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Experimental evidence suggests the existence of a sophisticated brain circuit specifically
dedicated to reach-to-grasp planning and execution, both in human and non-human
primates (Castiello, 2005). Studies accomplished by means of neuroimaging techniques
suggest the hypothesis of a dichotomy between a “reach-to-grasp” circuit, involving the
anterior intraparietal area, the dorsal and ventral premotor cortices (PMd and PMv –
Castiello and Begliomini, 2008; Filimon, 2010) and a “reaching” circuit involving the medial
intraparietal area and the superior parieto-occipital cortex (Culham et al., 2006). However,
the time course characterizing the involvement of these regions during the planning and
execution of these two types of movements has yet to be delineated. A functional magnetic
resonance imaging study has been conducted, including reach-to-grasp and reaching only
movements, performed toward either a small or a large stimulus, and Finite Impulse
Response model (Henson, 2003) was adopted to monitor activation patterns from stimulus
onset for a time window of 10 s duration. Data analysis focused on brain regions belonging
either to the reaching or to the grasping network, as suggested by Castiello and Begliomini
(2008). Results suggest that reaching and grasping movements planning and execution
might share a common brain network, providing further confirmation to the idea that the
neural underpinnings of reaching and grasping may overlap in both spatial and temporal
terms (Verhagen et al., 2013). But, although responsive for both actions, they show a
significant predominance for either one of the two actions and such a preference is evident
on a temporal scale.
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INTRODUCTION
The reach-to-grasp movement has been investigated from many
perspectives and through different approaches given that it repre-
sents an ideal experimental window to elucidate action–perception
interactions. Studies centered on motion analysis of grasping have
shown that the final posture of hand and fingers in contact with the
object represents the end result of a motor sequence starting well
ahead of the action of grasping itself (Jeannerod, 1984; Gentilucci
et al., 1991; Jakobson et al., 1991; Chieffi and Gentilucci, 1993).
The progressive shaping of hand and fingers is accomplished
through a progressive opening of the grip with straightening of
the fingers, followed by a closure of the grip until the size of
the object is perfectly matched. The point in time where grip
size is the largest (maximum grip size) is a clearly identifiable
landmark that occurs well before the fingers come into contact
with the object (Jeannerod, 1984). Many studies have showed
that even very subtle changes in object properties can result in
a significant change in grasping kinematic parameters (see Smeets
and Brenner, 1999, for a review). The susceptibility of kinematic
parameters demonstrates how sensitive and sophisticated are the
processes responsible for the“translation”of object properties into
the motor program implemented during the “hand preshaping”
stage are.

In neural terms, neurophysiological studies in non-human
primates have demonstrated that reaching and grasping move-
ments, even if embedded in the same act, are coded by
different neural systems. Computations regarding the grasp
component seem to occur within a lateral parietofrontal cir-
cuit involving mainly the anterior intraparietal area (AIP) and
both the dorsal (PMd) and the ventral (PMv) regions of pre-
motor areas (Moll and Kuypers, 1977; Godschalk, 1991; Raos
et al., 2004). Computations regarding the reaching component,
instead, seem to occur within a more medial parieto-frontal
circuit including the medial intraparietal area (mIP) at the bound-
aries with area V6A (Andersen and Cui, 2009), and the PMd
(Sakata and Taira, 1994).

Neuroimaging and transcranial magnetic stimulation (TMS)
studies in humans go in the same direction (for review see
Castiello, 2005; Culham et al., 2006; Olivier et al., 2007; Beglio-
mini et al., 2008). Several studies agreed on the key role played by
the human AIP (hAIP) in grasping behavior (Grafton et al., 1996;
Dohle et al., 2000; Culham et al., 2003, 2006; Frey and Gerry, 2006;
Begliomini et al., 2007a, 2008; Filimon, 2010) and it has also been
proposed the inferior frontal gyrus (IFG) and the dorsal part of
the middle frontal gyrus (MFG) at the boundaries with the pre-
central gyrus (PreCG) as the human homologs of monkey F2 and
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F5 (Davare et al., 2006; Begliomini et al., 2007b, 2008). Rather, a
pathway including the superior part of the parieto-occipital cor-
tex (SPOC), the medial intraparietal area (mIP) and the PMd has
been suggested as the neural substrate for planning and execu-
tion of reaching movements (Connolly et al., 2003; Prado et al.,
2005; Culham et al., 2006; Cavina-Pratesi et al., 2010; Filimon,
2010; Vesia and Crawford, 2012).

The dichotomy between a lateral fronto-parietal network sup-
porting grip formation and a medial fronto-parietal network
being the neural underpinning of reaching has recently been
put into question. Evidence from single-cell data (Raos et al.,
2004; Fattori et al., 2009, 2010) and lesion studies (Battaglini et al.,
2002) suggests that the parieto occipital area V6a and dorsal pre-
motor area F2 are also involved in managing specific aspects
of grasping behavior such as grip posture and wrist orienta-
tion. For example, reaching-related neurons in macaque area
V6A appear to be sensitive not only to reach direction (Fattori
et al., 2004), but also to target orientation (Galletti et al., 1999;
Fattori et al., 2009), target shape (Fattori et al., 2012), and grasp
configuration (Fattori et al., 2010). Similarly, functional mag-
netic resonance imaging (fMRI) investigations in humans reported
grasping-related parieto-occipital and dorsal premotor cortex acti-
vations (Chapman et al., 2002; Begliomini et al., 2007a,b, 2008;
Gallivan et al., 2011), which might be considered the possible
human homolog for monkey areas V6A and F2, respectively.
Moreover, a recent neuroimaging study, based on the effec-
tive parieto-frontal connectivity, argues against the existence of
dedicated circuits for reaching and grasping (Grol et al., 2007).
The results of this study show that while grasping large objects
increases connectivity among areas belonging to the dorso-medial
circuit, grasping small objects increases inter-regional couplings
mainly within the dorsolateral circuit: however, a certain degree
of overlap between the two circuits was observed. Along the
same line, a recent multi-voxel pattern analysis (MVPA) study
provides further evidence against a segregation of reaching and
grasping circuits, showing that both grip types and reach direc-
tion are coded within the inferior portion of the dorsal premotor
cortex (iPMd), PMv, AIP, primary motor (M1), somatosensory
(S1) cortices, and the anterior superior parietal lobe (SPLa –
Fabbri et al., 2014).

