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Phasic firing changes of midbrain dopamine neurons have been widely characterized as
reflecting a reward prediction error (RPE). Major personality traits (e.g., extraversion) have
been linked to inter-individual variations in dopaminergic neurotransmission. Consistent
with these two claims, recent research (Smillie et al., 2011; Cooper et al., 2014) found
that extraverts exhibited larger RPEs than introverts, as reflected in feedback related
negativity (FRN) effects in EEG recordings. Using an established, biologically-localized RPE
computational model, we successfully simulated dopaminergic cell firing changes which
are thought to modulate the FRN. We introduced simulated individual differences into
the model: parameters were systematically varied, with stable values for each simulated
individual. We explored whether a model parameter might be responsible for the observed
covariance between extraversion and the FRN changes in real data, and argued that a
parameter is a plausible source of such covariance if parameter variance, across simulated
individuals, correlated almost perfectly with the size of the simulated dopaminergic FRN
modulation, and created as much variance as possible in this simulated output. Several
model parameters met these criteria, while others did not. In particular, variations in the
strength of connections carrying excitatory reward drive inputs to midbrain dopaminergic
cells were considered plausible candidates, along with variations in a parameter which
scales the effects of dopamine cell firing bursts on synaptic modification in ventral
striatum. We suggest possible neurotransmitter mechanisms underpinning these model
parameters. Finally, the limitations and possible extensions of our general approach are
discussed.
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INTRODUCTION
For researchers investigating the psychobiological basis of person-
ality, the basic hypothesis they interrogate is as follows: psychobi-
ological process X is specifically associated with personality trait
A. There is an implication that variance in process X causes a pro-
portion of the variance in the trait, but the evidence obtained is
unlikely to clarify the causal direction of the association (unless
a genetic or genomic design is employed). For example, trait A
might be extraversion (the focus of the current article) and we
will consider possible candidates for process X below.

This article contends that a major issue for psychobiological
personality research is the under-specification of the psychologi-
cal processes, with serious implications for the proper construc-
tion of tasks that are designed to measure them. We have made
this point previously a number of times in the last two decades
(e.g., Pickering et al., 1997), and have thus proposed that formal
modeling of the tasks involved may be necessary in order to derive
stronger evidence (e.g., Pickering, 2008). In this paper, we will
show how having a formal and biologically-mapped model can

begin to clarify our attempts to measure specific psychological
processes.

A GENERAL MODELING FRAMEWORK FOR DIFFERENTIAL
COMPUTATIONAL NEUROSCIENCE (DCN)
To understand how we try to investigate individual differences
using computational methods, it is important first to lay out,
in some detail, the 6-step approach which we are adopting. For
convenience we refer to it as the differential computational neu-
roscience (DCN) framework. The six steps of the approach we
follow are summarized in Table 1. This paper presents in detail
how we have prosecuted steps 1–4 in relation to a specific labo-
ratory task that we have used to study extraversion. Steps 5 and 6
are briefly considered in the discussion.

STEP 1: IDENTIFY POSSIBLE ENDOPHENOTYPES FOR EXTRAVERSION
As we will show below, we are going to use the DCN approach to
explore whether extraversion might in part be driven by variance
in a specific psychobiological process. We will try to relate that
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Table 1 | The six stages of the differential cognitive neuroscience

framework.

1. Identify possible endophenotypes for the trait of interest (here,
extraversion).

2. Gather evidence to test whether the endophenotypes and the trait are
associated/correlated.

3.Use cognitive neuroscience/computational models, and particularly those
which have potentially biologically identifiable parameters, to simulate
the target endophenotype (or processes contributing to endophenotypic
variance).

4. Carry out the “individual differences” simulations of the endophenotype
(or endophenotypic processes). This is done by allowing several
“psychobiologically interpretable” candidate parameters to vary in the
model, one by one. This sensitivity analysis is carried out to identify the
best (i.e., most plausible) of the candidate parameters, using
psychometric criteria.

5. Test the most plausible, specific model parameters for their ability to
simulate variation in other distinct, but conceptually related,
endophenotypes.

6. Explore whether, and in what contexts, the proposed parameter
variation can simulate aspects of extraverted behavior in “toy” models.

process to a specific parameter in a chosen bio-computational
model. It might therefore appear most logical to use the model
to try to simulate extraversion itself. However, a personality trait
such as extraversion is typically extremely complex, being influ-
enced by a raft of diverse causal influences, and usually being
measured by a multi-item, self-report questionnaire. These prop-
erties make it intrinsically awkward to create a computational
model which simulates a personality trait directly, although some
interesting attempts to do so have been proposed (Read et al.,
2010). Therefore, we instead focus upon simulating a so-called
endophenotype (Gottesman and Gould, 2003).

The classic reason for using an endophenotype in psychi-
atric genetics is that the endophenotype “represents simpler clues
to the genetic underpinnings than the disease syndrome itself
(Gottesman and Gould, 2003, p. 636).” In the field of personality
traits one might propose, in the same way, that the endophe-
notype gives us simpler clues to the causal bases (genetic and
other) of the trait of interest. This means that the endopheno-
type is influenced by fewer underlying causal variables than the
trait. Therefore, by studying endophenotypes, researchers have
greater power to detect the relationships between specific causal
variables/parameters and the endophenotype than they would if
they were exploring the relationships between specific causes and
the phenotype itself 1.

Figure 1 makes the above arguments about the psychomet-
rics of endophenotypes completely explicit. In Figure 1, a set of
items are shown which are part of a so-called “formative model”
in which the resulting personality trait construct is a convenient
mathematical representation of the items (measures) which are
used to form it (by using standard factor analytic methods). The
items (usually considerably more than the 3 actually depicted) are
all measured with error, which can be aggregated into a single

1Further power enhancement would occur if the endophenotype was also
measured more reliably than the phenotype.

FIGURE 1 | An outline model of the relationship between underlying

causes (of all kinds) and their action on: (a) self-report items used to

measure a personality trait; and (b) an endophenotype (“Endo”). There
are many more causes and items than are depicted. The relative weighting
of the arrows from causes to measured entities (shown in rectangles)
represent differing strength of causal influence. The endophenotype is
affected by a smaller number of causes than the total number of causes
which affect the phenotype (the trait) via its constituent trait items. Causes
which affect both the endophenotype and some trait items are shaded.
Error denotes measurement error. See text for more details.

error term (or disturbance term) acting on the whole construct.
A large number of underlying causes are assumed. These might,
for example, reflect: genetic variations; sensitivities of specific
receptors in parts of the brain; levels of neurotransmitters avail-
able within specific brain pathways; structural variations in brain
anatomy; the long-term consequences of specific life events and
experiences; learned representations of events and outcomes in
the world etc. etc. Once again, only a small number of the actual
causes are depicted, and the figure does not imply that there are
the same number of causes as items. The causes are shown as
all independent of one another. The connections between causes
and measures (items) are depicted in Figure 1 via a matrix of
highly varying weights or loadings. Similarly, a single endophe-
notype is shown. This is depicted as having a partially overlap-
ping set of underlying causes with some of the trait items (the
shared causes are shaded in the figure). These shared causes are
responsible for the observable correlation between the endophe-
notype and trait construct. Because these shared causes represent
a (small) subset of the causes contributing variance to the trait
construct, the observable correlation between the endopheno-
type and trait may often be quite weak and thus hard to detect
reliably.

The specific choice of endophenotype has little bearing on the
steps followed in the DCN modeling approach; the endopheno-
type that is to be modeled just has to be something which our
to-be-chosen computational neuroscience model can simulate,
and which is known to be associated with the actual phenotype
of interest (in this case extraversion).

What specific endophenotypes might we propose as useful in
the study of extraversion? The choice of endophenotype made
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below reflects two broad proposals about the causal basis of
extraversion. The first proposal, first made in a seminal paper
by Gray (1970), is that varying levels of extraversion reflect
varying “responsiveness to reward cues.” In particular, much
emphasis has been put on “learning of behaviors in rewarding
contexts” (for an updated perspective and review, see Smillie
et al., 2006). The second proposal, is the linking of extraver-
sion to variation across individuals in aspects of dopaminer-
gic neurotransmission (Depue and Collins, 1999; Pickering and
Gray, 1999; Wacker et al., 2006; DeYoung, 2010, 2013; Depue
and Fu, 2013). This proposed association between extraversion
and processes linked to dopaminergic neurotransmission is the
focus of this Frontiers research topic. The association is consis-
tent with reported significant relationships between DA-related
genes and measured extraversion (e.g., Smillie et al., 2010), or by
psychopharmacological studies showing that extraversion mod-
ulates the effects of dopaminergic drugs (e.g., Wacker et al.,
2006). However, DeYoung’s (2010) paper presents evidence that
several traits, other than extraversion, have been linked to varia-
tions in dopaminergic neurotransmission, thereby undermining
the specificity of the extraversion-dopamine link. Some stud-
ies have tried to address this: Depue and Fu (2013) found links
between extraversion and conditioned contextual activation of
separate measures of affective, cognitive, and motor behavior;
they induced the contextual conditioning of drug effects by using
the dopamine-releasing drug methylphenidate. Their design used
extreme groups (upper and lower deciles) of extraversion, but
they attempted to control for the influence of other major traits
(neuroticism, impulsivity) by also selecting participants who were
in the middle six deciles on these other traits.

Based on these two long-standing proposals, we therefore
decided to investigate an endophenotype which: (a) is linked to
learning in a rewarding context; and (b) has a partially dopamin-
ergic basis. To make a specific choice, one can draw upon the
huge literature describing how dopaminergic neurotransmission
is affected by encountering rewarding stimuli and learned cues
that predict such rewards. A major element of this literature has
come from studies addressing the function of midbrain dopamine
(DA) neurons located in regions such as the ventral tegmental
area and substantia nigra (Berridge and Robinson, 1998; Schultz,
1998, 2010; Bromberg-Martin et al., 2010; Glimcher, 2011). A
major conceptualization has been that firing of these DA neu-
rons does not reflect rewarding events per se. Instead, phasic
increases and decreases in their firing is widely held to reflect
a reward prediction error (RPE): that is, a discrepancy between
the expected reward and the actual reward experienced. If the
predicted reward is smaller than that received this generates a pos-
itive RPE; if the predicted reward is smaller than that received,
then this leads to a negative RPE. This account has especially
excited computational modelers (e.g., Glimcher, 2011), as RPE
signals are a central component of many types of reinforcement
learning models; in such models an RPE signal is often used to
control learning. Thus, if a response is associated with a posi-
tive RPE, then the system learns that such a response should be
repeated more frequently in that context (as it gains more reward
than anticipated); if a response generates a negative RPE then
that response should be executed less often in that context (as it

generates less reward than expected). When the RPE is zero the
response reliably produces its predicted reward and learning is
complete.

Based on the foregoing it is possible to suggest that one or more
of the processes causing variation in the size of RPEs, through
variations in phasic changes in DA cell firing rates, might be
potential causal factors contributing to extraversion. If so, then we
might profitably use an endophenotype which reflects these pro-
cesses. In this paper we will consider an endophenotype derived
from EEG recordings which arguably both reflects RPE processes
and also depends on the firing of midbrain DA cells. We focus
on the so-called feedback related negativity 2 (FRN). The FRN
is a widely-studied negative-going event-related potential which
typically occurs 250–300 ms after negative feedback, over mid-
central scalp sites. It is typically computed as a difference between
the waveforms for trials in which there is negative feedback, rela-
tive to trials on which there is positive (or less negative) feedback
(see Walsh and Anderson, 2012, for a comprehensive review).
A fairly typical example of the FRN is illustrated in Figure 2
below.

