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Transcranial magnetic stimulation (TMS) has been used to induce speech disturbances and
to affect speech performance during different naming tasks. Lately, repetitive navigated
TMS (nTMS) has been used for non-invasive mapping of cortical speech-related areas.
Different naming tasks may give different information that can be useful for presurgical
evaluation. We studied the sensitivity of object and action naming tasks to nTMS and
compared the distributions of cortical sites where nTMS produced naming errors. Eight
healthy subjects named pictures of objects and actions during repetitive nTMS delivered
to semi-random left-hemispheric sites. Subject-validated image stacks were obtained in
the baseline naming of all pictures before nTMS. Thereafter, nTMS pulse trains were
delivered while the subjects were naming the images of objects or actions. The sessions
were video-recorded for offline analysis. Naming during nTMS was compared with the
baseline performance. The nTMS-induced naming errors were categorized by error type
and location. nTMS produced no-response errors, phonological paraphasias, and semantic
paraphasias. In seven out of eight subjects, nTMS produced more errors during object
than action naming. Both intrasubject and intersubject analysis showed that object naming
was significantly more sensitive to nTMS. When the number of errors was compared
according to a given area, nTMS to postcentral gyrus induced more errors during object
than action naming. Object naming is apparently more easily disrupted by TMS than action
naming. Different stimulus types can be useful for locating different aspects of speech
functions. This provides new possibilities in both basic and clinical research of cortical
speech representations.
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INTRODUCTION
Transcranial magnetic stimulation (TMS) is a noninvasive tech-
nique where a strong and brief magnetic pulse is delivered to the
brain and induces electrical currents. This produces depolariza-
tion of cellular membranes and neuronal activation (Barker et al.,
1985; Ilmoniemi et al., 1999). TMS has become an important
tool for studying speech and language at both the cognitive and
neural level (Devlin and Watkins, 2007). TMS may produce both
inhibition and facilitation during different phases of speech pro-
cessing either by directly stimulating a specific speech-related cor-
tical region or indirectly through intracortical networks (Epstein,
1998). TMS has been used for studying the functional localization
of speech in healthy subjects, with variable results (Pascual-Leone
et al., 1991; Epstein et al., 1999; Devlin and Watkins, 2007;
Vigliocco et al., 2011).

Navigated TMS (nTMS) is considered the state-of-the-art
technique in performing TMS studies (Siebner et al., 2009). In
nTMS, the stimulated cortical site can be defined anatomically
from the individual’s brain magnetic resonance images (MRI). In
addition, orientation and strength of the induced electric field
can be estimated (Siebner et al., 2009; Ruohonen and Karhu,
2010). The information provided by nTMS is useful for surgical

planning, and it can be transferred into the operating theater via
surgical neuronavigation systems.

So far, nTMS has been used in preoperative localization of the
motor cortex (Picht et al., 2009; Vitikainen et al., 2009). It local-
izes the cortical representations of hand muscles as accurately as
direct cortical stimulation (DCS) (Picht et al., 2011; Krieg et al.,
2012) and more accurately than functional magnetic resonance
imaging (fMRI) (Forster et al., 2011; Krieg et al., 2012). In addi-
tion, neuromodulation of Broca’s area in speech-related tasks is
reported to be more robust by nTMS than by conventional TMS
based on external landmarks on the head (Kim et al., 2013). These
results motivated us to develop a protocol for preoperative local-
ization of speech-related brain areas by utilizing object naming
and nTMS (Lioumis et al., 2012). This novel approach has been
compared to DCS during awake craniotomy (Picht et al., 2013).
The results imply that nTMS is remarkably sensitive but relatively
non-specific in detecting the sites producing speech disturbance
in DCS. Discordance between nTMS and DCS was observed
particularly in the posterior cortical regions (Picht et al., 2013;
Tarapore et al., 2013). Preoperative speech mapping by nTMS can
give important a priori information to the neurosurgeons. It may
aid in objective preoperative risk-benefit balancing of the planned
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surgery, more targeted and smaller craniotomies, faster and safer
intraoperative mapping, and safer surgeries for patients that can-
not undergo awake craniotomy (Picht et al., 2013). Recently, two
studies have used object naming and nTMS to compare language
mapping on patients with brain tumors and healthy subjects, sug-
gesting tumor-induced plasticity of speech representation areas
(Krieg et al., 2013; Rösler et al., 2013). Thus, better understand-
ing of the effects of TMS during naming tasks may have an impact
on surgery planning and provide information about the cortical
organization of speech in general.