Overall, these findings indicate that in humans, like in monkeys,
reach-to-grasp movements involve a large network of intercon-
nected structures in the parietal and frontal lobes (Rizzolatti and
Luppino, 2001; Brochier and Umiltà, 2007; Castiello and Beglio-
mini, 2008). However, how these areas interact has yet to be fully
clarified. The majority of studies has focused on the question of
“if” or “how” these areas interact during grasping or reaching exe-
cution, neglecting the possibility that interaction patterns could
change across time, according to action stages (Verhagen et al.,
2013).

In this respect, the functional distinction between the pre-
movement planning and the control stages of action has been
the subject of much investigation (e.g., Woodworth, 1899; Vince,
1948; Fitts, 1954; Keele, 1968; Beggs and Howarth, 1970,
1972; Carlton, 1981; Meyer et al., 1988; see Glover, 2004 for
a review). And the existence of these two stages has generally
become accepted as an underlying principle of human motor

behavior (Jeannerod, 1988; Rosenbaum et al., 1990; Rosenbaum,
1991).

In neural terms, the functional distinction between planning
and execution has been investigated in a variety of studies (e.g.,
Grol et al., 2007; Bozzacchi et al., 2012; Glover et al., 2012). Grol
and colleagues used Dynamic Causal Modeling (Friston et al.,
2003) on fMRI timeseries acquired during planning and execution
of visually guided reaching-to-grasp movements toward objects
of different size to explore the interregional couplings between
regions of the dorsolateral (AIP and PMv) and the dorsomedial
(V6A and PMd) circuits. By assessing how different hand–object
interactions modulated the effective connectivity within these net-
works, they demonstrated that the involvement of the dorsolateral
and dorsomedial parieto-frontal circuits is largely related to the
degree of online control required by the prehension movement
(Grol et al., 2007).

Another study provides an attempt to contrast activity related
to planning and online control in the human brain during sim-
ple reaching and grasping movements (Glover et al., 2012). These
findings provide evidence that the planning and control of even
simple reaching and grasping actions use different brain regions,
including different parts of the frontal and parietal lobes. Move-
ment planning determined activity within the superior temporal
sulcus (STS), the pre-supplementary motor area (pre-SMA), the
mIP, the SPOC, the PM, and the insula. Movement execution,
instead, seems to be supported mainly by the sensorimotor cortex,
the cerebellum, the SMA, the supramarginal gyrus (SMG), and the
superior parietal lobe (SPL).

Pre-movement cortical activity related to reaching and grasp-
ing tasks has also been studied by means of motor-related cortical
potentials (Bozzacchi et al., 2012). In this study, different activ-
ity patterns in terms of onset, amplitude, duration, and sources
were recorded in the preparation phase according to the specific
action. The results indicate the presence of parietal activity, well
before the action begins, for goal-oriented actions such as grasp-
ing an object but not in reaching. This activity starts about two
seconds prior to the action and is maximal about one second
later in the areas contralateral to the used hand. Moreover, the
type of action to be performed also modulates motor prepa-
ration in terms of timing and intensity of the different brain
activity.

Along these lines, we hypothesized that (i) action planning
might be characterized by a prominent contribution of decision-
related areas, in charge of choosing the grasping schema to be
implemented according to object properties, position, and action
goals. Differently, action execution might be characterized by a
larger contribution of motor-related areas. In addition (ii) we
aimed to disentangle interactions between dorsolateral and dor-
somedial circuits not only during the actual execution of reaching
and grasping movements, but also during their planning. Finally
(iii) concerning grasping, we hypothesized that different grasp-
ing schemata (e.g., precision grip and whole hand grasp) could
be characterized by different neural underpinnings during both
movement planning and execution.

To test these hypotheses, we instructed participants to per-
form reaching or grasping movements, toward a small or a
large spherical object, while lying in a magnetic resonance
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(MR) scanner. Action stages (planning and execution) were dis-
tinguished and segregated by acoustic cues presented through
headphones. To monitor temporal dynamics of interaction pat-
terns within the fronto-parietal network a Finite Impulse Response
(FIR – Henson, 2003) model was adopted for BOLD signal mod-
eling. Importantly, with respect to previous studies we subdivided
the time course of activation to determine brain activity related
to the pre-movement planning and online control of reaching
and grasping in humans. Prior to movement initiation, planning
is entirely responsible for the initial determination of all move-
ment parameters, and continues to be highly influential early
in the movement. As movements progress, however, the influ-
ence of control on the spatial parameters of the action increases.
Can such a gradual crossover between planning and control sys-
tems being evident through the temporal unfolding of neural
activity?

MATERIALS AND METHODS
PARTICIPANTS
Eighteen volunteers (six men, 12 women, range 20–31 years old)
participated in the study. All participants fulfilled the inclusion
criteria suggested by the Italian Society of Medical Radiology,
none had a history of neurological, major medical, or psychi-
atric disorders. They were all right-handed according to the
Edinburgh Handedness Inventory (Oldfield, 1971). Experimental
procedures and scanning protocols were approved by the Uni-
versity of Padua Ethics Committee and conducted in accordance
with the Declaration of Helsinki (Sixth revision, 2008). All par-
ticipants gave their informed written consent to participate in the
study.