A major interpretation of the FRN has been that it reflects
a quantitative RPE. This idea has been the subject of intense
discussion and investigation (see Walsh and Anderson, 2012;
Hauser et al., 2014, for details). In their comprehensive review,
Walsh and Anderson (2012) concluded that the FRN did reflect a
quantitative RPE. They cited 32 studies which supported this con-
clusion against 7 that provided contradictory evidence (see their
Table 1).

The FRN (and related waveforms) has also been argued to
arise from generators in medial prefrontal cortical structures such
as the anterior cingulate cortex (ACC; see Holroyd and Coles,
2002). When reviewing FRN source localization studies Walsh
and Anderson (2012) found 10 studies which had localized the
FRN to the anterior cingulate and, although alternative and addi-
tional source loci were identified in other studies, they concluded
that the ACC was the most consistently identified source of the
FRN. The ACC is densely innervated by ascending mesocortical
dopaminergic projections, and so it has also been widely argued
(since Holroyd and Coles’ original paper) that RPE signals, aris-
ing from the dopaminergic midbrain cells, act to modulate the
ACC-generated FRN to give patterns of EEG waveforms such as
those shown in Figure 2 below. Below, we will implement a typ-
ical biocomputational model of learning from RPEs. We will use
the model to simulate changes in midbrain DA cell firing dur-
ing an associative reward learning task. This task reliably elicits
an FRN that varies in size depending on the prediction of reward
as conveyed by the stimuli presented on a particular trial. These
(simulated) DA cell firing changes will be our critical psychobi-
ological process contributing to the endophenotype of interest
(the FRN waveform differences across the conditions of the
task).

2There are number of similar event related potentials that have been called a
variety of different names: medial frontal negativity; frontal negativity; error-
related negativity etc. For a comparison between these potentials see Cavanagh
and Frank (2014), who note their “overwhelming similarities.” In this paper
we focus on the FRN.
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FIGURE 2 | (Redrawn from published originals). Upper panel. A typical trial
from the Potts associative reward learning task. The times shown on the right
hand side are the durations of each screen in ms. The particular task shown is
an expected reward trial (see text for details). The final screen for each trial in
the real task clearly indicated the reward gained on that particular trial (either
nothing or 50 UK pence in our versions of the task) and the cumulative
winnings. In this figure, the amount won on this trial is schematically depicted

as “+ £0.50” and the amount of cumulative winnings is schematically depicted
as “= £6.00.” Lower panel. A typical event related waveform from the task
recorded with time=0 being the onset of stimulus 2 (S2). The feedback related
negativity (FRN) is recorded in the period between the dotted lines (and is
referenced to a suitable baseline period, prior to S2 onset). Waveforms for each
of the 4 different trial types (P-R, predicted reward; P-NR, predicted non-reward;
U-R, unpredicted reward; U-NR, unpredicted non-reward) are shown.

From the above, it is clearly important that we also consider
the robustness of the DA-modulation account of the FRN, all
the more so as this popular viewpoint has recently been the sub-
ject of intense scrutiny (see Ullsperger et al., 2014, for a recent
authoritative analysis). Ullsperger et al’s review posed three key
questions that are highly relevant; they asked whether FRN and
related phenomena: (a) are influenced by dopaminergic trans-
mission; (b) whether and how the dopaminergic system might
code negative RPEs; and (c) whether a change in the firing rate of
the mesocortical dopaminergic neurons can result in the modu-
lation of ACC generators of FRN and associated phenomena. The
answers they provided were firstly that the FRN and related phe-
nomena are influenced by dopaminergic transmission, although
the mechanisms are not yet completely clear. Secondly, there
is uncertainty in how DA cells might code negative RPEs and,
beyond being inhibited by negative RPEs, there may be serious
limits on how sensitively inhibition of DA cell firing can code
the size of the negative RPE. However, the leading alternative
candidate for the coding of negative RPEs (via serotonergic mech-
anisms) lacks direct support (see Cools et al., 2011). Thirdly, on
grounds of the required rapid temporal dynamics, it is not pos-
sible for a change in DA cell firing rate to modulate the medial
prefrontal generators of the FRN effect, at least not via a dopamin-
ergic mechanism. However, the qualifier of this third conclusion
is very important. Ullsperger et al note the studies by various
authors (e.g., Chuhma et al., 2004; Lavin et al., 2005; Fields
et al., 2007; Hnasko and Edwards, 2012) that show dopaminergic
neurons (in the ventral tegmental area) are able to co-release glu-
tamate along with dopamine. As glutamate’s action is much more
rapid than that of dopamine, the occurrence of co-release offers

a non-dopaminergic mechanism whereby firing rate changes of
midbrain DA neurons might be able to modulate the FRN, and
do so with the rapid temporal dynamics that cannot be achieved
by dopaminergic release. Co-release of another fast-acting neuro-
transmitter (GABA) might be another possible mechanism with
the required rapid temporal dynamics (Borisovska et al., 2013;
Ullsperger et al., 2014).

Above we have gone into some detail about the use of
endophenotypes and our specific choice (the FRN). In sum, and
on the balance of the evidence, the FRN is suitable for our DCN
framework investigation of the psychobiology of extraversion
because this endophenotype is related to learning from reward
cues and is likely to be affected by firing rate changes of midbrain
dopaminergic neurons, albeit in a complex way. Moreover, we can
simulate these DA cell firing changes via a biologically-anchored
computational model which is described below. We now move on
to step 2 of the DCN framework and review the evidence that the
FRN is linked to extraversion.

STEP 2: GATHER EVIDENCE TO TEST WHETHER THE ENDOPHENOTYPE
AND E ARE ASSOCIATED/CORRELATED
On the basis of the evidence reviewed above we decided to inves-
tigate the relationship between extraversion and the FRN. At the
time we carried out our first study (c. 2009) there was a small
number of studies testing the associations between various per-
sonality trait measures and ERP phenomena similar to the FRN.
An important study was by Boksem et al. (2006) who found that
the error-related negativity (ERN; a similar, but earlier, compo-
nent to the FRN) was significantly related to Carver and White’s
(1994) BIS scale, and the error positivity (another component)
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was significantly related to Carver and White’s BAS scale. They
also reported trends (p < 0.1) for relationships with Extraversion
for both these components. These authors extended these find-
ings and were able to replicate these associations only under
specific reinforcing conditions (Boksem et al., 2008). Similar
ERN measures had previously been found to be associated with
Neuroticism (see Boksem et al., 2006, for references) and in
some of these studies the relationship with Extraversion was
non-significant.

Data relating extraversion and the FRN were of consider-
able interest and so we thus carried out two studies in our lab
to address this issue, using an associative reward learning task
developed by Potts et al. (2006). This task offers a very simple
method for eliciting an FRN that varies across task conditions,
as it required no overt responses and thus allowed computational
modeling to proceed in a very straightforward way.

In this task a sequence of two stimuli (S1 and S2) was followed
by a small cash reward or not. The task (designed to resemble
a slot machine game, but requiring no responses) was designed
to measure the FRN during S2. Participants simply watched the
stimulus sequences and accrued rewards accordingly. An exam-
ple of a sequence of stimuli on a particular trial is shown in
Figure 2, upper panel. S1 can either be a gold bar or a set of
lemons. S1 is followed 80% of the time by the same stimulus at
S2 (and on the other 20% of the time by the other stimulus). The
stimulus shown at S2 determines the trial outcome 100% reliably
(if S2=gold bar this predicts a small cash reward; if S2=lemons
this predicts no reward). This arrangement of stimuli means that
S1 stochastically predicts S2, and also stochastically predicts the
delivery of reward on a particular trial. Thus, psychophysiolog-
ical reactions (in the form of the FRN) to the confirmation or
violation of these expectations can be measured at S2, indepen-
dent of the trial outcome itself. There are 4 classes of trials:
predicted reward (PR; S1=S2=gold bar); predicted non-reward
(PNR; S1=S2=lemons); unpredicted reward (UR; S1=lemon;
S2=gold bar); and unpredicted non-reward (UNR; S1=gold bar;
S2=lemons).

The FRN in this task is recorded in the interval 200–300 ms
after S2 onset, as indicated in Figure 2 (lower panel). The wave-
form is usually referenced to a baseline period: the 100 or 200 ms
prior to S2 onset in this task. The waveforms in the figure
(redrawn from Potts et al., 2006) show that the most negative FRN
occurs for the unexpected non-reward trials with the least nega-
tive being for the unexpected reward trials. In fact, this waveform
(for the unexpected reward trials) can sometimes be a positive
deflection (Potts and colleagues have sometimes referred to it
as the P2a in honor of its positive sign). This ordering of the
waveforms has been replicated in a number of different studies
(e.g., Martin et al., 2009). In a combined fMRI and ERP study
with this task (Martin et al., 2009) evidence showed that either
the ACC or caudate (another target of dopaminergic projections)
were potential sources of the FRN; moreover, the haemodynamic
fMRI responses in the ACC during the associative reward learn-
ing task showed the same ordering of responses as that revealed
by the ERPs shown in Figure 2. By using this task, and studying
its relationship with extraversion, we have been able to carry out
step two of the DCN framework.

In our lab (Smillie et al., 2011), we used the Potts associa-
tive reward learning task and tested a group of extraverts and
a group of introverts; these extreme groups were selected from
a sample who had completed the revised Eysenck Personality
Questionnaire and scored more than 1 SD above or below the
sample mean on extraversion. The groups differed by an aver-
age of 15 points (the groups’ mean extraversion scores were 21
and 6) on the 25 point extraversion scale. We also replicated
the typical ordering of FRNs in the task, although the wave-
form in response to unexpected reward trials was not positive (in
contrast to Figure 2). As in previous studies with this task, the
largest difference was between the responses to unexpected tri-
als (unexpected reward minus unexpected non-reward) and we
used this “difference FRN waveform” as our key endophenotype.
We construe this as an electrophysiological index of the difference
between RPE effects (a positive RPE effect minus a negative RPE
effect). The difference FRN waveform was significantly larger for
our 15 extraverts relative to our 15 introverts.

Our group has recently completed a partial replication of
the Smillie et al. (2011) study (Cooper et al., 2014). We used
the Temporal Experience of Pleasure Scale (TEPS; Gard et al.,
2006) as the main personality measure in this second study. This
scale is designed to capture, in separate measures, the anticipa-
tory and consummatory facets of pleasure. The TEPS showed
parallel findings to those reported above for extraversion: the dif-
ference waveform (FRN for the unexpected reward minus the
FRN for the unexpected non-reward) was significantly and pos-
itively correlated with the TEPS-Anticipatory subscale (r = 0.39,
p = 0.017), but not with the TEPS-Consummatory subscale (r =
0.11, p = 0.519). This was not an extreme groups design and we
had measures on other scales too, including a measure of EPQ-
R Extraversion. Using this measure we broadly replicated our
earlier findings: the correlation between E and the (UR-UNR)
FRN difference waveform was statistically significant (r = 0.36).
In addition, other scales (such as EPQ-R Neuroticism and the
Carver and White BIS scale) showed no significant relationship
with the RPE effect, as measured by the FRN difference waveform.