Picture naming has been extensively studied in both healthy
subjects and patients with various neurological diseases. In mag-
netoencephalography (MEG) and fMRI studies on healthy sub-
jects, action and object naming activate cortical networks includ-
ing left inferior frontal gyrus, left dorsal premotor, bilateral
occipitotemporal, and bilateral parietal areas (Sörös et al., 2003;
Petrovich Brennan et al., 2007; Liljeström et al., 2008, 2009).
Some functional neuroimaging studies suggest different cortical
representations of action and object naming (for a review, see
Vigliocco et al., 2011). It has been suggested that action nam-
ing activates particularly the left premotor (Valyear et al., 2007;
Canessa et al., 2008), parietal (Noppeney et al., 2005), and frontal
cortex (Vigliocco et al., 2011), whereas object naming activates
the left temporal areas most strongly (Vigliocco et al., 2011). In
line, patients with aphasia due to lesions in left frontal areas have
shown more severe deficits in action naming, whereas lesions
in the left temporal areas are associated with deficits in object
naming (Mätzig et al., 2009; Vigliocco et al., 2011).

Action naming appears to be a demanding process that
requires more extensive neural processing than object naming
(Mätzig et al., 2009). TMS studies indicate that left prefrontal
and motor cortices are involved in processing verbs and actions
(Pulvermüller et al., 2005; Cappelletti et al., 2008; Gerfo et al.,
2008). However, the areas stimulated in (Cappelletti et al., 2008)
and (Gerfo et al., 2008) do not match with areas of greater acti-
vation for verbs and nouns in imaging studies using similar tasks
(Vigliocco et al., 2011). Intraoperative cortical mapping by DCS
during awake craniotomy in tumor surgery has systematically
revealed widely distributed and highly individual effective corti-
cal sites (Whitaker and Ojemann, 1977; Sanai et al., 2008; Corina
et al., 2010) and dissociation of sites inducing errors in action and
object naming (Corina et al., 2005; Lubrano et al., 2014). The cor-
tical sites activated specifically by action naming resided mainly in
the parietal cortex (Corina et al., 2005).

We mapped the left-hemispheric speech-related areas by
nTMS during object and action naming tasks. The induced errors
during object and action naming were categorized by type and
location of the stimulated cortical site, and compared with each
other. We were particularly interested to see if action naming
would be interfered more by nTMS in the posterior cortical areas,
where discordant results between nTMS and DCS were seen in
an object naming task (Picht et al., 2013; Tarapore et al., 2013).
If so, action naming tasks might add information in detecting
speech-related cortical areas from this region by means of nTMS,
as suggested in previous studies (Corina et al., 2005; Noppeney
et al., 2005). As action naming is considered more demanding
than object naming (Berndt et al., 1997; Mätzig et al., 2009), we

hypothesized that action naming would be more easily disturbed
by nTMS than object naming.

METHODS
SUBJECTS
Eight neurologically normal right-handed subjects (native speak-
ers of Finnish; mean age 26 ± 2 years, four females) participated
in the study. The subjects had normal or corrected-to-normal
vision. The study was approved by the Ethics Committee of
Helsinki University Central Hospital and was in compliance
with the declaration of Helsinki. The subjects gave their written
informed consent before the experiments.

