same luminance, but different width. The disks differ in lightness,
which clearly shows that percepts of darkness depend on fac-
tors other than the magnitude of decremental luminance: namely,
effects of spatial context. Edge integration theory explains this
phenomenon on the assumption that the disk appearance is com-
puted by a weighted sum of the decremental luminance step at
the disk edge and the incremental luminance step at the outer

FIGURE 12 | Identical decremental disks seen in the context of annular

surrounds having the same luminance but different widths. Fixate on
the red cross. The left disk should appear darker than the right disk, even
though they have the same luminance. Edge integration theory accounts
for the different disk lightnesses by asserting that the disk lightness is
computed from a weighted sum of the directed steps in log luminance at
the disk/annulus and annulus/background borders. Thus, the disk lightness
does not just depend on luminance or local contrast, but on a computation
that is carried out over an extended region of the scene. Because
luminance step at the disk/annulus border decreases in the direction of the
disk, that border tends to darken the disk appearance. Because luminance
step at the disk/annulus border increases in the direction of the disk, that
border tends to lighten the disk appearance. The quantitative contribution
of the disk/annulus border to the total disk lightness is the same for the
two disks because the size and direction of the luminance step is the same
in the two cases, and the border is in the same location relative to the disk
center. The quantitative contribution of the annulus/background border to
the total disk lightness is smaller in the case of the large annulus because
the annulus background edge is further from the disk in that case, even
though the luminance steps have the same magnitude and direction.
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annulus edge: in other words, by a binding together of darkness
and lightness signals to neurally represent the disk reflectance.

It should perhaps be emphasized that I do not claim that lumi-
nance steps are always bound together to compute lightness. For
instance, the visual system tries to exclude from the edge inte-
gration process any image steps in log luminance resulting from
spatial changes in illumination. Rudd (2013) discusses why the
integration of reflectance edges is essential for establishing a uni-
tary scale of surface reflectance that applies to surfaces viewed
under a common illumination. In the absence of such a scale,
there would no meaningful perceptual estimate of reflectance; the
lightness of individual surfaces could only be judged relative to
the luminance of their local surround elements. Relatedly, an edge
integration algorithm that is designed to achieve constancy will
only be successful if it filters out image luminance steps result-
ing from illumination variation. This does not mean that the
illumination field is not also neurally represented; only that the
visual system must perform edge classification prior to building
separate representations of and reflectance illumination. Clearly,
the observer can perceptually access either the reflectance repre-
sentation or the illumination representation, though they remain
categorically distinct in perception.

Another important case in which edges are combined to pro-
duce a unitary reflectance scale is that of perceptual transparency.
One important factor that contributes to the perception of trans-
parent layers is edge contrast polarity (Adelson, 2000; Roncato
and Casco, 2003). But transparent layering cannot be explained
solely by sorting layers based on contrast polarity. Figural prop-
erties are also critical in the construction of transparency percep-
tual layers (e.g., Adelson, 2000; Anderson, 2003; Anderson and
Winawer, 2005). In ecological vision, the process of segment-
ing the filter from the background is aided by depth cues, such
as binocular disparity and motion parallax. What is needed to
account for transparency is a theory that can explain why light
and dark elements sometimes group together to form unitary
lightness scales, and sometimes do not. Clearly, this is a challeng-
ing problem. From the neural standpoint, the solution requires
the input of cortical image segmentation mechanisms. Although
I have briefly discussed such mechanisms here, the goal of the
present work is not to describe how such mechanisms work at
the algorithmic level, but rather to an outline model of how they
fit into the larger cortical circuit that computes lightness.
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Gilchrist, A. L., and Radonjić, A. (2010). Functional frameworks of illumination
revealed by probe disk technique. J. Vis. 10, 1–12, doi: 10.1167/10.5.6

Grossberg, S., and Mingolla, E. (1985). Neural dynamics of form perception:
boundary completion, illusory figures, and neon color spreading. Psychol. Rev.
92, 173–211

Heinemann, E. G. (1972). “Simultaneous brightness induction,” in Handbook of
Sensory Physiology, Vol. VII/4, eds D. Jameson and L. Hurvich (Berlin: Springer),
146–169.

Kanizsa, G. (1979). Organization in Vision: Essays on Gestalt Perception. New York,
NY: Praeger.

Kay, K. N., Winawer, J., Mezer, A., and Wandell, B. A. (2013). Compressive spa-
tial summation in human visual cortex. J. Neurophysiol. 110, 481–494. doi:
10.1152/jn.00105.2013

Kingdom, F. A. A. (2011). Lightness, brightness and transparency: a quarter century
of new ideas, captivating demonstrations and unrelenting controversy. Vision
Res. 51, 652–673. doi: 10.1016/j.visres.2010.09.012

Kinoshita, M., and Komatsu, H. (2001). Neural representation of the luminance
and brightness of a uniform surface in the macaque primary visual cortex.
J. Neurophysiol. 86, 2559–2570.