TASK AND STIMULI
Three dimensional (3D) stimuli were presented by means of an MR
compatible motorized circular rotating table (ABRAM1; Figure 1).
The experimental stimuli consisted of two wooden spheres of dif-
ferent dimensions (a small wooden sphere of 3 cm diameter and a
large wooden sphere of 7 cm). Participants were requested to per-
form two different kinds of movement: (i) reach toward and grasp
the stimulus; (ii) reach the stimulus with the hand in a fist posture.
All participants naturally adopted a precision grip, the opposition
between the index finger and thumb to grasp the small stimulus,
and whole hand prehension in which all fingers were opposed to
the thumb to grasp the large stimulus. During movement execu-
tion, participants were requested to keep the eyes on the stimulus.
To facilitate direct viewing of the stimulus the head was tilted
(10–15◦) by means of foam MRI compatible cushions. Given that
participants performed the actions with the right hand, a further
cushion was placed under the upper right arm, in order to min-
imize discomfort during the movement. Trials structure was the
following: (i) an acoustic cue delivered through MR-compatible
headphones indicated the type of movement to perform. A single
tone indicated a reach to grasp movement (duration 300 ms; fre-
quency 1600 Hz); a double pulse tone indicated a reaching only
movement (each pulse lasted 70 ms with a frequency of 400 Hz).
The interval between the two pulses was of 60 ms and the total

1http://www.ab-acus.com/products.html

FIGURE 1 | Experimental setup of data acquisition. The participant is
laying in the MR scanner and the motorized platform ABRAM is presenting
stimuli following a sequence administered by a PC in the control room. The
position of the rotating platform plus a pillow slightly tilting the head allow
for direct viewing of the stimuli.

duration of the tone was 200 ms; (ii) the acoustic cue was followed
by a 2 s delay; and (iii) a “go” signal was presented (a whistle of
200 ms duration; frequency 440 Hz). Participants were requested
to wait for the “go” signal to begin the movement indicated by
the acoustic cue. Participants were trained to familiarize with the
acoustic instructions during a training session before scanning.
They were requested to perform the movement at a natural speed.

EXPERIMENTAL DESIGN
The entire experiment consisted of four runs of 45 trials each, in
which stimulus size (small, large) was randomized across runs and
type of movement (grasping, reaching) was randomized within
runs. Therefore the design (factorial 2 × 2) included four exper-
imental conditions: reach to grasp toward a small stimulus (GS),
reach to grasp toward a large stimulus (GL), reaching only toward
a small stimulus (RS), reaching only toward a large stimulus (RL).
Since stimulus size was randomized across runs, for each run
two movements had to be performed, either grasping or reach-
ing. A mixed design was adopted, grouping trials belonging to the
same type (grasping or reaching) in short sequences of different
numerosity (varying from 3 to 5 trials of the same type). This
approach has been adopted on one hand in order to control for
predictability phenomena, possibly induced by trials sequences of
constant length. On the other hand, continuous changes in task
request (e.g., RS-GS-RS-GS-RS and so on) could have resulted in
task-switching related activity. Variable interstimulus interval (ISI)
was considered, including durations from 3 to 6 s according to a
long exponential probability distribution (Dale, 1999; Hagberg
et al., 2001). ISI duration was independently randomized within
each single experimental run.

DATA ACQUISITION
The experiment was carried out on a whole body 1.5 T
scanner (Siemens Avanto) equipped with a standard Siemens
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eight channels coil. Functional images were acquired with
a gradient-echo, echo-planar (EPI) T2∗-weighted sequence
in order to measure blood oxygenation level-dependent
(BOLD) contrast throughout the whole brain (37 contigu-
ous axial slices acquired with descending interleaved sequence,
56 × 64 voxels, 3.5 mm × 3.5 mm × 4.0 mm resolution,
FOV = 196 mm × 224 mm, flip angle = 90◦, TE = 49 ms).
Volumes were acquired continuously for each run with a repeti-
tion time (TR) of 3 s; 102 volumes were collected in each single
scanning run, resulting in functional runs of 5 min and 25 s dura-
tion (21 min and 40 s of acquisition time in all). High-resolution
T1-weighted image were acquired for each subject (3D MP-RAGE,
176 axial slices, no interslice gap, data matrix 256 × 256, 1 mm
isotropic voxels, TR = 1900 ms, TE = 2.91 ms, flip angle=15◦).

DATA ANALYSIS
Data preprocessing and analysis were performed using SPM8
(Statistical Parametric Mapping, Wellcome Institute of Cognitive
Neurology, London, UK) implemented in MATLAB 7.5.0 environ-
ment (MathWorks, Natick, MA, USA). For each participant, the
first two volumes of each fMRI run were discarded because of the
non-equilibrium state of the magnetization in order to allow for
stabilization. ArtRepair toolbox (ArtRepair software Package, for
SPM2) was adopted in order to correct for possible images cor-
ruption due to signal spikes induced by head motion. Motion
correction was carried out by realigning and unwarping data.
Structural images were segmented and subsequently the image
of gray matter was co-registered with all the functional images.
Structural and functional images were then normalized adopt-
ing the template provided by the Montréal Neurological Institute
(MNI) implemented in SPM8. Finally, functional images were
spatially smoothed using a 7 mm × 7 mm × 8 mm full-width-at
half-maximum (FWHM) Gaussian Kernel. At the end Artrepair
toolbox was applied in order to identify and correct large scan-
to-scan head motion, which may result in large global intensity
changes. First-level analysis was carried out by adopting an FIR
(Henson, 2003), in order to characterize the temporal evolution
of the hemodynamic response (HR) without a priori hypothesis
on its shape The peculiarity of the FIR model is the absence of
assumptions about the shape of the HR: this feature allows for
the splitting of a selected post-stimulus time window into differ-
ent temporal segments (a number of successive Time Bins (TB)
by providing a set of basis functions within the framework of a
general linear model (GLM). These basis functions can be consid-
ered as separate parameters (Dale and Buckner, 1997) and can be
entered into the GLM model with time as a factor (Henson, 2003).
According to this model, task-related BOLD variations were mon-
itored from stimulus onset (cue signal), in order to capture BOLD
variations related to both action planning (cue) and execution
(go). In this respect, a simple canonical HRF model would have
been not appropriate to capture signal variations related to all
action stages: the structure of the trial includes different action
stages lasting for a prolonged time (cue-go interval of 2 s plus
action occurring thereafter). From this perspective the FIR model
provides a more sensitive and detailed signal modeling, allowing