Based on the data reviewed above, we concluded that the
FRN measures from the Potts et al task satisfied step 2 of the
DCN framework. If we were to stop at this point, we might
briefly consider what these studies with the FRN and extraversion
could tell us about the processes that may underlie extraversion.
We could conclude that extraverts have higher electrophysio-
logical responses to discrepancies between reward expectations
and reward outcomes (RPEs), and that this might arise because
extraverts have differences in neurotransmission within the brain
circuitry, including midbrain DA neurons, which influences the
size of these electrophysiological signals in response to RPEs.
In terms of theories about the basis of extraversion, these FRN
data are very broadly consistent with long-standing theories that
link extraversion to “reward processing” (in some way), and with
theories that suppose that extraversion has a partly “dopamin-
ergic basis” (of some kind). These are very general conclusions
that, in our view, don’t really extend the general theories other
than by adding further data that are broadly consistent with
them. By applying the next steps of our DCN framework, we
attempt to show below how this limited understanding of the
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possible psychobiological basis of (aspects of) extraversion might
be refined and tested, and thus generate sharper predictions for
future studies.

STEP 3: USE COGNITIVE NEUROSCIENCE/COMPUTATIONAL MODELS,
AND PARTICULARLY THOSE WHICH HAVE POTENTIALLY BIOLOGICALLY
IDENTIFIABLE PARAMETERS, TO SIMULATE THE TARGET
ENDOPHENOTYPE
Having chosen our endophenotype, and shown that it is related
to extraversion, we next must choose a biologically inspired com-
putational model to simulate the endophenotype. Before doing
this we note that few studies have attempted computational
neuroscience modeling of individual differences in personality.
Pickering and Gray (2001) were the first to use a neural network to
model individual differences deriving from personality trait vari-
ation. The model was a reward learning model, and they argued
that the processes being simulated involved the brain’s dopamin-
ergic functions. However, the model used in this work was not
strictly an RPE-based model, nor was it successful (see below).
For the next decade there was very little similar work although at
least one major paper was, in part, stimulated by Pickering and
Gray’s approach (Read et al., 2010).

Very recently, however, a series of papers have appeared which
have investigated personality trait effects using computational
models: Brazil et al. (2013) investigated psychopathy-related per-
sonality traits using reinforcement learning (RL) models which
were fitted to participants performance on a probabilistic deci-
sion making task; White et al. (2013) used an RPE learning
model jointly with fMRI to investigate the behavior of youths with
disruptive behavior disorders while they were performing a prob-
abilistic financially-reinforced object choice task; and Skatova
et al. (2013) reported the effects of extraversion on a two-stage
probabilistic rewarded choice task designed to separate behavior
driven by “model-free” reinforcement learning (of the kind we
have discussed to date), from behavior relying on more complex,
and flexible, “model-based” reinforcement learning.

The goal of the current paper is to develop further this trend
for a computational modeling approach to the study of individual
differences, specifically with reference to potential dopaminer-
gic substrates of personality traits. To do this we need to select
a biologically-anchored computational model which can cap-
ture the effects reported above for the Potts associative reward
learning task used to generate FRNs. As noted this model will
not simulate the EEG signals of the FRN directly, but the neu-
ral modulation of those signals. We do this by simulating phasic
changes in the firing of midbrain DA neurons. Based on the evi-
dence reviewed above we must keep in mind that our simulated
DA cell firing changes cannot modulate the FRN by DA release
at terminals in the ACC where the FRN is generated. Instead,
we are following the suggestion made by a number of authors
(see above for details) that co-release of another “fast” neuro-
transmitter (either glutamate or GABA) is a much more likely
candidate.

There is a large family of reinforcement learning (RL) models
which could in theory simulate the RPEs that would be generated
in the varying trial types of the Potts et al task. Many such mod-
els equate the RPEs, which they simulate, to phasic changes in

midbrain dopamine cell firing, as noted earlier3. However, many
of these RL models do not say much more than this about the
neural processes involved. In order to maximize potential insights
from our modeling, and future hypotheses to be tested, we pre-
fer to employ an RL model which has a degree of brain mapping.
By doing so the parameters, which we will manipulate below, can
be (loosely) equated to more localized and more specific psy-
chophysiological processes. On this basis, we chose an established
RL model, published by Brown et al. (1999; henceforth BBG),
over other possible candidates. This model gave a localized and
quite specific biological account of all the critical model compo-
nents, unlike many rivals. This model was able to simulate all the
classic dopamine and RPE phenomena published at the time, and
the authors provide a reasonable and quite detailed discussion of
why it did so better than many contemporary alternatives (see the
discussion by Brown et al., 1999). There have been few, if any,
direct tests of this model, or any of its contemporary rivals since
its publication. The basic loops it proposes have broadly stood
the test of time, as witnessed by the similarities between the core
elements of the BBG model and those of Brown’s more recent
PRO model (Alexander and Brown, 2011), although some further
complexities in the circuitry have been added (see, for example,
Bromberg-Martin et al., 2010).

THE BROWN BULLOCK AND GROSSBERG (BBG) MODEL
The basic architecture of the model is shown schematically in
Figure 3. The key to the model is the existence of an excitatory
reward conditioning pathway and an inhibitory reward prediction
pathway which both converge on dopaminergic midbrain cells.
The firing of these DA cells changes phasically in response to the
balance of their inputs from these two pathways: if the excitatory
pathway has the greater influence, then this generates a positive
RPE and dopamine cell firing increases; if the inhibitory pathway
dominates, then this reflects a negative RPE and dopamine cell
firing phasically decreases.

The model also proposed a special spectral timing mechanism;
this mechanism enables the striatal striosomal cells, which are
learning to predict the occurrence of reward from the stimuli
present, to time the occurrence of the reward prediction quite pre-
cisely (see below). The phasic changes in firing of the dopamine
cells act as a reinforcement signal modulating the weight changes
of the plastic synapses in both the excitatory and inhibitory path-
ways. This learning control by a dopaminergic RPE signal is
computed using variants of the three-factor learning rule, popu-
lar in many DA based learning models (Reynolds and Wickens,
2002). The three factors refer to the conditions necessary for
synaptic change to occur. The first two factors are pre-synaptic
and post-synaptic activity. These are the familiar elements of the
more basic mechanism of Hebbian learning potentiation (Hebb,
1949). The third factor is a reinforcement signal without which
synaptic change will not occur and, in the BBG model as well as
many other RL models, timed phasic firing changes in midbrain

3Technically, we focus on the so-called model free RL models (Skatova et al.,
2013) as the direct link between DA firing and RPE signals has usually been
made for that class of RL models.
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FIGURE 3 | The basic architecture of the BBG model. Solid standard
thickness lines are excitatory projections; and those with rounded terminals
are modifiable by learning. Dotted lines indicate an inhibitory pathway. Very
thick lines are ascending neuromodulatory (dopamine) projections. The
projection from N Acc to PPTN is broken to show that it is indirect (via
ventral pallidum). It is a double inhibitory pathway, but is represented as
(nett) excitatory for simplicity. The numbers indicate some of the locations
at which individual differences were introduced to the model (see text for
details). In the model there is a conditionable pathway (via site 4 then
ultimately via site 1) by which cortical stimulus representations can activate
the midbrain DA cells. There is also a conditionable inhibitory pathway (via
site 3 then site 2) by which the cortical stimulus representations can
activate DA cells. BBG, Brown, Bullock, and Grossberg; DA, dopamine; LH,
lateral hypothalamus; N Acc, nucleus accumbens; PPTN,
pendunculopontine tegmental nucleus; VTA, ventral tegmental area; SNpc,
substantia nigra pars compacta.

DA cells provide the RPE signals which serve as the reinforcement
signals that complete the 3-factor learning rule.

When a positive RPE occurs the active synapses, in both the
excitatory and inhibitory pathways, are strengthened; when a
negative RPE occurs the active synapses on both pathways are
weakened. Thus, if the prediction of reward is accurate (in terms
of occurrence, timing, and amount of reward) there is no RPE
and no further learning of reward prediction takes place on the
inhibitory pathway. Similarly, when the RPE is zero, there is no
further appetitive conditioning (on the excitatory pathway) of any
conditioned stimuli present prior to the occurrence of the reward.

In terms of brain structures, the BBG model proposes that
the unconditioned reward acts on the lateral hypothalamus
(LH) which projects to the pedunculopontine tegmental nucleus
(PPTN), and from there via excitatory synapses on to the tegmen-
tal midbrain dopamine cells (in the ventral tegmental area, VTA,
and substantia nigra pars compacta, SNpc). The reward sig-
nal from the LH also projects to the ventral striatum (nucleus
accumbens). Medium spiny cells in the accumbens also receive
glutamatergic inputs from limbic and cortical cells which encode
working memory (WM) representations of the stimuli present.
Under the influence of the RPE signal, transmitted via ascending
DAergic projections and causing DA release close to the cortico-
accumbens synapses, the accumbens cells are thus conditioned
to respond to appetitive CSs which regularly precede a reward.

The output from the accumbens cells is an inhibitory GABAergic
projection to the tonically active cells in the ventral pallidum
which in turn sends an inhibitory input to PPTN. Thus, increased
accumbens output (in response to unconditioned or conditioned
reward), has a nett excitatory effect on PPTN, by inhibiting its
pallidal inhibition.

The same cortical cells, which encode WM stimulus represen-
tations, also project to reward predicting striosomal cells, in the
striatum. Via the spectral timing mechanism noted earlier, each
striosomal cell is transiently active for a brief period (10 s of ms)
at a distinct and specific time after WM activation. The strioso-
mal cell can learn to predict a rewarding event only when it is
active and therefore a specific striosomal cell is tuned to rewarding
events at a specific time interval following a stimulus event. Thus,
an array of striosomal cells, each with different intrinsic dynamics
and therefore different timing properties, can span an extended
post-stimulus interval (potentially several seconds in duration).
The striosomal array can thus encode a temporally precise pre-
diction of any reward which occurs within the post-stimulus
interval. After learning the timed reward prediction, for a partic-
ular stimulus, that stimulus then triggers GABAergic output from
the striosomal cell array, which inhibits the DA cells. The result
is that a stimulus-dependent reward prediction creates a pha-
sic reduction in DA cell firing at the specific post-stimulus time
lag at which the reward had previously occurred, in the presence
of the stimulus concerned. When the predicted reward actually
occurs at this time point, the excitatory pathway leads to a phasic
increase in DA cell firing; this increase cancels the decrease cre-
ated by the reward prediction pathway (and the two pathways can
be described as opponent processes). If the predicted reward does
not occur, or is smaller than experienced previously, or occurs
at a different time post-stimulus, then the inhibitory effect of
reward prediction can be observed on the firing of the dopamine
cell. If an unpredicted (or under-predicted) reward occurs after
a particular stimulus, then the excitatory input to the DA cells
is not (fully) canceled out by the inhibitory reward prediction,
and so a phasic increase in DA cell firing occurs. These effects are
observed in single cell recordings of DA cells in the monkey (see
Schultz, 1998, for a review) and are accurately simulated by the
BBG model (Brown et al., 1999).