Kuffler, S. W. (1953). Discharge patterns and functional organization of mam-
malian retina. J. Neurophysiol. 16, 37–68.

Land, E. H. (1977). The retinex theory of color vision. Sci. Am. 237, 108–128. doi:
10.1038/scientificamerican1277-108

Land, E. H., and McCann, J. J. (1971). The retinex theory of vision. J. Opt. Soc. Am.
61, 1–11. doi: 10.1364/JOSA.61.000001

Luce, R. D. (1986). Response Times. New York, NY: Oxford University Press.
Murray, E. A., Bussey, T. J., and Saksida, L. M. (2007). Visual perception and mem-

ory: a new view of medial temporal lobe function in primates and rodents. Ann.
Rev. Neurosci. 30, 99–122 doi: 10.1146/annurev.neuro.29.051605.113046

O’Brien, V. (1958). Contour perception, illusion, and reality. J. Opt. Soc. Am. 48,
112–119. doi: 10.1364/JOSA.48.000112

Frontiers in Human Neuroscience www.frontiersin.org August 2014 | Volume 8 | Article 640 | 13

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Rudd Object-based lightness

Oliva, A., and Schyns, P. G. (1997). Coarse blobs or fine edges? Evidence that infor-
mation diagnosticity changes the perception of complex visual stimuli. Cogn.
Psychol. 34, 72–107. doi: 10.1006/cogp.1997.0667

Pieron, H. (1914). Recherches sur les lois de variation des temps de latence sen-
sorielle en function des intensités excitatrices. Ann. Psychol. 20, 17–96. doi:
10.3406/psy.1913.4294

Pinna, B., Brelstaff, G., and Spillmann, L. (2001). Surface color from boundaries:
a new ‘watercolor’ illusion. Vision Res. 41, 2669–2676. doi: 10.1016/S0042-
6989(01)00105-5

Raab, D. (1962). Magnitude estimation of the brightness of brief foveal stimuli.
Science 135, 42–43. doi: 10.1126/science.135.3497.42

Reid. R. C., and Shapley, R. (1988). Brightness induction by local contrast and the
spatial dependence of assimilation. Vision Res. 28, 115–132. doi: 10.1016/0042-
6989(88)90013-2

Roncato, S., and Casco, C. (2003). The influence of contrast and spatial factors
in the perceived shape of boundaries. Percept. Psychophys. 65, 1252–1272. doi:
10.3758/BF03194850

Rudd, M. E. (1996). A neural timing model of visual threshold. J. Math. Psychol. 40,
1–29. doi: 10.1006/jmps.1996.0001

Rudd, M. E. (2001). “Lightness computation by a neural filling-in mechanism,”
Proceedings of the Society of Photo-Optical Instrumentation Engineers: Human
Vision and Electronic Imaging VI, Vol. 4299, eds B. E. Rogowitz and T. N. Pappas
(San Jose, CA), 400–413. doi: 10.1117/12.429510

Rudd, M. E. (2003). “Progress on a computational model of achromatic color
processing,” in Proceedings of the Society for Photo-optical Instrumentation
Engineers: Human Vision and Electronic Imaging VIII, Vol. 5007, eds B. E.
Rogowitz and T. N. Pappas (Santa Clara, CA), 170–181. doi: 10.1117/12.
477767

Rudd, M. E. (2010). How attention and contrast gain control interact to regulate
lightness contrast and assimilation. J. Vis. 10:40. doi: 10.1167/10.14.40

Rudd, M. E. (2013). Edge integration in achromatic color perception and the
lightness–darkness asymmetry. J. Vis. 13:18. doi: 10.1167/13.14.18

Rudd, M. E., and Arrington, K. F. (2001). Darkness filling-in: a neural
model of darkness induction. Vision Res. 41. 3649–3662. doi: 10.1016/S0042-
6989(01)00216-4

Rudd, M. E., and Popa, D. (2007). Stevens’ brightness law, contrast gain con-
trol, and edge integration in achromatic color perception: a unified model.
J. Opt. Soc. Am. A Opt. Image Sci. Vis. 24, 2766–2782. doi: 10.1364/JOSAA.24.
002766

Rudd, M. E., and Zemach, I. K. (2004). Quantitative properties of achromatic
color induction: an edge integration analysis. Vision Res. 44, 971–981. doi:
10.1016/j.visres.2003.12.004

Rudd, M. E., and Zemach, I. K. (2005). The highest luminance rule in achromatic
color perception: some counterexamples and an alternative theory. J. Vis. 5,
983–1003. doi: 10.1167/5.11.5

Rudd, M. E., and Zemach, I. K. (2007). Contrast polarity and edge integra-
tion in achromatic color perception. J. Opt. Soc. Am. A 24, 2134–2156. doi:
10.1364/JOSAA.24.002134

Stevens, J. C. (1967). Brightness inhibition re size of surround. Percept. Psychophys.
2, 189–192. doi: 10.3758/BF03213048

Stevens, S. S. (1975). Psychophysics: Introduction to its Perceptual, Neural, and Social
Prospects. New York, NY: Wiley.