OBJECT AND ACTION NAMING
We used two sets of color pictures with a white background, one
with 131 images depicting objects and another with 98 images
depicting actions. Object images illustrated a simple object (e.g.,
a chair; Figure 1A; see also the video in the Supplementary
Material). The action images represented a simple event (e.g.,
playing an instrument; Figure 1B). The subjects were asked to
name objects or actions in Finnish as quickly and precisely as
possible. Two subjects performed action naming before object
naming. The experiment consisted of two baseline sessions with-
out nTMS (one for object and another for action naming) and
two nTMS sessions (one with object naming and another with
action naming). All sessions were video-recorded for offline anal-
ysis. The baseline sessions were done before the nTMS sessions.
Images that were unfamiliar or named incorrectly in the baseline
session were removed from the image set used during nTMS (see

FIGURE 1 | The nTMS speech mapping method. An example of images
used in object (A) and action naming (B). (C) Timeline of the events in the
nTMS speech mapping. The interpicture interval was 2500 ms.
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the Supplementary Table). Thus, only fluently named images were
used during the nTMS sessions. The numbers of rejected object
and action images did not differ significantly (Mann–Whitney
U-test; p = 0.26). The images were displayed in random order
within the object naming and action naming sessions (see the
Supplementary Video). For each subject, all TMS measurements
were performed in a row.

STIMULATION
Two recording setups were used. In setup 1, we used eXimia
Navigated Brain Stimulation (NBS) version 3.2 (Nexstim Ltd.,
Helsinki Finland); for details, see Lioumis et al. (2012). In setup
2, we used eXimia NBS version 4.3 and a commercial speech-
mapping module (NexSpeech, Nexstim Ltd., Helsinki Finland).
Both navigation systems calculate the strength of the maximum
electric field that is overlaid on-line on the 3-D reconstruction
of the individual’s brain (Ruohonen and Karhu, 2010). Each
stimulation site is tagged to the MR image for subsequent studies.

All stimulations were done with a biphasic figure-of-eight coil.
The outer diameter of the coil was 70 mm. The resting motor
threshold (MT) was determined from the right abductor pollicis
brevis (APB) muscle, and the strength of the induced electric field
at the cortex was registered. These electric fields varied between 40
and 100 V/m at approximately 25 mm from the head surface (i.e.,
at the navigation depth). The stimulus intensity for the speech
mapping was adjusted to produce roughly as strong electric field
to perisylvian cortical regions. Navigated TMS of temporal areas
occasionally produces some discomfort. However, we were partic-
ularly meticulous to avoid such unpleasantness; if the stimulation
caused discomfort to the subject due to muscle contraction (in a
short test session before the actual measurements), the stimula-
tion intensity was lowered in decrements of 5–10% until it was
tolerable. Moreover, the experimental setup has been validated by
DCS, where discomfort due to scalp or muscle stimulation is not
an issue, and found to match well with DCS particularly in ven-
tral anterior areas (see e.g., Picht et al., 2013; Tarapore et al., 2013;
Krieg et al., 2014). Consequently, the stimulation intensity var-
ied somewhat across subjects (80–110% of the APB MT; 30–40%
of the stimulator output). The stimulation was done with nTMS
trains of five pulses at 5 Hz (Epstein et al., 1996; Lioumis et al.,
2012). The subjects wore earplugs during all sessions.

The object and action pictures were displayed for 700 ms
on a computer screen once every 2.5 s. The nTMS trains were
delivered with a 300 ms delay after the picture onset (Figure 1C;
Supplementary Video). The nTMS onset time was chosen on the
basis of MEG studies on dynamics of cortical language processing
(Salmelin et al., 2000; Sörös et al., 2003); essentially we did not
want to interfere with the visual inspection, but to disturb other
stages of language production (e.g., conceptual processing, lexical
selection, phonological encoding, and articulatory preparation).
The coil was hand-held and it was moved freely between the
pulse trains. Approximately 200 sites were stimulated in the left
hemisphere by moving the coil semi-randomly in between the
trains of pulses, following a grid-like pattern so that the tested
target sites covered systematically a wide fronto-temporo-parietal
cortical area. The same areas were stimulated for both tasks. The
orientation of the coil was adjusted to induce current primarily
perpendicular to the fibers of the temporalis muscle to minimize

muscle twitching, and secondarily perpendicular to the sulcus at
the stimulation target. The cortical sites where nTMS-induced
errors were observed online and were revisited to evaluate
the repeatability of the effect (see Supplementary Video). On
average, 257 stimulus trains were delivered to the left hemisphere
during object naming and 243 during action naming in each
subject. The maximum difference between repetitions for two
different images was one, as the content of the subject-validated
image stack was randomized each time a new round of the images
started.