STEP 4: CARRY OUT THE “INDIVIDUAL DIFFERENCES” SIMULATIONS
OF THE ENDOPHENOTYPE (OR PROCESSES CONTRIBUTING TO
ENDOPHENOTYPIC VARIANCE)
The major insights from the current work will flow from consid-
ering the issues relating to this step of the DCN. We show below
that the relationship between the model parameter and the simu-
lated endophenotype must be very strong if the model parameter
is to be a plausible source of variation in the phenotype. In this
paper, we will refer to this as the very strong relationship (VSR)
constraint on our candidate biological parameters. In addition,
we will argue that the amount of variance in the simulated output
(our endophenotypic process) must be also be as large as possible;
again the reasoning for this will be made explicit below. We refer
to this as the maximal variance (MV) constraint.

In the case of a simple computational model, with few param-
eters, one could estimate the specific parameter values which best
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capture the measured behavior of an individual participant on a
specific task (the endophenotype in question). Then, one could
see if the values of one or more of these estimated parameters were
correlated, across individuals, with the scores for the phenotype of
interest (in this case a specific personality trait). Significant corre-
lations of this kind would be consistent with the hypothesis that
the process, reflected by the model parameter, is part of the causal
basis for the personality trait concerned. Brazil et al. (2013) refer
to this approach as seeking the “computational phenotypes” of a
personality trait or psychopathological condition (i.e., attempting
to quantify the latent process[es] which characterize the traits, or
conditions, of interest).

With more complex models, with larger number of parame-
ters, this “direct” approach cannot easily be pursued, as estimating
the best fitting model parameters required to capture an indi-
vidual’s endophenotypic behavior will usually not be possible.
In this article we consider what can be achieved with the DCN
approach applied to a much more complex computational model;
the complexity of which allows it to be brain-mapped to potential
neurophysiological processes of interest.

The DCN framework is a general approach that can be
employed with any computational model as a means of simulat-
ing individual differences in the model outputs. In the present
paper we will apply the DCN framework to the BBG computa-
tional neuroscience model (Brown et al., 1999) which we used to
simulate the modulatory signals affecting the FRN. However, we
could adopt the DCN framework with whatever specific model we
were using and whatever endophenotype we were simulating. To
simulate individual differences, we systematically replace the con-
stant values typically used for model parameters, with random
variables. Our goal is to see what effect each model parameter has
on model outputs.

In one sense, all model parameters are relevant to the out-
puts simulated by the model, or else they could be eliminated
from the model. However, in specific modeling scenarios, some
model parameters can have a much greater effect on the simulated
outputs than others. For example, we observed relatively weak
relationships between some model parameters and simulated out-
puts in our first published work of this kind (Pickering and Gray,
2001). In that study we argued that a key role of dopaminergic
neurotransmission was in providing a reinforcement learning sig-
nal. We constructed a very simple reinforcement learning model
(but not strictly an RPE-based model). This model used the rein-
forcement signal in simulations of a simple category learning
task. In published studies, learning performance on the category
task was significantly associated with sensation seeking trait mea-
sures (Ball and Zuckerman, 1990; high sensation seekers learned
the task faster than low sensation seekers). In our modeling,
we allowed the value of the reinforcement signal (which was
used to drive learning following a correct simulated response)
to vary across simulated individuals. We expected a negative
correlation, between the size of the reinforcement signal used
and the number of simulated trials that were required to learn
the task to a particular criterion level of success. However, to
our surprise, the correlations we obtained were very modest.
This finding held across a very wide range of modeling vari-
ations that we tried (−0.35 < r < 0). We therefore concluded

that variation in the reinforcement parameter across individu-
als was not a plausible basis for the reported association between
sensation seeking personality and learning rates in this task. We
reached this conclusion because the relationship between model
parameter and simulated endophenotype was, by our reasoning,
almost certainly not strong enough to underpin the observed
trait-endophenotype correlations in the real data. This parame-
ter (the dopaminergically-mediated reinforcement learning rate)
therefore failed the “VSR constraint,” noted earlier. Below, this
VSR constraint will emerge as a key test in the current simulations
which we use to discriminate between plausible and implausi-
ble sources of covariance between the endophenotype and the
phenotype.

In the DCN framework, as just stated, we deliberately cre-
ate systematic variance across simulated individuals by allowing
model parameters to vary as a random variable. A convenient
default choice is to allow model parameters to be replaced by ran-
dom normal variables; this is equivalent to assuming that each
model parameter is normally distributed across (simulated) indi-
viduals. Without more specific information to inform this choice,
assuming a normal distribution seems to be a reasonable starting
point. As we are going to try to equate model parameters to spe-
cific psychobiological processes, this modeling assumption just
implies a (default) belief that these psychobiological processes are
normally distributed across individuals.

Some of the causal processes that we are interested in are possi-
bly single genetic variants. These would not be expected to be nor-
mally distributed across individuals: such genetic variations are
more likely to cause a step change in a specific neurotransmission-
related process. It might therefore seem as if these would be better
modeled by setting a parameter to, for example, a high vs. a low
value. However, if there were non-linearities in the relationship
between parameter and simulated process affecting the endophe-
notype, then any specific pair of high vs. low parameter values
could either produce, or not produce, an effect in the simulations.
This would depend on the specific values chosen and how they are
positioned relative to the non-linearities in the parameter-process
relationship. So, even in this case, by using a range of parameter
values (e.g., based on a normal distribution) one can get a clearer
picture of the effect of a parameter on the process being modeled.

It follows from the foregoing that, for a particular model
parameter, a simulated individual will be assigned a particular
parameter value that is specific to them (and constant throughout
their individual simulation); this individual parameter value is
drawn from a random (normal) distribution of parameter values
with specified distributional properties (e.g., a mean and vari-
ance). The key results, of the kind reported below, are assessments
of whether there is a relationship, across a sample of simulated
individuals, between model parameter variation and simulated
endophenotypic process (as captured by a specific model output).
Another key result is the amount of variance in the simulated
output that is created by adding variance to a particular model
parameter.

In the DCN framework the simulations start by adopting
what will be referred to as the noise-free version of the compu-
tational model. This version, as the name implies, does not have
any significant exogenous sources of noise in the process being
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simulated. We do this so that we can see the effects of our system-
atic parameter variation against a backdrop of little or no random
noise in the simulations. By using a noise-free model (almost) all
the variance in the model output, across simulated individuals,
must therefore be derived from the variation in a model param-
eter, which was imposed, across simulated individuals. Figure 4
illustrates how the noise-free model sits within the broader DCN
framework.

In using the BBG model for the simulations we will manipu-
late a series of psychobiological parameters from the model, one
of which is labeled as X1 in Figure 4. In the noise-free BBG model
simulations, variation in parameter X1 will be the primary source
of variation in the process being simulated by the model, which in
the present case is phasic changes in the firing of the DA cells (this
process is denoted Y1 in Figure 4). Y1 is thus the key model output
and is assumed to be a substantive component of the endopheno-
type that we are trying to model (the FRN in the present case).
In the present paper process Y1 (phasic firing changes in mid-
brain DA neurons) exert a modulatory influence on the FRN,

FIGURE 4 | The differential cognitive neuroscience (DCN) modeling

framework. In the model being deployed (dotted ellipse) there are multiple
parameters, such as X1, which can be manipulated as potential sources of
individual differences. This highlighted parameter in the model putatively
captures a psychobiological feature (such as dopamine receptor density in a
particular brain region) which is a candidate source of variance in a
phenotypic trait of interest (such as Extraversion, E). The framework is used
to investigate whether the psychobiological feature is a plausible source of
variance in the trait. It is assumed that there are also multiple other sources
of trait variance (X2 to Xm), outside the model. The figure shows an
endophenotype (such as the feedback related negativity, FRN) that is
known to be related to the trait of interest. There are assumed to be a
number of processes, Y1 to Yp (p < m), which contribute variance to the
endophenotype. One of these processes (Y1) is being simulated by the
computational model that includes parameter X1. When (as depicted here)
the psychobiological feature, reflected by the simulation parameter X1, is a
source of covariance between phenotype and endophenotype, it is
demonstrated (see text for details) that the relationship between X1 and
simulated process Y1 needs to be very strong (r ∼ 1) in order to be able to
see a typical correlation of r = 0.3 between the phenotype and
endophenotype in real data. If a model parameter fails to exert a strong
influence on the simulated process, then the psychobiological feature,
represented by the parameter, cannot be a plausible candidate for the
observed phenotype-endophenotype association.

which is generated by neurons in medial prefrontal brain areas
such as the ACC. The phasic firing changes occur in response to
the RPEs generated by the various conditions of the specific FRN
task that we are simulating (the Potts et al task associative reward
task, described in detail above).

Figure 4 shows a number of parameters like X1 which all con-
tribute to variance in extraversion (they are labeled X1 to Xm),
and a number of processes like Y1 contributing to the endophe-
notype (they are labeled Y1 to Yp). In keeping with the view that
each causal process has a greater influence on the endophenotype
than on the phenotype, we assume that m is a larger number than
p. This assumption means that the psychobiological parameters
in our computational model have a stronger relationship with the
processes underlying the simulated endophenotype than they do
with personality traits like extraversion.

Figure 4 also shows the VSR constraint: we are looking for
simulation parameters (X1) which have a very strong relation-
ship with the simulated process (Y1) affecting the endophenotype.
Figure 4 shows that the correlation between X1 and Y1, required
under this constraint, is approaching 1.0. We argue that this VSR
is required in order for the observed relationship between the trait
(phenotype) and endophenotype to be of the magnitude that is
typically observed in real data (shown as r ∼ 0.3 in Figure 4).
The correlation between the phenotype and the endophenotype
results from the shared cause(s) influencing each of them. In
Figure 4 there is only one shared cause: the modeled biological
parameter X1. This is shown as affecting the endophenotype via
the process Y1. Therefore, the correlation between the phenotype
(trait E) and the endophenotype (the FRN difference wave) will
be determined by the geometric mean of two variance ratios, A
and B (i.e.,

√
A∗B); A is the variance of X1 divided by the total

variance of the trait, and B is the variance of Y1 due to X1, divided
by the total variance of the endophenotype. As we have already
noted this correlation will often tend to be quite modest. This is
because the variance ratio A gets progressively smaller as more
independent causal factors contribute to the trait variance, i.e.,
with increasing m in Figure 4. We have already suggested that
we believe m is large for personality traits. Similarly, the variance
ratio B gets progressively smaller as more independent causal fac-
tors contribute to the endophenotype, i.e., with increasing p in
Figure 4. Even if we (unrealistically) assumed that only 1 pro-
cess affects the phenotype (p = 1) plus measurement error, then
with multiple independent processes contributing equally to trait
variance, the expected trait-endophenotype correlation will be
small.

To show the above prediction concretely, we can make an arbi-
trary (but probably conservative) assumption that m = 8. If the
reliabilities of the trait and the endophenotype were 0.8 and 0.9
respectively, and the correlation between X1 and Y1 was perfect,
then A = 0.1, B = 0.9, and the trait-endophenotype correlation
would be 0.3 (i.e., in the typical ballpark for real data). Clearly,
with a single shared causal process, this trait-endophenotype cor-
relation would be even more modest if m were greater than 8
and/or p were greater than 1. If the correlation between X1 and Y1

were less than perfect the trait-endophenotype correlation would
also drop dramatically. For example, if the correlation between X1

and Y1 were 0.5 this means that the proportion of Y1 variance due
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to X1 is 0.25. In the above calculations, the variance ratio B would
reduce from 0.9 to 0.9∗0.25 = 0.225, and the trait-endophenotype
correlation would therefore drop correspondingly to 0.15.