2http://www.fil.ion.ucl.ac.uk/spm/ext/#ArtRepair

for a monitoring of BOLD variations related to all trial stages. A
post-stimulus time window of 10 s length was considered, starting
from cue onset, and divided into 10 TB of 1 s each. TB width
was lower than the TR used during data acquisition (3 s) because
we attempted to specifically characterize differences at the sub-
sequent stages of action planning and execution. In addition, it
has also been shown that it is possible to sample the impulse
response at post-stimulus intervals shorter than TR by jittering
event onsets with respect to scan onsets (Josephs et al., 1997;
Schilbach et al., 2008). In our study interstimulus interval var-
ied from 3 to 6 s and had a jittered distribution. Reaching (RS
and RL) and grasping (GS and GL) movements were modeled
as separate events for each participant. Errors in action execu-
tion or missed trials were modeled as separate regressors of no
interest. T-contrasts were computed for each condition (RS, RL,
GS, and GL), in order to capture condition-specific HR variations
for each condition in single TB (10 images per condition in all).
Image analyzes were carried out after high-pass filtering (154 s)
to remove subject-specific, low-frequency signal drifts and global
intensity scaling. Following the estimation of a GLM for each
single participant, effects for each experimental condition were
tested by applying appropriate linear contrasts to the parameter
estimates, resulting in a t-statistic for each voxel (SPMt). Images
for each experimental regressor/condition were entered in a sec-
ond level random effect analysis (RFX) allowing for inference to
the general population, with type of movement (reaching, grasp-
ing) and stimulus dimension (small, large) as factors across the
considered TBs (2 × 2 × 10; 40 images in all for each partici-
pant). With the purpose of clearly localize the neural substrates
underlining the proposed reach to grasp or reaching only tasks,
the analysis was conducted by adopting a searching mask built
by several regions of interest, on the basis of available literature
(for review see Castiello and Begliomini, 2008), suggesting a pri-
mary distinction between planning and execution-related areas.
According to this distinction, the dorsolateral region of the pre-
frontal cortex (Rizzolatti and Luppino, 2001) and the anterior
cingulate area (Matelli et al., 1991) would be mainly involved in
movement planning, while the primary motor (Glover et al., 2005;
Tunik et al., 2005; Rice et al., 2006) and premotor cortices (Cul-
ham et al., 2003; Frey et al., 2005; Begliomini et al., 2007b), as
well as the parietal cortex (Binkofski et al., 1998; Culham et al.,
2006; Begliomini et al., 2007a) would play a substantial role in
action execution. In addition, also the SPL was included, as a
brain region known to be involved in reaching control (Culham
et al., 2003). The toolbox WFU PickAtlas (Wake Forest Univer-
sity3) was adopted to build the mask involving all the mentioned
areas.

RESULTS
GLOBAL ANOVA
The interaction between type of movement, stimulus dimension
and TBs was significant for several portions of the considered
mask (see Table 1). Results are 0.001 uncorrected for multiple
comparisons (k ≥ 20). This analysis underlined that the PreCG
(Brodmann Area, BA 6) in the right hemisphere, and the inferior

3www.ansir.wfubmc.edu
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Table 1 | Brain regions showing interaction effects between type of movement (grasping, reaching) and stimulus dimension (small, large) across

all 10Time Bins.

Region BA Hemisphere k MNI coordinates F p

x y z

Precentral gyrus 6 Right 33 31 –14 70 3.63 0.000

Inferior parietal lobule (pIPS) 40 Left 29 –47 –60 46 3.75 0.000

Inferior parietal lobule (aIPS) 40 Left –47 –49 46 3.40 0.000

Anterior cingulate gyrus 32 Left 21 –1 35 14 3.60 0.000

Anterior cingulate gyrus 32 Left –1 39 26 3.40 0.000

Results are obtained by means of a RFX analysis. Coordinates refer to the Montréal Neurological Institute (MNI) stereotaxic space. p values are uncorrected for
multiple comparisons (0.001, k ≥ 20). BA, Brodmann area.

parietal lobule (IPL, BA 40) together with the anterior cingulate
cortex (aCC) exhibited significant effects.

To better characterize our results, and in order to elucidate the
possible evolution of interaction patterns across the whole post-
stimulus window (10 s), separate ANOVA were conducted for
each TB, considering type of movement (grasping; reaching) and
stimulus dimension (small; large) as factors.

SINGLE BIN ANOVA
Statistical threshold was set to p < 0.001, uncorrected for multiple
comparisons and the adopted cluster extension was set to k ≥ 12.

TB 1–3
Random effect analysis performed on TB 1, 2, and 3 did not bring
to any significant result – neither main nor interaction effects.