Tolhurst, D. J., Movshon, J. A., and Dean, A. F. (1983). The statistical reliability
of signals in single neurons in cat and monkey visual-cortex. Vision Res. 23,
775–785. doi: 10.1016/0042-6989(83)90200-6

Vladusich, T. (2013a). Gamut relativity: a new computational approach to bright-
ness and lightness perception. J. Vis. 13:14, 1–21. doi: 10.1167/13.1.14

Vladusich, T. (2013b). Brightness scaling according to gamut relativity. Color Res.
Appl. 36, 463–465. doi: 10.1002/col.21823

Vladusich, T., Lucassen, M. P., and Cornelissen, F. W. (2006a). Edge integra-
tion and the perception of brightness and darkness. J. Vis. 6, 1126–1145. doi:
10.1167/6.10.12

Vladusich, T., Lucassen, M. P., and Cornelissen, F. W. (2006b). Do cortical neurons
encode luminance or contrast to process surface properties? J. Neurophysiol. 95,
2638–2649. doi: 10.1152/jn.01016.2005

Vladusich, T., Lucassen, M. P., and Cornelissen, F. W. (2007). Brightness and dark-
ness as perceptual dimensions. PLoS. Comput. Biol. 3:e179. doi: 10.1371/jour-
nal.pcbi.0030179

von der Heydt, R., Peterhans, E., and Baumgartner, G. (1984). Illusory con-
tours and cortical neuron responses. Science 224, 1260–1262. doi: 10.1126/sci-
ence.6539501

von der Heydt, R., Zhou, H., and Friedman, H. S. (2003). “Neural coding of bor-
der ownership: implications for the theory of figure-ground perception,” in
Perceptual Organization in Vision: Behavioral and Neural Perspectives, eds M.
Behrmann, R. Kimchi, and C. R. Olson (Mahwah, NJ: Lawrence Erlbaum),
281–304

von Helmholtz, H. L. F. (1866/1924). Treatise on Physilogical Optics. J. P. C. Southall
(Transl.). Rochester; New York: Optical Society of America.

Wallach, H. (1963). The perception of neutral colors. Sci. Am. 208, 107–116. doi:
10.1038/scientificamerican0163-107

Whittle, P. (1992). Brightness, discriminability and the “crispening effect”. Vision
Res. 32, 1493–1507. doi: 10.1016/0042-6989(92)90205-W

Whittle, P. (1994). “The psychophysics of contrast brightness,” in Lightness,
Brightness, and Transparency, ed A L Gilchrist (Hillsdale, NJ: Lawrence Erlbaum
Associates), 35–110.

Wilson, H. R., and Gelb, D. J. (1984). Modified line-element theory for spatial-
frequency and width discrimination. J. Opt. Soc. Am. A 1, 124–131. doi:
10.1364/JOSAA.1.000124

Zavagno, D., Annan, V., and Caputo, G. (2004). The problem of being white: testing
the highest highest luminance rule. Vision 16, 149–159.

Zeki, S., and Bartels, A. (1999). Toward a theory of visual consciousness. Conscious.
Cogn. 8, 225–259. doi: 10.1006/ccog.1999.0390

Zhou, H., Friedman, H. S., and von der Heydt, R. (2000). Coding of border
ownership in monkey visual cortex. J. Neurosci. 20, 6594–6611.

Conflict of Interest Statement: The author declares that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 26 April 2014; accepted: 01 August 2014; published online: 22 August 2014.
Citation: Rudd ME (2014) A cortical edge-integration model of object-based lightness
computation that explains effects of spatial context and individual differences. Front.
Hum. Neurosci. 8:640. doi: 10.3389/fnhum.2014.00640
This article was submitted to the journal Frontiers in Human Neuroscience.
Copyright © 2014 Rudd. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or repro-
duction in other forums is permitted, provided the original author(s) or licensor are
credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Human Neuroscience www.frontiersin.org August 2014 | Volume 8 | Article 640 | 14

http://dx.doi.org/10.3389/fnhum.2014.00640
http://dx.doi.org/10.3389/fnhum.2014.00640
http://dx.doi.org/10.3389/fnhum.2014.00640
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

	A cortical edge-integration model of object-based lightness computation that explains effects of spatial context and individual differences
	Introduction
	The Basic Neural Edge-integration Model
	Lightness Filling-in as a Byproduct of Edge Integration
	Need for Top-down Intentional Control of Edge Weights
	Influence of Figure-ground Segregation on Lightness and Mid-level Computations in V2
	Top-down Modulation of Edge Weights and Individual Differences in Lightness
	Some Outstanding Problems for the Theory
	Comparison with Gamut Relativity Theory: Transparency and ``Dimensions'' of Lightness
	References