However, satisfying the VSR constraint is only necessary, but
not sufficient, for identifying plausible parameters underlying the
phenotype-endophenotype correlation. Earlier we suggested that
another important constraint applies: we referred to it as the
maximal variance (MV) constraint. This just means that the vari-
ance added to a single parameter in our noise-free model must
create as much variance as possible in the key output being sim-
ulated by the model. Again the simple psychometric arguments
made above show why this is important. In Figure 4 a psychobi-
ological feature, reflected by a varying parameter (X1) in our
model, is a source of variance in our phenotype (extraversion)
and also drives the resulting process (Y1; DA firing rate differ-
ences across different trial types in the task) that contributes
variance to our endophenotype (the FRN difference wave from
EEG data). Above we argued that the correlation between the
endophenotype and the phenotype is given by

√
A∗B), where

B is the variance of Y1 due to X1, divided by the total vari-
ance of the endophenotype. The VSR constraint is a requirement
that almost all the variance of Y1 is due to X1; however, in
order for the ratio B to be as large as possible (and therefore
maximize the phenotype-endophenotype correlation of inter-
est), it is clear that process Y1 needs to have as large a vari-
ance as possible. If the variance in Y1 is small, even though
it mostly derives from X1, then it will be swamped by the
other sources of variance affecting the endophenotype (Y2 to Yp

in Figure 4). If Y1 variance were small relative to these other
sources, then the ratio B would be small, and the correlation
between endophenotype and phenotype would be likely to be
undetectable.

The approach to be used in this paper is to investigate the
influence of variation in many of the parameters in the model,
with each parameter’s influence being tested on its own. This
approach is close to a process, used in various fields, known
as sensitivity analysis (Parnell, 1997). By the logic above, the
parameters to which the size of the simulated endophenotypic
process (the simulated DA cell phasic firing changes) is most
sensitive are those which are the more plausible candidates
for underlying the observed relationship between extraversion
and the FRN. By using a biologically-mapped model, we are
then able to try to give a psychobiological interpretation of the
plausible (and implausible) parameters, and in particular how
they might relate to neural processes linked to dopamine cell
firing.

The important background issues, which we have considered
in the preceding paragraphs, have set the scene for us to carry out
Step 4 in our DCN modeling; the details of this how this step was
carried out, and what outcomes were obtained, are reported in the
Methods and Results Sections below. Steps 5 and 6 will be briefly
explored in the Discussion.

METHODS: BASIC SIMULATION DETAILS
In this first methods section we summarize (in conjunction with
Supplementary Material) the basic computational methods used
in the simulations.

USING THE BBG MODEL TO SIMULATE THE POTTS ASSOCIATIVE
REWARD PREDICTION TASK
Having selected the BBG as our specific RPE model, the goal was
to change it as little as possible from the published version, in
order to enable simulations of the Potts et al associative reward
learning task. At the same time we wanted to preserve the ability
of the model to simulate the tasks captured in the original Brown
et al. (1999) paper. However, a small number of minor changes
were required. The working memory (WM) representations of
the conditioned stimuli used in the original paper were not real-
istic (these were coded as square wave signals starting at stimulus
onset and ending immediately at an arbitrary time thereafter). A
particularly unrealistic result of this WM coding occurs whenever
the same stimulus was presented twice in succession with a blank
(or fixation) screen between the two presentations (as occurs in
the Potts task on the majority of trials). When this happens, and
if the WM representation triggered by the first occurrence of the
stimulus was still active when the second stimulus presentation
occurred, there would be no change in WM representation and
therefore nothing that signifies that two separate presentations
have occurred.

A change was therefore needed in the current implementa-
tion. One possibility was to turn off the WM representation of the
first presentation of the stimulus during the blank screen before
the second presentation occurred. However, although this would
allow the two presentations to be distinguished in WM, it would
have the unwanted consequence that the prediction of the later
stimulus by the earlier stimulus could not be learned (as this
requires an active WM representation of the first stimulus at the
time when the second stimulus occurred). In the current version
of the BBG model, we adopted a different solution in which each
stimulus triggered the activation of a WM representation, with
an output xi. The change in this output over time was specified
according to the following equation:

1

τx

dxi

dt
= (Mx − xi) ∗ Ii − Ax ∗ xi (1)

where each stimulus (coded with a subscript i) is represented with
a different node in the model, and Ii is a square wave (taking a
value of 1 when the physical stimulus i was present, and a value of
0 when the stimulus was absent). The values of the parameters in
the above equation (Mx = 1; τx = 30; Ax = 0.02) were chosen so
that the outputs from the WM representations decayed partially
during the interstimulus intervals between the stimuli in simu-
lations of the Potts task. The variable xi above in our equation
(1) above replaced the variable Ii in the original BBG model (in
Brown et al., 1999, Equations 1 and 2). Note that, when the stimu-
lus was present, Ii took a value of 0.6 in the original model and, as
noted, xi was set to 1.0. This value determines the value of another
parameter in the model, �G (see the parameter value table in
Supplementary Material). �G took a value of 1/(1 + 0.6) – 0.05
in the original BBG model (= 0.37), and a value of 1/(1 + 1.0) –
0.05 in our simulations (= 0.495).

In the BBG model, output from the WM representations can
activate the spectral timing mechanisms in striosomal cells that
predict future rewards. In the current implementation, activation

Frontiers in Human Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 740 | 10

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Pickering and Pesola Computational modelling of individual differences

of spectral timing in the striosomes occurred whenever the output
from the WM representation, xi, exceeded a threshold θx = 0.3.
Thus, our model computed a variable xxi which was given by

xxi = max (xi − θx, 0) & 1 (2)

Thus, xxi takes a value of 1 when the threshold was exceeded, 0
otherwise. The variable xxi replaced the variable Ii in the original
BBG model (in Brown et al., 1999, Equation 10).

There were other minor changes to the equations used in the
original BBG model; these changes are covered in Supplementary
Material, where the full set of the parameter values used in the
current simulations is also given.

RESULTS
BASIC MODELING RESULTS
As a first step, we need to show that the BBG model can cap-
ture the patterns of DA cell firing which might underlie the FRN
effects in the Potts associative reward learning task. The FRN was
recorded during the presentation of the second stimulus (i.e.,
at the time point denoted S2; see Figure 1 upper panel). Each
panel of Figure 5 represents the simulated DA cell firing rates
from a single simulated participant, plotted across the duration
of a trial. The rates are the averages across all the trials of each
of the 4 specific trial types of the Potts associative reward learn-
ing task. The times of the key events in a trial (S1, S2, REW) are
marked by vertical lines. The 4 types of trials in the task are each
shown in a separate panel of Figure 5: unpredicted reward (UR;
S1=lemons; S2=gold bar; upper left); unpredicted non-reward
(UNR; S1=gold bar; S2=lemons; lower left); predicted reward
(PR; S1=S2=gold bar; upper right); and predicted non-reward
(PNR; S1=S2=lemons; lower right).

For the UR trials one can see that there is no increase in DA fir-
ing during S1, but a strong increase at the time of delivery of the
reward (REW). However, the stimulus appearing at S2 on such
trials (gold bars) is associated with reward on most trials of the
task, and so undergoes some learning of this association (at loca-
tion 4, in the model; see Figure 3). Thus, the gold bar stimulus
occurring at S2 on UR trials elicits a moderate increase in DA cell
firing during S2 via the model’s excitatory pathway. Given that the
FRN was recorded during the S2 stimulus period, this modeled
increase in DA firing during S2 might be expected to modulate
the size of the FRN during S24.

For the PR trials, one can see that the increase in DA firing at
the time of reward delivery (REW) is robust but somewhat weaker
than the corresponding DA firing during REW for UR trials.
This is because additional reliable inhibitory predictors of reward
(gold bars at S1 as well as at S2, compared with just gold bars at
S2 for UR trials) have been established. These timed inhibitory
associations are learned (at model location 3; see Figure 3) over

4As noted above, the FRN (and related waveforms) have widely been argued
to arise from generators in structures such as the anterior cingulate cortex
(ACC; see Holroyd and Coles, 2002) that are densely innervated by ascending
projections from midbrain DA cells. Also as discussed earlier, we assume that
DA cell firing changes modulate the FRN in the ACC but, in order to do so
with the required rapid temporal dynamics, this modulation occurs via non-
dopaminergic mechanisms (see also Ullsperger et al., 2014).

the course of the task. The earliest reliable predictor (a gold bar
at S1) also produces a marked increase in DA firing during S1 via
the excitatory pathway of the model. This result is consistent with
animal studies in which the earlier of two predictors of a reward
triggers DA cell firing increases (see Schultz, 1998, for details).

For the UNR trials we see that the stimulus presented at S1 trig-
gers a strong increase in firing, via the excitatory pathway of the
model. This occurs, just as in the PR trials, because the S1 stim-
ulus on such trials (gold bar) has become associated with reward
delivery during the task. During REW, there is a strong suppres-
sion of DA firing to well below baseline levels. Reward is expected
on these trials (based on the fact that 80% of the time when the
stimulus at S1 is a gold bar then a reward will be delivered) and
there is a corresponding learned inhibition of DA firing occurring
at location 3 in the model (see Figure 3). This inhibition is trig-
gered in response to the presentation of a gold bar during S1. The
spectral timing properties of the BBG model (see above) mean
that the inhibition effect occurs at specific striosomal sites that
have the appropriate intrinsic timing properties: i.e., they become
active (when stimulated by a stimulus at S1) at a specific time after
S1 which corresponds with the timing of the reward. Thus, the
inhibition effect is timed to occur when the reward is expected
to occur (i.e., at REW). Normally, this inhibition would serve
to counteract the boost to DA firing triggered by the expected
reward via the excitatory pathway in the model; we can see the
inhibitory effect in isolation on these UNR trials because reward
is not delivered.

In a similar way, during UNR trials, one can also see inhibition
of firing during S2 (relative to the pre-S2 time period), when the
unexpected lemon appears. This inhibition is less marked than
the inhibition observed on these trials during REW. On 80% of
occasions when a gold bar is presented at S1, a gold bar is also
presented at S2. As the gold bar stimulus has acquired the abil-
ity to trigger DA release via the excitatory pathway of the model
(see in UR trials), the usual experience would be for some DA fir-
ing increase at S2. However, the nature of the BBG model means
that learned inhibition of that DA firing increase at S2 will also
occur, in response to the gold bars presented at S1. This also
occurs at location 3 in the model (see Figure 3), but occurs on
cellular sites with different intrinsic timing properties from the
cells which deliver the inhibition that is timed to occur during
REW. Normally, this inhibition would oppose the increase in DA
firing during S2 occurring when the gold bar occurs at S2 (see
the panel for the UR trials). However, on UNR trials we can see
the inhibitory effect because the unexpected lemons, occurring
at S2, do not trigger DA firing. This suppression of DA firing at
S2 on these UNR trials would be expected to modulate the FRN
recorded during S2; and the modulatory effect caused by this
suppression of DA firing would be in the opposite direction to
the modulation resulting from the DA firing increase observed at
S2 on UR trials. Thus, the maximal difference in DA firing rates
during S2 is observed when comparing the UR and UNR trials,
in the same way that the maximal FRN difference is observed
for these same two trial types (see Figure 2). Note that although
the “UR minus UNR” DA firing difference is greatest during the
period when the reward was delivered, the same pattern of differ-
ences is also observed during S2, albeit that the differences are less
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FIGURE 5 | Simulation results for the Potts associative reward

learning task, for a simulated individual with all parameters set to

their mean values. Each panel shows the average spike firing rate for
simulated midbrain DA neurons across a trial in the task, divided into
20 ms bins. In the upper left panel are the results averaged across the

48 unpredicted reward (UR) trials; in the lower left panel are the result
averaged across the 48 unpredicted non-reward (UNR) trials; in the upper
right panel are the results averaged across the 196 predicted reward (PR)
trials; and in the lower right panel are the results averaged across the
196 predicted non-reward (PNR) trials.

marked. The design of the Potts task deliberately allows the FRN
to be observed at a time point (S2) that is removed from the point
of reward delivery.