TB 4
The interaction between type of movement and stimulus dimen-
sion was significant for the IPL bilaterally (BA 40), within both
anterior and posterior sector of the right intraparietal sulcus [aIPS:
F(1,68) = 21.36, and pIPS: F(1,68) = 15.72, respectively], and the
left aIPS [F(1,68) = 21.52] and the aCC bilaterally [BA 32; left side:
F(1,68) = 19.92; right side: F(1,68) = 16.09]. A close inspection of
the interaction effects revealed a similar pattern of results for all
the considered regions, that is RL determined a higher level of
activation than RS; vice versa, GS seems to be associated with a
higher level of activity than GL. Post hoc contrasts revealed that
only the comparisons GS > RS and GS > GL were significant. In
detail, the contrast GS > GL became significant only within the
left aIPS, whereas the comparison GS > RS reached significance
in all areas showing interaction effects (see Table 2 and Figure 2).
No further significant effects were observed.

TB 5
The interaction between type of movement and stimulus dimen-
sion was significant for the right MFG [MFG, BA 6; F(1,68) = 20.72]
and the aCC (BA 32) bilaterally [right: F(1,68) = 18.57; left:
F(1,68) = 17.70]. In both circumstances RL determined a higher
level of activity than RS. Conversely, activity for GS was higher
than that for GL. Post hoc comparisons revealed that only the
contrast GS > RS and GL > GS reached significance. The con-
trast GS > RS led to significant differences in both the MFG and

the aCC, both in the left and the right hemisphere. The contrast
GL > GS showed significant effects only within the left aCC (see
Table 2 and Figure 3). No further significant effects were observed.

TB 6
The interaction between type of movement and stimulus dimen-
sion was significant for the left aIPS [BA 40; F(1,68) = 16.31], the
right pIPS [BA 40; F(1,68) = 19.84], and within the left middle
cingulate cortex [mCC, BA 24; F(1,68) = 20.68]. For these regions,
the level of activity was higher for RL than for RS. Conversely, GS
was associated with a level of activity higher than that observed
for GL. More in detail the difference between RL and GL became
significant in all regions showing interaction effects (see Table 2
and Figure 4). No further significant effects were observed.

TB 7
The interaction between type of movement and stimulus dimen-
sion did reach significance within the left PreCG [BA 4:
F(1,68) = 22.98; and 6: F(1,68) = 19.30] and the left MFG [BA
6; F(1,68) = 18.78]. Inspection of the interaction indicated that
RS and RL were associated with a similar level of activation, while
GL showed a signal level which was higher than that observed in
GS. The contrast GL > GS was significant in both regions of the
PreCG, while the comparison GL > RL underlined significant dif-
ferences within the PreCG (BA 4) and the MFG. (see Table 2 and
Figure 5). No further significant effects were observed.

TB 8
The interaction between type of movement and stimulus dimen-
sion was significant within three different sectors of the IPL
corresponding to the lateral surface of the left IPL [F(1,68) = 31.13],
the left aIPS [F(1,68) = 28.91], and the left pIPS [F(1,68) = 23.80].
Inspection of the interaction patterns revealed a similar pattern of
results for all regions, that is RL was associated with a higher level
of activity than RS, and the level of activity for GS was higher than
that found for GL. The contrast RL > RS was significant within
both aIPS and pIPS, while the comparisons GS > GL underlined
significant effects within IPL and aIPS. In addition, the contrasts
GS > RS and RL > GL were significant in both sectors of the IPS
(aIPS and pIPS – see Table 2 and Figure 6). No further significant
effects were observed.

Frontiers in Human Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 676 | 5

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Begliomini et al. Reach-to-grasp planning and execution

Table 2 | Brain regions showing interaction effects between type of movement (grasping, reaching) and stimulus dimension (small, large)

distinguished in singleTime Bins.

Region BA Hemisphere k MNI coordinates F p

x y z

TIME BIN 1

TIME BIN 2 N.S.

TIME BIN 3 N.S.

TIME BIN 4 N.S.

Inferior parietal lobule (aIPS) 40 Left 13 –43 –49 50 21.52 0.000

Inferior parietal lobule (pIPS) 40 Right 28 41 –56 50 21.36 0.000

Inferior parietal lobule (aIPS) 40 Right 45 –42 50 15.72 0.000

Anterior cingulate gyrus 32 Left 45 –1 18 46 19.92 0.000

Anterior cingulate gyrus 32 Right 3 21 34 16.09 0.000

TIME BIN 5

Middle frontal gyrus 6 Right 15 48 0 42 20.72 0.000

Anterior cingulate gyrus 32 Right 20 –1 7 46 18.57 0.000

Anterior cingulate gyrus 32 Left 10 11 42 17.70 0.000

TIME BIN 6

Middle cingulate gyrus 24 Left 26 –1 –4 50 20.68 0.000

Inferior parietal lobule (pIPS) 40 Right 14 38 –53 50 19.84 0.000

Inferior parietal lobule (aIPS) 40 Left 17 –40 –46 54 16.31 0.000

TIME BIN 7

Precentral gyrus 4 Left 76 –40 –21 62 22.98 0.000

Precentral gyrus 6 Left –26 –14 74 19.30 0.000

Middle frontal gyrus 6 Left –29 –11 66 18.78 0.000

TIME BIN 8

Inferior parietal lobule 40 Left 112 –61 –35 42 31.13 0.000

Inferior parietal lobule (aIPS) Left –43 –46 50 28.91 0.000

Inferior parietal lobule (pIPS) Left –29 –67 38 23.80 0.000

TIME BIN 9

TIME BIN 10 N.S.

N.S.