DATA ANALYSIS
A neuropsychologist with expertise in effects of DCS on speech
(HL) analyzed naming performance in the recorded videos.
During the analysis, the stimulation sites were not visible. The
baseline naming responses were compared with those recorded
during nTMS. The observed errors were categorized as no-
response errors, semantic paraphasias, and phonological para-
phasias according to previous studies (Corina et al., 2010; Picht
et al., 2013; Rösler et al., 2013). No-response errors: stimulation
leads to a complete lack of naming response. Phonologic para-
phasias: characterized by unintended phonemic modification of
the target word. The spoken word resembles the target word, but
is phonetically different. For example the target word “pants” is
replaced with “plants.” Semantic paraphasias: errors in which the
patient substitutes a semantically related or associated word for
the target word. For example, the target word “cow” is replaced
by the word “horse.” When a naming error occurred, the cor-
responding nTMS location was marked as speech-related and
tagged by the observed error type. Thereafter, the nTMS sites
eliciting naming errors were grouped into cortical regions. For
the anatomical labeling, we used the anatomical atlas shown
in Corina et al. (2010) as in previous publications (Lioumis
et al., 2012; Picht et al., 2013). The cortical surface of each
subject was separated into anatomical regions according to this
template.

The statistical significance of the results were evaluated both
in single-subject and group level. For the single-subject analy-
sis, the statistical significance of the observed effects of nTMS
on performance in the naming tasks was evaluated separately
for each subject and stimulated area. The null hypothesis was
that the observed errors occur due to chance. If so, the num-
ber of observed errors should follow a Poisson distribution with
the parameter λ = number of observed errors (per area)/the
total number of nTMS trials (per area). The probability that the
observed number of naming errors in an area could have arisen
by chance rather than due to the effect of nTMS was computed
by comparing the number of observed errors with one million
simulated Poisson samples. The number of samples in the simu-
lated data that were greater than or equal to the observed number
of errors gives the probability of the case that the observed effect
could have occurred by chance. The significance level was set at
5%. False discovery rate (FDR) was applied on the p-values col-
lected from the area wise analyses of each subject to correct for
multiple comparisons (Storey, 2002).

For the group level analysis, the 2-tailed Mann–Whitney
U-test was used to compare the number of errors during object
and action naming. The statistical analysis was done to the total
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number of naming errors in the left hemisphere, and within each
error type and gyrus. The significance level was set at 5%.

To visually summarize the speech mapping results, the stim-
ulation sites that were associated with naming errors from all
eight subjects were projected on the standardized MNI brain

template (Mazziotta et al., 2001), using FSL (Smith et al., 2004;
Woolrich et al., 2009; Jenkinson et al., 2012) and FreeSurfer
(Fischl et al., 1999) softwares. The brain was segmented from
the individual T1-weighted MRIs of each subject and registered
with the standard brain template in MNI space. Thereafter, the

FIGURE 2 | Cortical sites for both object and action naming errors

visualized on an inflated reconstruction of the cortex. Red spheres:
no-response errors; green spheres: semantic paraphasias; yellow spheres:
phonological paraphasias. (A,B) All cortical sites that elicited nTMS-induced

naming errors in the subjects. (C–F) Individual data from subjects S1 and
S7. The number, type, and location of the naming errors vary between
subjects. The white asterisks indicate the sites of repeated errors at the
same location.
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coordinates of the naming error locations were projected into the
MNI space, using the transformation matrix given by the regis-
tration and overlaid with the inflated cortical surface of the MNI
brain template (Figure 2).

RESULTS
Overall 93 nTMS trains (4.5% from a total of 2056 trains)
induced errors during object naming. During action naming, 33
nTMS trains (1.7% from a total of 1944 trains) induced errors
(Figure 3A). In seven out of eight subjects, TMS elicited more
object naming than action naming errors. In one subject, the
total number of induced errors was equal in both (Table 1).
Naming errors were induced when nTMS was delivered to angu-
lar gyrus (anG), inferior frontal gyrus (IFG), middle frontal gyrus
(MFG), postcentral gyrus (PoG), precentral gyrus (PrG), supe-
rior temporal gyrus (STG), middle temporal gyrus (MTG), and
supramarginal gyrus (SMG) (Table 1 and Figure 2).