Finally, we might note that the PNR trials show relatively little
fluctuation in DA firing, although there is some suppression dur-
ing the period when the reward is delivered. At first glance, this
suppression might be considered a surprising result given that the
lack of reward is expected (as lemons had been presented on these
trials at both S1 and S2). However, the task involved 48 UR trials
in which a lemon at S1 was associated with later reward. These
trials thus create a modest amount of learned timed inhibition of
DA firing, triggered by the presentation of a lemon at S1. We can
see the effect of this inhibition on the PNR trials.

The data in the 4 panels of Figure 5 were each collapsed to give
overall normalized DA firing rates during S2 as follows: for each
trial type separately, we took the average of the first 300 ms after
S2 onset minus the average of simulated 100 ms prior to S2. The
results, measured in mean spikes per 20 ms bin and in the order
UR, UNR, PR, PNR, were: 0.1506, −0.0664, −0.0594, −0.0113.

Note that the DA firing rates increased most for UR trials and
decreased most for UNR trials, with the values for PR and PNR
trials lying in between. This parallels the order of the FRN waves
recorded for these trial types in real data obtained with the Potts
associative reward task.

METHODS: ADDING INDIVIDUAL DIFFERENCES TO THE
SIMULATIONS
In this methods section we summarize the ways in which indi-
vidual differences in model parameters were employed in the
simulations. Our key simulated process (Y1 in Figure 4) is the
difference in DA cell firing for UR minus UNR trials during the
S2 phase of the task. We argue that this is a major component
of variance in the endophenotype (the FRN difference during S2
between the same two trial types).

In our DCN approach we added random variation to sev-
eral parameters (X1 in Figure 4) of the BBG model, one at a
time, to create individual differences. Next, we consider some
of the possible parameters to which variance was added, and
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suggest psychobiological interpretations of these parameters. The
key outcome across these simulations was what effect this added
parameter variance had on the critical simulated process (the
difference in simulated DA cell firing between trial types).

The first parameter explored was parameter wPD (see
Supplementary Material). This parameter sets the weight from the
PPTN to the midbrain DA cells. This parameter is at location 1 in
Figure 3, and is the final common path on the excitatory route to
activation of the DA cells. It modulates the size of the total excita-
tory drive coming in to the DA cells, by controlling the strength of
the projection from PPTN to midbrain DA cells. This is a partic-
ularly important parameter to explore, because it could be said to
offer the most direct test of the so-called reinforcement sensitiv-
ity theory (RST) of extraversion. This theory, originally proposed
by Jeffrey Gray, suggests that extraversion may derive partly from
individual differences in sensitivity/reactivity to rewarding stim-
uli, both conditioned and unconditioned rewards (see Smillie
et al., 2006, for a review). Under this theory, an extravert is some-
one who has stronger than average reactivity to rewards. Our
research with the Potts task showed that extraverts have a larger
FRN difference wave (comparing UR trials minus UNR trials)
than introverts. Thus, we can use RST to make a specific pre-
diction here: simulated individuals with high settings for wPD

will have a high DA cell reactivity to rewarding stimuli and thus,
according to RST, should be “simulated extraverts.” Larger DA cell
firing rate differences between UR and UNR trials in the Potts
task are expected to equate to larger FRN differences between UR
and UNR trials and so should be a characteristic of extraverts.
Thus, the DA cell firing rate differences should correlate positively
with wPD.

Next we will vary a series of other parameters in the model
and the findings from these simulations can be compared with
the findings from the “benchmark” wPD simulations noted above.
We will begin by looking at parameters on the excitatory model
pathway of inputs to the DA cells and then move on to parameters
on the inhibitory pathway of the model.

For each of these simulations, 50 simulated individuals were
created using a random normal variable to replace the fixed value
of a specific parameter. The key simulation output is derived from
normalized simulated DA firing rates. The rates are computed for
the first 300 ms of the simulated period when stimulus S2 was pre-
sented to reflect the timing of the FRN; the rates were normalized
relative to the 100 ms preceding S2; then the rate is averaged across
the 48 UR and 48 UNR trials for each simulated individual, and
the key output is the difference in mean normalized firing rate
(for UR trials minus UNR trials). This output reflects the simu-
lated process that theoretically should contribute variance to the
FRN difference wave (for UR minus UNR trials) recorded in real
electrophysiological data. The units of the simulation output are
DA spikes per 20 ms recording bin.

RESULTS AND DISCUSSION
INDIVIDUAL DIFFERENCES SIMULATIONS
Table 2 gives the results of simulating individual differences.
The table lists representative results for simulations manipulat-
ing various parameters, detailing summary information for the
key simulation output in each case.

Table 2 shows that for the simulation varying parameter wPD

the mean output was close to 0.2, thus reflecting an approximately
10 spike per second increase in DA firing on UR trials relative to
UNR trials. The scale of this output variable is controlled largely
by the neural spiking equation and associated parameters, which
were taken (unchanged) from the published BBG model. The
results for parameter wPD reveal that it satisfies the VSR constraint
as it produces a correlation of 0.98 (0.95 in the second simulation,
with a different random number seed) between the parameter and
the DA spike rate change. This correlation was positive as pre-
dicted by the RST of extraversion, where extraverts have larger
reactivity to reward signals, and the size of the excitatory response
to incoming reward signals is captured by the parameter wPD.
Furthermore, the simulation reveals a sizeable degree of variance
in the simulated output: the SD was approximately 0.05 (0.04 in
the alternative simulation), to accompany the mean value of 0.225
(0.214). We will take the fact that both our key constraints are
satisfied as evidence that variation in wPD (the excitatory drive
from brain reward systems to midbrain dopaminergic cells) is a
plausible candidate to be part of the psychobiological basis for
extraversion. Moreover, variation in wPD can therefore explain the
observed (and replicated) correlation between extraversion and
a difference in the FRN ERP waveform elicited by unpredicted
reward and unpredicted non-reward trials in the Potts associa-
tive reward learning paradigm (Smillie et al., 2011; Cooper et al.,
2014). Moreover, this same parametric variation might under-
lie the observed link between anticipatory pleasure and the FRN
difference waveform (Cooper et al., 2014).

It is worth considering next the possible neurotransmitter sys-
tem(s) which might mediate variations in values of the parameter
wPD. The traditional view is that the excitatory inputs to mid-
brain dopamine neurons are glutamatergic while the inhibitory
inputs are GABAergic (for up-to-date reviews see Watabe-Uchida
et al., 2012; Covey et al., 2014). Such a view would suggest
that the wPD weight could reflect the efficiency/density of recep-
tors at gluatamatergic synapses providing the excitatory drive
to the cell bodies of the DA cells. However, there are nicotinic
acetylcholine receptors on these DA cells as well, and they are
activated by inputs from PPTN (Covey et al., 2014, Box 3), so
the parameter might alternatively (or additionally) reflect the effi-
ciency/density of nictonic receptors. More recent data suggest that
there are also noradrenergic inputs to the DA cell bodies (see
Covey et al., 2014, Figure 2B), but it remains unclear if they are
activated by inputs on the excitatory reward input pathway of the
BBG model. Indeed, the number of afferent regions regulating
dopamine neurons appears to be much greater than previously
thought (Watabe-Uchida et al., 2012).

The picture could be even more complex as, for example, there
are pre-synaptic D1-type DAergic receptors on the terminals of
the glutamatergic inputs to midbrain DA cells. When these recep-
tors are stimulated (e.g., by ethanol at low concentrations) this
increases glutamate release in the VTA, thus raising somatoden-
dritic dopamine release, which further activates the pre-synaptic
D1 receptors (Xiao et al., 2009). So, if these pre-synaptic DA neu-
rons varied in their efficiency/density they are likely to vary in
their responsiveness to naturally occurring somatodendritic DA
release, and thereby contribute to glutatamatergic receptor effects
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Table 2 | Typical results from individual differences simulations.

Parameter varying Parameter mean Parameter SD Simulation output, Simulation output, Correlation (parameter,

(and location in Figure 3) (population, [sample]) (population, [sample]) sample mean sample SD simulation output)

AFFECTING MODEL EXCITATORY PATHWAYS

wPD (1) 5 [5.116] 1 [1.003] 0.225 0.052 0.98

wPD* (1) 5 [4.838] 1 [0.824] 0.214 0.041 0.95

wSP (5) 2 [2.058] 0.5 [0.501] 0.230 0.080 0.98

wSP
‡ (5) 2.125 [2.125] Range 0.25–4.0 0.239 0.156 0.99

wRP (6) 0.8 [0.823] 0.2 [0.201] 0.228 0.011 0.91

wRP
‡ (6) 2.05 [2.05] Range 0.1–4.0 0.269 0.041 0.97

wRS (7) 1.5 [1.540] 0.35 [0.351] 0.216 0.020 0.59†

wRS
‡(7) 1.05 [1.05] Range 0.1–2.0 0.165 0.069 n/a

wmax
s 1.0 [1.029] 0.25 [0.251] 0.225 0.042 0.92

τWS (4) 1 [1.028] 0.25 [0.25] 0.219 0.007 0.765

τWS** (4) 20 [20.56] 5.0 [5.0] 0.293 0.014 0.90

βWS (4) 0.5 [0.515] 0.125 [0.125] 0.216 0.002 −0.20†

AFFECTING MODEL INHIBITORY PATHWAYS

hD (2) 6 [6.1155] 1 [1.0025] 0.217 0.005 −0.86

γS (3) 100 [102.309] 20 [20.050] 0.217 0.006 −0.86

αZ (3) 0.05 [0.0514] 0.0125 [0.0125] 0.218 0.007 −0.80

Parameter symbols are as in Brown et al. (1999); SD = standard deviation. n/a not appropriate. Samples are of 50 simulated individuals. Population values for

parameters are the values of the random normal variables specified in the simulating program. The same sample of standard random normal values was used in

each simulation but was scaled to give the appropriate SD for the parameter, as reported above. Simulations for parameters marked with an * used a different

sample of random normal values; those for parameters marked ** were for a larger mean value, matching that used in the original paper; and those for parameters

marked with a ‡used a uniformly spaced set of parameter values, covering the specified range. Correlations marked with a † should be treated cautiously as clear,

non-linearities were observed. Simulation output = change in normalized DA firing rate between UR and UNR trials, in DA spikes per 20 ms recording bin.

on midbrain DA cells. Thus, it is possible that DA receptors could
also be part of the basis for the variations in size of the DA cells’
responsivity to incoming reward signals, that is summarized by
parameter wPD in the current model.