Results are obtained by means of a RFX analysis. Coordinates refer to the Montréal Neurological Institute (MNI) stereotaxic space. p values are uncorrected for
multiple comparisons (0.001, k ≥ 13). BA, Brodmann area.

TB 9 and 10
Random effect analysis performed on TBs 9 and 10 did not bring
any significant result.

DISCUSSION
Neuroimaging investigations on grasping in humans have revealed
similarities between human and non-human primates (Grefkes
and Fink,2005). Both domains agree on the idea that both reaching

and grasping, even if belonging to the same act, are supported by
the recruitment of different brain regions. A more dorsomedial
network, involving the SPOC, the mIP and the dorsal premotor
cortex would mainly subserve the reaching component, while a
more dorsolateral circuit, including the anterior intraparietal area
(AIP) and the ventral premotor cortex would support visuomotor
transformation and grip formation. However, this scenario has
been put into question by some recent findings (Grol et al., 2007;
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FIGURE 2 | Brain regions showing significant interaction effects between

type of movement and stimulus dimension inTB 4. The p value is set to
0.001, uncorrected for multiple comparisons, cluster size k ≥ 13. White
asterisks indicate significant effects for the contrast GS > RS; red asterisks

indicate significant effects for the contrast GS > RS. (aCC, anterior cingulate
cortex; aIPS, anterior intraparietal sulcus; pIPS, posterior intraparietal sulcus;
LH, left hemisphere; RH: right hemisphere; medial, medial view; lateral,
lateral view).

Cavina-Pratesi et al., 2010; Fabbri et al., 2014) suggesting that both
components could be supported by the same circuit, and that the
distinction could take place more in temporal rather in qualitative
terms. In other words, a common network would supply coding
for both aspects, but at different time points. Our results seem to
add further support to this view by demonstrating that several key
areas belonging to the fronto-parietal network can play a different
role according to the stage of the action.

ANTERIOR INTRAPARIETAL AREA
Intraparietal area is considered the human homolog of monkey
aIPS, a brain region involved in visuomotor transformation: this
view has been supported by many neuroimaging findings (Frey
et al., 2005; Shmuelof and Zohary, 2005; Begliomini et al., 2007a;
Stark and Zohary, 2008; Filimon, 2010). The present findings con-
firm the role played by this area during the visuomotor processes
underlying reach-to-grasp movement, but importantly they out-
line that the kind of computations ascribed to AIP varies as time
unfolds. In fact, AIP seems to code for type of movement in TB 4
and 6, and for stimulus dimension in TB 8. TB 4 and 6 refer to 4

and 6 s after stimulus onset, and 2 and 4 s after movement onset,
respectively. Therefore the observed effects might refer to planning
rather execution processes, since we know that the maximum peak
of the hemodynamic response is reached around 6 s. Differently,
TB 8 (that is 8 s before stimulus onset and 6 s after movement
onset) refers to a time point at which the hemodynamic response
mainly reflects brain activity related to the execution rather than
the planning phase. This scenario invites to make several consid-
erations. Firstly, AIP begins to differentiate between movements
rather early. Even if the hemodynamic response around the 4th
second is still far from reaching its maximum, AIP already discrim-
inates among conditions with different accuracy requirements.
Along these lines, a recent evoked related potentials (ERPs) reach-
to-grasp study showed that processing occurring in AIP starts at
the very early stages of action planning, when the translation
of object representation into a motor program occurs (Bozza-
cchi et al., 2012; Verhagen et al., 2013; see also Tarantino et al.,
2014). Secondly, during the planning and the execution stages,
the role played by AIP seems to change: at the very beginning
of action planning (TB4), AIP activity seems to be devoted to
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FIGURE 3 | Brain regions showing significant interaction effects

between type of movement and stimulus dimension in TB 5. The
p value is set to 0.001, uncorrected for multiple comparisons, cluster
size k ≥ 13. White asterisks indicate significant effects for the contrast

GS > RS; red asterisks indicate significant effects for the contrast
GS > RS. (aCC, anterior cingulate cortex; MFG, middle frontal gyrus; LH,
left hemisphere; RH, right hemisphere; medial, medial view; lateral, lateral
view).

computations related to accuracy as witnessed by the fact that AIP
activity is significantly higher for the GS than for the RS condi-
tion. In a later stage (TB6) RL activity is significantly stronger
with respect to the GL condition; finally, during execution (TB8)
effects observed in the left parietal region seem to suggest that
AIP is coding for both accuracy in grip formation and spatial
computing, necessary to approach the object with the right tra-
jectory. A recent study on macaques (Lehmann and Scherberger,
2013) has indeed demonstrated that AIP contains different neu-
ronal populations dedicated to either grip formation or spatial
encoding. While neurons devoted to grip formation appear to be
more active during action execution, neurons coding for spatial
computing are active during both action planning and execution.
Therefore we could expect that during planning AIP activity could
reflect spatial processing rather than grip formation. Along this
line, RL might require “more” spatial computing than GL, since
the hand cannot count on palm and fingers to reach the goal, but
just on hand knuckles. Therefore in this condition the spatial anal-
ysis necessary to support RL might require additional resources,
as shown by the RL > GL effect in both planning and execution

stages. Why we observe this effect for the large but not the small
object might be due to the fact that GL and RL are physically
distinct movement (GL involves palm and fingers, RL only the
back of the hand). In comparison, GS and RS are more “simi-
lar” from a spatial point of view (GS involves only two fingers).
We are aware that this hypothesis stems from neurophysiologi-
cal data and would need further investigations in humans to be
fully confirmed. However, at TB 8, that is during action execution,
both GS and RL appear to be associated with significantly higher
levels of activity than those noticed for RS and GL, respectively.
Thirdly, stimulus dimension seems to play a significant role only
at later stages, corresponding to action execution: the small stimu-
lus seems to be associated with significantly stronger activity with
respect to the large stimulus, but only for reach-to-grasp move-
ments. This may suggest that during action execution AIP might be
chiefly devoted to matters concerned with accuracy requirements
related to the on-line control of a sophisticated grasping move-
ment like GS. It is known that prehension of objects with small
surfaces (relative to finger size) requires a larger degree of visual
feedback (Bootsma et al., 1994), and that the kinematic profile of
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FIGURE 4 | Brain regions showing significant interaction effects between