In the object naming task, 25% of the sites associated with
naming errors were located in the PoG, 23% in the STG, 19%
in the IFG, 12% in the PrG, 9% in the SMG, 8% in the MTG,
3% in the MFG, and 2% in the anG (Table 1 and Figure 2).
A subanalysis by type showed that 24% of the no-response errors
(73% of all naming errors, see Figure 3B) were induced from
the IFG, 24% from the STG, 21% from the PoG, and 12% from
the PrG (Table 1). Thus, 81% of all sites producing no-response
errors during nTMS were concentrated on these areas.

In the action naming task, 34% of the sites associated with
naming errors were located in the STG, 21% in the IFG, 12% in
the PoG, 12% in the PrG, 12% in the SMG, 3% in the anG, and 3%
in the MFG and in the MTG (Table 1 and Figure 2). A subanalysis
by type showed that 53% of the sites associated with no-response
errors (46% of all naming errors, see Figure 3C), were located in
the STG, 20% in the PoG, and 13% in the IFG (Table 1). Thus,
more than 80% of all sites producing no-response errors during
nTMS were concentrated on these areas. Figure 2 depicts the sites
where nTMS elicited naming errors in object and action nam-
ing tasks. Fused results for all subjects are shown in Figures 2A,B.
Results for two individual subjects are shown in Figures 2C–F to
reveal the inter-subject variability. Overall, the number, type, and
location of the naming errors varied between the subjects.

The area-dependent subject-level analysis showed significant
effects of nTMS in IFG, MFG, PoG, PrG, STG, MTG, and SMG for
object naming (p < 0.05; see Table 2) and in IFG, PoG, STG, and
SMG for action naming (p < 0.05; see Table 2). The most sensi-
tive cortical sites were IFG, PoG, PrG, STG, and SMG (see Table 2
for summary). The largest difference of nTMS-sensitive sites in
object and action naming tasks was in the PoG, where 7 subjects
had a significant effect of nTMS on object naming and only one
on action naming (Table 2). Clear individual differences between
the subjects in the distributions of the speech-related areas were
evident (Table 1 and Figure 2).

In group-level analysis, the total number of nTMS-induced
errors in object naming was significantly larger than in action
naming (p = 0.002; see Table 1). No-response errors were
significantly more frequent in object than action naming (p =
0.002); the number of semantic and phonological paraphasias
did not differ significantly between the tasks. When the total
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FIGURE 3 | (A) Percentage of trials with errors out of the total number of
trials during nTMS for object and action naming tasks. (B) Percentage of
errors of each error category out of the total number of naming errors

produced by nTMS during object naming task. (C) Percentage of errors of
each error category out of the total number of naming errors produced by
nTMS during action naming task.

number of errors within each gyrus was compared, object nam-
ing was more effectively disturbed by nTMS in PoG (p = 0.014)
than action naming. No significant differences were observed for
nTMS in the other gyri (Table 1).

DISCUSSION
We observed that object naming was consistently more disturbed
by nTMS to the left hemisphere than action naming. The induced
error types varied between subjects, but no-response errors were
the most frequent in both tasks. In parallel with our results,
object naming errors were more frequent than action nam-
ing errors during left-hemisphere DCS of neurological patients
(Lubrano et al., 2014). Apparently, object naming is more
sensitive to perturbations elicited by nTMS than action naming.
DCS is probably more efficient than nTMS; in our study 3.2%
of all trials induced naming errors, whereas 11.5% of the tested
DCS sites were associated with induced language interferences
(Lubrano et al., 2014). However, DCS mapping is limited by the
extent of the craniotomy, and our nTMS speech mapping covered
a wide cortical area. Hence, it is more likely to stimulate sites that
are not speech-related in the nTMS than DCS mapping.