Next we will vary a series of other parameters in the model, one
by one, and the findings from these simulations can be compared
with the findings from the “benchmark” wPD simulations above.
While parameter wPD is the final common path of the excitatory
inputs to the DA cells, the BBG model (see Figure 3) has a number
of excitatory input pathways, which each converge on this final
pathway. We systematically added individual differences to each of
these pathways in turn to explore their respective contributions.

There is a direct pathway from primary reward processing in
the lateral hypothalamus (LH) to the PPTN (location 6) in the
model. The relevant parameter in the model is wRP. This parame-
ter controls the strength of the excitatory (primary reward) input
from LH to PPTN; it can be thought of as reflecting an individ-
ual’s sensitivity to unconditioned reward stimuli. The correlation
between the wRP parameter and the simulated output was 0.91,
which satisfies the VSR. However, the amount of variance in the
output parameter was much less than the simulation for wPD

(SD = 0.01, compared with 0.05 for wPD). However, the scale of
the wRP parameter used in the simulations was also about one
fifth of that for wRP (see Table 2), so it is unclear whether this
parameter satisfies the MV constraint to the same extent as wPD.
Moreover, the simulated relationship showed possible signs of
non-linearities. To address these issues, we reran the wRP simu-
lation using a uniformly spaced set of parameter values, covering

a much larger range of parameter values than were explored via
the random normal variable (see Table 2). The results of this sim-
ulation revealed a clear linear relationship between the parameter
and simulated output over the whole range of parameter values
(r = 0.97) and an SD for the simulated output of 0.041. This level
of simulated output variability is similar to that found for the sim-
ulations with parameter wPD. In this second simulation the SD
for the wRP parameter was (1.16), i.e., of a similar scale to that
used in the simulations with parameter wPD (see Table 2). Thus,
we conclude that the wRP parameter satisfies the VSR and MV
constraints to a similar extent to parameter wPD.

In a similar fashion we also explored two other parts of the
excitatory input pathways to the midbrain DA cells: locations 5
and 7 in Figure 3. In the case of location 5 this was the terminals
of the indirect double inhibitory projections from VS to PPTN,
represented in the model by the excitatory connection weight
parameter, wSP

5. In the case of location 7, this was the projection
from LH to VS cells, represented in the model by the connection
weight parameter, wRS. The findings are summarized in Table 2.

In the case of parameter wSP the results show that this param-
eter satisfies the VSR (correlation = 0.98 c.f. 0.98; see Table 2)
and MV (0.08 c.f. 0.05; see Table 2) criteria at least as strongly as
did the simulations which varied parameter wPD. This occurred
despite the fact that the simulations with wSP added random

5Note that represent this pathway via a single excitatory connection is a sim-
plification of the inhibition of inhibition that is actually occurring. This point
is discussed later in the text.
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normal variation to the parameter with a smaller SD (0.5) than
was used in the simulations with wPD (SD = 1.0). Moreover, the
wSP relationship with the simulated output remained strongly lin-
ear in a further simulation, which used a much wider range of
parameter values for wSP (see Table 2).

Intuitively, this result makes sense as the key outputs being
simulated are DA cell firing changes resulting from conditioned
reward stimuli conditioned at location 4 (Figure 3) and relayed
to the PPTN via location 5. However, the cells on this pathway
are thought to be GABAergic (Brown et al., 1999; Watabe-Uchida
et al., 2012) with tonically active cells in the ventral pallidum (VP)
inhibiting midbrain DA cell firing. These VP cells are thus inhib-
ited by GABAergic outputs from the VS cells, thereby releasing the
DA cells from their tonic pallidal inhibition. The model simplifies
this indirect pathway via a single parameter (wSP) but if variations
along this pathway were to underpin variation in extraversion and
our endophenotype (the FRN difference wave), then this might
imply variation in the effectiveness of the signaling of GABAergic
neurons.

In the case of wRS the simulation revealed a striking non-
linearity in the relationship between the wRS parameter and the
simulated output. To explore this more fully, we repeated the sim-
ulations but using a set of values for wRS which were uniformly
spaced over a much wider parameter range (see Table 2). These
showed that below a value of 0.8 there was a weak linear increase
in the effect of the wSP parameter on simulated output (which
rose to a value of about 0.1). Then there was a large jump to
simulated outputs around 0.22, which stayed flat over the rest
of the range of values used for parameter wRS. This means that
parameter wRS failed the VSR criterion. If “naturally occurring”
psychobiological parameter variations, underlying extraversion
and equivalent to parameter wRS, were in the range that was
functionally equivalent to wRS values above 0.8, then this would
mean that the parameter variation would have no effect on the
endophenotype and a significant trait-endophenotype variation
would be impossible to detect in real data. If the real psychobi-
ological parameter values spanned either side of the 0.8 value
(i.e., either side of the threshold which led to a step increase in
the effect on simulated output), then one might expect a similar
striking non-linearity in the relationship between the trait and the
endophenotype. No such non-linearity was seen in the real trait-
endophenotype relationships reported by our lab (Smillie et al.,
2011; Cooper et al., 2014).

It is reasonably straightforward to work out why the effect of
parameter wRS on the simulated output should be non-linear.
As explained in Supplementary Material, we made a few minor
modifications to the original BBG model. One was to intro-
duce a threshold in the activation of the VS cells before weight
modification (at location 4, Figure 3) could occur; a threshold
was not used in the original model and the weight modifica-
tion was simply proportional to whatever activation of the VS
cells was occurring. This change is more biologically realistic
because, under three-factor learning rules of the kind used here,
there should be post-synaptic depolarization to induce learn-
ing (Reynolds and Wickens, 2002); the threshold simply imposes
this constraint. Therefore, for the other parameter values used in
our simulations, when the value of parameter wRS falls below a

specific value (0.8, as noted above), there is not sufficient input to
the VS cells for them to be activated enough to undergo weight
change on their inputs from the cortical stimulus representations.

The above makes it clear that most of the pathways provid-
ing excitatory drive to the midbrain DA cells satisfy the VSR and
MV constraints; thus there are several plausible candidates for
the locus of the reported extraversion-related effects on the FRN.
Sticking with the excitatory pathways, we next consider effects on
parameters involved in actual weight modification, rather than
the static weights we have considered to date. As already noted,
our model uses a so-called three-factor learning rule for the
weight changes at both location 4 and location 3 in Figure 3. One
of those three factors is, of course, driven by the dopaminergic
events set in train by a phasic change in firing rate of the midbrain
DA cells. A logical proposal is that, at the locations in the model,
the key events will involve post-synaptic DA receptor activation.
Variation in the “trait” levels of such DA receptor activation has
been proposed as a basis of extraversion (Depue and Fu, 2013).
In the model used here the parameter wmax

S can be seen as corre-
sponding to the extent of dopamine receptor activation that can
be induced by a fixed sized burst of increased firing (variable N+
in the model) from the midbrain DA cells (see BBG equation
2 and Supplementary Material for details). As shown in Table 2
above, parameter wmax

S satisfied the VSR and MV criteria to the
same extent as parameter wPD. The correlation between wmax

S and
the simulated output was strong (0.92) and variation in wmax

S pro-
duced sizeable variation in the simulated output (SD = 0.042).
This occurred despite the fact that the random normal variable
used in the simulations for wmax

S had a lower SD (= 0.25) than
was used in the simulations varying wPD (SD = 1.0). Therefore,
these simulations confirm that post-synaptic DA receptor activa-
tion in VS is a plausible basis for extraversion-related effects on
the FRN difference wave.

To conclude our exploration of the excitatory pathway effects
we also considered other weight change parameters from BBG
Equation 2; namely τWS and βWS. The parameter τWS is the over-
all rate constant for the weight changes in Equation 2. However,
Table 2 reveals that the simulations varying this parameter pro-
duced a more modest positive correlation with simulated output
(0.765) but crucially a weak level of simulated output variance
(SD = 0.007; c.f. 0.052 for parameter wPD). However, the amount
of parameter variance in this simulation was less (SD = 0.25)
than that used in the simulations with parameter wPD (SD = 1).
Therefore, we ran a further simulation with parameter τWS and
dramatically increased both the mean (from 1.0 to 20.0) and SD
used (from 0.25 to 5). This produced a modest doubling of the SD
of the simulated output (from 0.007 to 0.014) which still com-
pared unfavorably to the variance created by varying parameter
wPD. We therefore conclude that the overall rate constant of the
weight change equation at VS neurons fails the MV criterion.

Parameter βWS, by contrast, controls the rate of weight
decrease when a phasic decrease in DA cell firing occurs (given
by variable N− in the model). This could also be seen as an
effect mediated by DA receptors in the VS (Bromberg-Martin
et al., 2010). However, Table 2 shows that simulations varying
this parameter fail the VSR constraint (the parameter-output
correlation was −0.20, with signs of non-linearity). Moreover,
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varying this parameter induced very little variance in the simu-
lated output (SD = 0.002) so the MV criterion was also failed.

Next we consider simulations on the inhibitory pathways of the
model. We start by considering an effect at location 2 in Figure 3.
At this location the timed reward prediction, computed by the
striatal striosomal spectral timing array, acts to inhibit the fir-
ing of the midbrain DA cells at a time, following specific stimulus
events, when a rewarding event (one that increases DA cell firing)
has occurred in the past. The inhibitory effect of the striosomal
output signal is directly scaled by parameter hD in BBG equation
6. This parameter can be seen as reflecting the effectiveness of the
inhibition; and as the pathway from the striosomes to the DA cells
is GABAergic (Brown et al., 1999; Watabe-Uchida et al., 2012)
one could view it as reflecting the effectiveness and/or density of
GABAergic receptors on the DA cells.

The larger the value of parameter hD the more inhibition of
DA cells there is; thus the correlation with the simulated output
(increases in simulated DA firing on UR trials minus the decrease
in simulated DA firing on UNR trials) is expected to be nega-
tive. If hD were to be a candidate parameter related to the trait of
extraversion, then a high value of hD would have to be related to
low levels of extraversion. In this way, hD variation could explain
the positive correlation, in real data, between extraversion and the
FRN difference wave.

Table 2 reveals the results of our simulations varying hD. The
correlation between hD and the simulated output was indeed neg-
ative, as predicted (r = −0.86). However, varying the parameter
had very little effect on simulated output (SD = 0.005), about
a tenth the SD for simulations varying parameter wPD (SD =
0.052). This occurred despite the fact that the amount of param-
eter variance used was the same in each case (the SD used for
varying both hD and wPD was 1.0). We therefore conclude that
variations in the effectiveness of striatal inhibition of DA cell fir-
ing fails the MV criterion, and such variations are thus not a
plausible candidate for the cause of extraversion-related effects on
the FRN difference wave.

We can, as a minimum, make this statement about the plau-
sibility of hD relative to many of the parameters, analyzed earlier,
in the model’s excitatory pathways. It is perhaps not surprising
that these variations in the inhibitory pathway are less effective
than variations at points in the excitatory pathway, in terms of
causing variations in simulated DA firing. This follows because
midbrain DA cells have a low spontaneous rate of firing and so
the scope for reduced firing is less than that for increased firing:
the dynamic range is less in the inhibitory direction than in the
excitatory direction (Glimcher, 2011).