type of movement and stimulus dimension inTB 6. The p value is set to
0.001, uncorrected for multiple comparisons, cluster size k ≥ 13. White

asterisks indicate significant effects for the contrast GS > RS. (aCC, anterior
cingulate cortex; aIPS, anterior intraparietal sulcus; LH, left hemisphere; RH,
right hemisphere; medial, medial view; lateral, lateral view).

the hand is disproportionally altered when grasping small objects
without visual guidance (Chieffi and Gentilucci, 1993). Berthier
et al. (1996) also showed that as visual information and object size
decreased, subjects had longer movement times, slower speeds,
and more asymmetrical hand-speed profiles. In line with previous
evidence we suggest that, during the prehension of small objects,
AIP activity could increase in order to transform object-centered
target representations into motor space on the basis of incom-
ing visual information of the moving arm (Grol et al., 2007). The
emphasis here is on control, as the modulatory influences of object
size on the dorsolateral circuit are related to the execution phase
of the prehension movement.

Differently, during the execution of reaching movements AIP
activity was higher for movements performed toward the large
than the small object. This is a puzzling result given that evidence
in humans indicates that the kinematical organization of reach-
ing is affected by the precision requirements related to intrinsic
features of objects such as size (MacKenzie et al., 1987; Gentilucci
et al., 1991; Castiello, 2001). In this perspective we would have
expected increased AIP activity as a reflection of the need for

more on-line control required by reaching small objects. Although
we do not have a firm explanation regarding this specific aspect
of our results, it is worth clarifying that previous experiments
in humans have employed a variety of tasks to investigate the
neural correlates of reaching. They include reach-to-touch (Levy
et al., 2007; Cavina-Pratesi et al., 2010), pointing (DeSouza et al.,
2000; Astafiev et al., 2003; Connolly et al., 2003; Fernandez-Ruiz
et al., 2007; Hagler et al., 2007), and joystick manipulation (Grefkes
et al., 2004). These tasks differ widely in the extent of arm move-
ment, purpose, and cortical recruitment (Culham and Valyear,
2006; Culham et al., 2006; Filimon et al., 2009). Therefore, we can-
not exclude that adopting a different task might have brought to
different outcomes.

Another aspect of the present findings worth mentioning is
that in TBs 4 and 6 AIP involvement is bilateral. This might be due
to a bidirectional crosstalk between the two homologous areas
or, more simply, to the fact that in TB 4 and 6 the action has
yet to be executed, participants could theoretically grasp or reach
the object with either the left or the right hand (Binkofski et al.,
1999; James et al., 2003; Culham and Valyear, 2006; Culham et al.,
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FIGURE 5 | Brain regions showing significant interaction effects

between type of movement and stimulus dimension in TB 7. The
p value is set to 0.001, uncorrected for multiple comparisons, cluster size
k ≥ 13. White asterisks indicate significant effects for the contrast

GS > RS; red asterisks indicate significant effects for the contrast
GS > RS. (PreCG, precentral gyrus; MFG, middle frontal gyrus; BA,
Brodmann area; LH, left hemisphere; RH, right hemisphere; medial,
medial view; lateral, lateral view).

2006). The need for bilateral AIP contribution for hand shaping
has been demonstrated by some previous findings (Culham et al.,
2003; Ehrsson et al., 2003).

CINGULATE CORTICES
Cingulate cortices (aCC and mCC) are known to play a fundamen-
tal role in decision making processes. This aspect is of particular
interest since each object we interact with can be grasped in sev-
eral ways (Fagg and Arbib, 1998; Rizzolatti and Luppino, 2001).
The chosen grip depends on object visual properties, but also
on object meaning and on what the agent wants to do with
the object. In this perspective, the selection of one amongst
the possible ways of grasping an object does not only rely on
the visual intrinsic properties of the object, but also on action
goals (Cohen and Rosenbaum, 2004; Ansuini et al., 2007, 2008).
Therefore decisions regarding which motor program has to be
implemented should occur before movement execution, that is
during action planning. Accordingly, here we found that aCC
(bilaterally) and mCC (left hemisphere) show a significant inter-
action effect between type of movement and stimulus dimension
during movement planning (TBs 4, 5, and 6). To elaborate, in

TB 4 the aCC distinguishes among movements performed toward
the small object, with higher levels of activity for GS than for
RS. In TB 5 such difference persists, but also stimulus dimen-
sion appears to play a role for grasping movements. The level
of activity for GS was significantly different from GL. At TB 6,
the mCC shows higher levels of activity for RL rather than GL.
These results agree with previous evidence indicating the aCC
and mCC are regions involved in action selection (Lau et al.,
2004; Cavina-Pratesi et al., 2010; Rowe et al., 2010). According
to these studies, the aCC and mCC play a fundamental role in
the selection among competing responses (movement schemata,
in this case) together with other areas of the fronto-parietal net-
work. In addition, as for AIP, activity within the CC seems to
change during different stages of action planning: at a very early
stage (TB 4 and 5) aCC seems to be responsible for choosing
the most appropriate motor program on a more accuracy-based
criteria: we know from previous studies that GS is usually asso-
ciated with stronger activity in visuomotor related areas as well
as longer reaction time suggestive of a more demanding plan-
ning phase. In TB 6 the mCC seems to be more engaged for
the coding of type of movement as far as the large object is
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FIGURE 6 | Brain regions showing significant interaction effects between

type of movement and stimulus dimension inTB 8. The p value is set to
0.001, uncorrected for multiple comparisons, cluster size k ≥ 13. White
asterisks indicate significant effects for the contrast GS > RS and RL > GL;

red asterisks indicate significant effects for the contrast GS > RS; blue
asterisks indicate significant effects for the contrast RL > GL. (IPL, inferior
parietal lobule; aIPS, anterior intraparietal sulcus; LH, left hemisphere; RH,
right hemisphere; medial, medial view; lateral, lateral view).