TMS induced naming errors from virtually all perisylvian sites
(Figure 2). However, across subjects the location of these individ-
ual punctuate regions varied and there were no regionally specific
effects of nTMS, which is in line with the results obtained by DCS

studies (Corina et al., 2005; Lubrano et al., 2014). The classical
Broca’s area (Brodmann area 44/45) in IFG and the Wernicke’s
area (Brodmann area 22) in STG were both sensitive to nTMS
in most subjects. It is evident, however, that the classical mod-
ular brain–language model is insufficient to explain our results.
Instead, the results support the current state-of-the-art models of
widely distributed language network (Poeppel and Hickok, 2004;
Hagoort and Indefrey, 2014; Hope et al., 2014).

In our study, we did not measure the time-line aspect of
language processing per se; instead we used repetitive TMS to
induce speech disturbances. We assumed that our rTMS train
was delivered early enough (from 300 ms onwards) to be able to
disturb semantic processing, phonological code retrieval, syllabi-
fication, phonetic encoding, and articulation components of the
language processing (Indefrey and Levelt, 2004; Indefrey, 2011;
Strijkers and Costa, 2011) needed in overt object and action nam-
ing. However, as speech processing is not only sequential but
probably also occurs in parallel during several phases of the pro-
cessing, the specific identification of the affected processes seems
unreliable.

Recently, 300 and 0 ms nTMS pulse train onsets were com-
pared to study the effects on sensitivity and specificity of picture
naming during language mapping with navigated TMS. The 0-ms
onset produced more specific results in the parietal areas when
compared to DCS data (Krieg et al., 2014). The 0-ms paradigm
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Table 2 | Single subject analysis within cortical areas.

Areas Subjects (object/action) Number of significant areas

(sum over subjects)

S1 S2 S3 S4 S5 S6 S7 S8

anG -/- -/- -/- -/- -/- -/- -/- -/- 0/0
IFG 0.005/0.004 0.002/- 0.001/- -/- -/0.001 0.005/- -/- 0/- 5/2
MFG 0.005/- -/- -/- -/- -/- -/- -/- -/- 1/0
PoG 0.005/- 0.001/- -/- 0.046/- 0.001/- 0/- 0.001/0.019 0/- 7/1
PrG 0.001/- 0.002/- 0.001/- -/- -/- 0.001/- -/- 0.037/- 5/0
STG -/- -/- 0/0 0/- 0.010/- -/- 0/0 0.005/- 5/2
MTG -/- -/- 0.002/- -/- -/- -/- 0/- -/- 2/0
SMG 0.001/- 0.001/0.004 -/- -/- 0.033/- 0.018/- 0.023/- -/- 5/1

Areas where nTMS induced statistically significant effects on object and action naming. The p-values are indicated; “-” means p > 0.05 and “0” values < 0.001.

Notation: anG, angular gyrus; IFG, inferior frontal gyrus; MFG, middle frontal gyrus; PoG, postcentral gyrus; PrG, precentral gyrus; STG, superior temporal gyrus;

MTG, middle temporal gyrus; SMG, supramarginal gyrus.

resembles more precisely the one applied in DCS so it is not sur-
prising that the match between the 0-ms onset time and DCS
is better. Nevertheless, the early onset of the nTMS may also
influence conceptual preparation, lexical concept selection, and
lemma retrieval attributed to the early stages of picture naming
processes (Indefrey and Levelt, 2004; Indefrey, 2011). However,
using the 300-ms latency for the nTMS pulse trains should have
not biased our results to make object naming more sensitive
to TMS than action naming, because action naming is a more
demanding and time-taking process (e.g., Vigliocco et al., 2004;
Mätzig et al., 2009).

Our results do not allow conclusions on cortical areas essential
for processing of object-related or action-related words. Instead,
they emphasize the network nature of language processing, in line
with previous studies (Vigneau et al., 2006; Mätzig et al., 2009;
Vigliocco et al., 2011; Lubrano et al., 2014). We did not confirm
the previously described particular sensitivity of action naming
for parietal cortical DCS (Corina et al., 2005). Our results were in
line with more recent DCS results (Lubrano et al., 2014).

As the action naming was not specifically influenced by nTMS
to posterior cortical areas, its use in preoperative speech mapping
probably does not increase the sensitivity of nTMS in these
regions. Therefore, the discordant results between nTMS and
DCS of the posterior cortical areas (Picht et al., 2013; Tarapore
et al., 2013), would probably not be improved by replacing the
object naming with an action naming task.