concerned (RL > GL). Although this result can sound a bit coun-
terintuitive since the general agreement considers grasping more
“demanding” than reaching, it is also known that the mCC is
involved in the integration between the effector and the target
during reaching planning (Beurze et al., 2007): the fact that the
stronger activity is associated with the large object can be due to
the larger amount of visuospatial information processing neces-
sary when the target of the action is a large object (Tarantino et al.,
2014).

Overall, the results concerned with CC activity seems to indi-
cate that a more anterior sector of this regions is engaged in the
processing of “accuracy” at the very early stages of action planning
(TB 4 and 5), whereas a more posterior sector (mCC) seems to
be more devoted at a later stage (TB 6) to spatial coding and the
matching between effector and target.

MIDDLE FRONTAL GYRUS
Interaction effects became significant in the MFG within the right
hemisphere at TB 5 and within the left hemisphere in TB 7. The
MFG belongs to the dorsal sector of the premotor cortices (PMd)

and it is known to be involved in motor planning (Davare et al.,
2007; Begliomini et al., 2007b, 2008; Fabbri et al., 2014; Tarantino
et al., 2014). Interaction effects in TB 5 show greater activity for
GS in respect to RS, while no effects are evident for movements
performed toward the large object. This finding may reflect the
need of higher levels of accuracy required by the planning and the
subsequent execution of a precise grasping movement. The fact
that only the ipsilateral MFG shows significant effects it is not sur-
prising: several studies have advanced the role of the right PMd
in online monitoring of action planning and execution, regardless
of the side of the effector (Davare et al., 2006; Begliomini et al.,
2008). At TB 7, when the action is about to start, it is the left
MFG to show interaction effects between type of movement and
stimulus dimension. This region of the MFG seems to be sen-
sitive to stimulus dimension while grasping (GL > GS) but not
while reaching objects. This pattern of results becomes signifi-
cant when the target of the action is the large object, with higher
levels of activity for GL with respect to RL. This seems to indi-
cate that, while switching from planning to execution, the left
MFG is significantly more alerted for the GL condition. Previous
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results indicate that the MFG, together with aCC, could represent
a part of the neural circuit supporting the selection for action
(Lau et al., 2004). The fact that GL is associated with the strongest
level of activity seems to suggest that grasping a large object might
require additional control since all the fingers have to act in con-
cert to achieve a hand posture suitable for grasping the large
object.

A particular worth mentioning is the discrepancy in anatomi-
cal coordinates of the MFG in the right and the left hemisphere.
More precisely, the MFG region showing significant effects in
the right hemisphere (TB 5) appears to be more ventrally and
anteriorly located in respect to the MFG regions showing sig-
nificant effects in the left hemisphere (TB 7). However, when
movements with the right hand are performed, MFG activ-
ity typically reflecting on-line monitoring is usually detected in
regions more anteriorly located in respect to their homologous
in the left hemisphere. However, the right MFG shows sig-
nificant effects at TB 5 (action planning) while the left MFG
appears to be significantly engaged only at TB 7 (action exe-
cution). The different stages of the action and the consequent
different contribution of MFG to the ongoing process, together
with the laterality of the effector used to perform the action
might explain this anatomical discrepancy. Further studies are
needed to confirm this result, especially in light of some very
recent neurophysiological findings investigating the role of pre-
motor cortices during the execution of a specific task and the
refraining from performing it (Bonini et al., 2014). The study
indicates that MFG seems to be involved in both situations, sug-
gesting that this region encodes action representations also when
the actions is not performed or delayed, which is actually the
case of our paradigm (remember the 2 s delay before action
initiation).

PRECENTRAL GYRUS
The PreCG hosts the primary motor cortex, the brain region con-
trolling the execution of proximal and distal motor acts of our
body. Here, we find significant interaction results within the left
PreCG at TB 7, that is during motor execution. The pattern of
activity within this region indicates that while reaching small or
large objects does not lead to any difference, the act of grasping
a large object leads to significant increases with respect to both
reaching for the large object and grasping the small object. Similar
findings have been reported in several previous studies (Beglio-
mini et al., 2007a,b) and it is suggestive of a need for additional
motor control to coordinate palm and fingers: in fact GL is the
only condition in which fingers and palm have to be perfectly
coordinated in order to acquire the right configuration as to hold
the object.

CONCLUSION
We examined interaction effects between grasping and reaching
movements performed toward small and large spherical objects
within areas belonging to both the “reaching” and the “grasp-
ing” circuit. We observed that similar areas seem to be sensitive
to both types of movements, providing further confirmation to
the idea that the neural underpinnings of reaching and grasping
may overlap in both spatial and temporal terms (Verhagen et al.,

2013). However, from the results, it also emerges the possibility
that, although responsive for both actions, they show a significant
predominance for either one of the two actions and such a pref-
erence is evident on a temporal scale. Further studies are needed
to better disentangle the temporal dynamics of medial and lat-
eral pathways interactions, exploring patterns of functional and
effective connectivity among these regions.
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