Speakers name pictures of objects faster than those of actions,
and action naming is more difficult than object naming in terms
of accuracy and latencies (Vigliocco et al., 2002, 2004, 2011;
Mätzig et al., 2009; Strijkers and Costa, 2011). This would sug-
gest that action naming would be more easily disrupted by nTMS
than object naming. However, the reverse was true in our experi-
ment. Naming of words related with actions has been reported to
involve more the motor cortex (Pulvermüller, 2005; Pulvermüller
et al., 2005) and middle frontal gyrus (Lubrano et al., 2014). In
our study, we did not stimulate those areas extensively enough
to reach such conclusions. However, if the motor areas are more
involved in action naming than object naming, it is possible that
this “extra support” makes action naming less sensitive to TMS
than object naming, when perisylvian regions are stimulated.

Object naming was particularly sensitive for nTMS to PoG,
which is not typically studied by DCS when comparing object
and action naming (Corina et al., 2005; Lubrano et al., 2014).
However, in direct cortical recordings, spectral activity in PoG is
modified during naming (Wu et al., 2011; Cogan et al., 2014).
In fMRI, action naming induces stronger activation than object
naming in PoG (Liljeström et al., 2008, 2009). It is possible that
this stronger activation by action naming is less vulnerable to
nTMS-induced perturbation.

Both fMRI and DCS have been used for language mapping.
DCS during awake craniotomy is considered the gold standard for
intraoperative brain mapping of cortical speech representations.
However, it is demanding for the patient, strongly invasive, and
may produce after-discharges, making the results difficult to
interpret (Giussani et al., 2010). Moreover, the studied cortical
regions are limited by the extent of craniotomy and demands of
the surgery. Results from fMRI vary between different language
paradigms and individuals, and its spatial accuracy in patients
with gliomas has been questioned (Giussani et al., 2010; Wang
et al., 2012). A recent case report suggests that nTMS may be more
sensitive in defining speech lateralization than fMRI (Sollmann
et al., 2013). The results of our study support the usefulness of pic-
ture naming combined with nTMS in presurgical planning (Krieg
et al., 2013, 2014; Picht et al., 2013; Rösler et al., 2013). It also
provides new possibilities for basic research of cortical speech rep-
resentation. In addition, it may offer complementary information
in comparison to other non-invasive methods (e.g., MEG and
fMRI). Moreover, our results suggest that the efficacy of TMS in
inducing naming errors can be modulated by the task; if a higher
sensitivity is required, object naming is preferred; if a sparse
amount of nTMS sites is required, action naming can be used.

Static pictures have limitations in exploring action naming
performance, and some research groups have used videos of
actions as stimuli to overcome this issue (e.g., Corina et al., 2005).
Nevertheless, static images have been widely used in studies of
action naming (see Mätzig et al., 2009). We did not match the
frequency, familiarity length, or visual complexity of the pictures
of objects vs. actions. Instead, subject-validated image stacks for
objects and actions were obtained in the baseline naming ses-
sion. It should be emphasized that we did not directly compare
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the naming of objects vs. actions, but we compared the sensitiv-
ity of fluently named objects or actions to nTMS (for a similar
approach, see Lubrano et al., 2014).

In summary, we have compared the naming error distribu-
tions induced by nTMS during object and action naming tasks.
We suggest that object naming is more easily disrupted by nTMS
than action naming. Particularly nTMS to PoG induced more
errors during object naming than during action naming. Thus,
use of action naming instead of object naming tasks most likely
would not improve the specificity of nTMS in mapping poste-
rior speech-related areas (Picht et al., 2013; Tarapore et al., 2013).
These features, however, can be used in varying the sensitivity of
functional mapping by nTMS for different cognitive paradigms
in basic research and for presurgical planning. To resume, TMS
applied to 8 subjects induced 93 errors during object naming and
33 during action naming. We find this surprisingly convincing for
relatively small material, but believe that increasing the number of
subjects will provide further important information for cortical
speech organization.
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