Next we consider parameters affecting the learning (i.e., weight
change) in the inhibitory pathway of the model. This weight
change occurs in the glutamatergic pathways carrying inputs from
cortical cells, activated by the stimuli. In Figure 3, this learning
takes place at location 3. The weight learning is governed by equa-
tion 6 in the BBG model. A key parameter in this equation is the
striosomal learning gain, γS. This parameter scales the amount of
weight change produced at striosomal receptor sites that are eligi-
ble to undergo learning (i.e., at sites that satisfy the pre-synaptic
and post-synaptic activation criteria). The third factor which is
needed for weight change is dopaminergic activity triggered when

a burst of increased DA cell firing activates receptors at the strio-
somal terminals (such a burst is denoted by variable N+ in the
model). The parameter γS thus can be seen as reflecting the degree
of post-synaptic DAergic receptor activation in the striosomes. In
our simulations variation of γS is expected to be negatively related
to our simulated output variable (for similar reasons to those give
earlier for simulations varying parameter hD).

Table 2 gives the result of the simulation varying γS. As
expected the correlation with simulated output was negative
(−0.86), but there was very little resulting variation in the simu-
lated output (SD = 0.006). This was about a tenth of the variation
produced by variations in the parameter wPD, for example; and
this difference occurred despite much more variance being added
to parameter γS in this simulation (parameter SD = 20) than was
added in the simulation which varied wPD (parameter SD = 1.0).
As with parameter hD in the inhibitory pathway, we conclude
that parameter γS fails the MV criterion, at least relative to the
variance created by varying numerous parameters in the excita-
tory pathways of the model. As we have interpreted parameter
γS as reflecting the extent of post-synaptic DA receptor acti-
vation in the striosomes, we tentatively conclude that variation
such post-synaptic receptor activation is not a plausible basis for
extraversion-related effects on the FRN difference wave recorded
from EEG. This could be an important qualification to one of
the earlier conclusions: namely that post-synaptic DA receptor
activation in the VS was a plausible basis for these effects. If
extraversion is related to DA receptor activation in some stri-
atal areas, but not others, then this is a worthy target for future
studies.

Our final simulation in the inhibitory pathway varied the
parameter αZ. This parameter is the weight change rate parame-
ter within BBG equation 6; this controls the overall rate of weight
changes in the weights at the terminals of the stimulus afferents
to the striosomal sites (i.e., at location 3). In the same way as
we observed earlier for weight change rate parameter βWS on the
excitatory pathway, variations in αZ failed the MV criterion (see
Table 2 for details). Perhaps weight change rate parameters are
generally ineffective at inducing variation in simulated outputs (at
least in three-factor learning equations). The ineffectiveness of a
learning rate parameter, as a candidate for individual differences,
was what we observed in our first foray in to DCN modeling over
a decade ago (Pickering and Gray, 2001).

GENERAL DISCUSSION
LIMITATIONS OF THE CURRENT WORK AND NEXT STEPS
The current work is the first detailed attempt to tackle the
difficult problem of exploring individual differences using the
DCN framework in an indirect way. The approach is limited
by the fact that, in using a biologically anchored computational
model, the model necessarily has a large number of parame-
ters (see Supplementary Material). This means that we cannot fit
the model to the performance of individual participants across
the trials of the experiment. If we could do so, then we could
explore which fitted model parameter correlated best with vari-
ation in our phenotypic trait of interest (here extraversion),
measured in the same participants. This “direct” approach is
tractable only with simple models with few parameters (see
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Brazil et al., 2013, for an example of using the direct approach
in relation to psychopathic personality traits).

The indirect approach, adopted here, tries to uncover model-
based constraints on which psychobiological features are more
vs. less plausible causes of variation in the endophenotype. We
concluded above that parameter variation, along most of the
pathways providing excitatory drive to midbrain DA cells, is more
likely to create detectable variance in our (simulated) endophe-
notype than would variation along the pathways acting to inhibit
midbrain DA cell firing. However, even this reasonably broad con-
clusion, would be called into question if the underlying model was
wrong in a major way; the detail and specificity of the model used
mean that it is almost certain to be wrong and/or incomplete in
several details. To address this we might use a variety of related
models, with some shared features to the BBG model, each of
which is capable of simulating the endophenotype studied here. If
several of these alternative models showed the same broad conclu-
sions with respect to individual differences, then this would imply
that the findings are not tied too closely to the specifics of the BBG
model. To do this would be a major undertaking. Therefore, as an
alternative next step, we have begun an attempt to boil down the
BBG model to a minimal set of components, with the smallest
number of parameters possible. We will then be able to see if the
same conclusions are obtained with our “reduced BBG” model.
This work is currently incomplete; but early results suggest that
our conclusions about the effectiveness of excitatory vs. inhibitory
pathway variance holds up. Assuming these preliminary findings
with the reduced model are confirmed, next we will attempt to use
our reduced model in a direct fashion: fitting the model to indi-
vidual participant FRN data trial by trial, obtaining a best-fitting
set of parameters for each participant. Then we will be able to see
which parameter explains the most variance in the extraversion
trait scores of the participants.

There are other possible limitations, even assuming the BBG
model is correct in its basic assumptions. We have been com-
paring the effects of adding variance to parameters when these
parameters were sometimes on differing scales. Because all the
parameters took positive values, once we had established a good
set of mean parameters (by trial and error), we were limited
in how much variance we could add to certain parameters. For
example, if a parameter (such as wSP) had a mean value of 2.0,
we added variance using a random normal variable with an SD of
0.5 (= 2.0/4), so that no simulated individual would be likely to
have negative parameter values. Another parameter (such as γS)
had a mean value of 100; the random normal variable we used
could have a much larger variance (we used an SD of 20), while
still ensuring that this was never likely to lead to a value of γS

which fell below 0. While we believe that our conclusions about
the effects of parameter variation are sound, despite these scaling
issues (see Table 2), this is a potential concern. One possible solu-
tion would be to try tweak the model so that all parameters were
on the same scale, thus allowing the same amount of variance to
be added to each parameter. Based on our trial and error attempts
which led to the mean parameter values adopted here, we do not
think that such an approach would be achievable.

Our arguments about the constraints operating on our models
were based on a central psychometric assumption: namely, that

a single parameter might underlie variation in aspects of mea-
sured extraversion and also contribute substantial variance to our
endophenotype. An alternative account would be to argue that
multiple independent parameters might each contribute addi-
tively to variance in extraversion, while also contributing addi-
tively to variance in our endophenotype. This certainly should
make it easier to observe correlations between traits and endophe-
notypes in the lab. It is unclear to us how much this would
“release” our modeling from the VSR constraint, given that we
were able to generate a typical correlation of 0.3 between a trait
and an endophenotype only by making very generous (and in our
view unrealistic) assumptions about the number of psychobiolog-
ical features contributing variance to the trait and endophenotype
(see our earlier example). Allowing more than one model param-
eter to contribute to trait-endophenotype covariance might sim-
ply serve to offset the overly generous assumptions we made in
the first place. However, simulations using the model developed
in this paper, which allowed more than one parameter to vary,
showed that several combinations of parameters did not produce
additive effects on simulated output variance (details on request
from first author).

The VSR constraint outlined in this paper was rather vague: we
did not attempt to place a firm cut-off for the required strength
of the relationship between the manipulated parameter and the
simulated process. There is simply not enough information about
the number of underlying causes affecting extraversion and any
endophenotype for us to do this with confidence. We illustrated
the VSR via some psychometric calculations in the paper, based
on very generous assumptions. Under these assumptions, with a
perfect relationship (r = 1.0) between the simulated parameter
and the simulated process, the correlation between the endophe-
notype and Extraversion would be at most 0.3. This would drop to
0.15 if the correlation between parameter and process were only
0.5. Given the generosity of the assumptions behind these calcula-
tions we expect that the relationship would have to be near perfect
(very close to 1.0) in order to be able to detect a reliable trait-
endophenotype correlation (at least with typical sample sizes used
in real studies). Indeed, for some of our candidate parameters the
relationship was 0.95 or greater (see Table 2). We did not rule
out other parameters entirely on VSR grounds, even though the
relationship was numerically somewhat weaker (e.g., 0.86–0.92).
In our view attempting to adjudicate between parameter-process
correlations in this range of values is not likely to be especially
fruitful. We would prefer to test between these candidate parame-
ters by following step 5 of the DCN framework (as sketched briefly
below).

Another limitation might be that the BBG model produced
largely linear relationships between the varying parameter values
and the simulated levels of the endophenotype. There is consid-
erable evidence that dopaminergic neurotransmission may exert
non-linear effects on a variety of phenomena (e.g., see Durstewitz
and Seamans, 2008). This could be a major issue for the cur-
rent model if extraversion and the FRN were demonstrated to
have a non-linear relationship, perhaps because of the influence of
some dopaminergic process. The E-FRN relationships in our lab
(reported above) have been linear in nature, although some non-
significant relationships between extraversion(-like) traits and
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FRN(-like) phenomena have been reported in earlier papers, as
discussed in the introduction.

In one recent paper, Mueller et al. (2014) reported extraver-
sion and dopaminergic drug effects on the FRN, which was
elicited during a complex, multi-phase, computerized ball-
catching game. In one phase of their task, the FRN measure
showed a marginally significant (p = 0.06) positive association
with extraversion (specifically a measure of agentic extraversion)
amongst participants given a placebo. However, amongst par-
ticipants given a low dose of sulpiride (a selective D2-receptor
antagonist), the FRN extraversion relationship was negative and
non-significant (but significantly different from that observed in
the placebo condition). While this study gives support to the
view that dopaminergic processes are involved in the correla-
tion between extraversion and the FRN, the authors view it as
consistent with a curvilinear relationship between dopaminergic
processes and phenomena like the FRN. The BBG model used in
the present study would need some modification to capture this
non-linearity. A future study using dopaminergic drug (such as
sulpiride) and the Potts et al FRN task could confirm whether the
Extraversion and FRN relationship we have reported is abolished
under D2-receptor blockade. If this was confirmed then attempts
to model this drug effect could be attempted.

More generally, when applying the DCN approach in other
specific situations, it might be found that the relationship between
parameter variation and the simulated endophenotypic process
was non-linear. In that case alternative methods for assessing the
relationship would be needed, as the use of linear correlational
methods, as deployed here, would be inappropriate. Methods
such as mutual information (Cover and Thomas, 1991) might be
much more useful in these contexts.

Notwithstanding the difficulties and limitations just noted,
having an explicit model makes future studies using variants of
the Potts associative reward learning task potentially more pow-
erful. For example, one could carry out psychopharmacological
studies using this task with human participants and predict the
effects of drugs (and their moderation by extraversion) more pre-
cisely. However, a more immediate prediction is available from
inspection of Figure 5, which reveals that the model predicts that
DA firing increases are prominent, during S1, for the PR and UNR
conditions, while very little change in DA firing during S1 is pre-
dicted for the UR and PNR conditions. It should be possible to
assess the FRN during S1 during the Potts associative reward task.
It would then be straightforward to construct an S1 FRN differ-
ence wave (from PR and UNR trials minus UR and PNR trials).
This FRN difference wave could then be correlated with extraver-
sion scores. We are currently undertaking an analysis of such an
S1 FRN difference wave in our lab. Before doing these analyses,
the model can make predictions for each candidate individual
differences parameter; this prediction will concern the strength
of the correlation between the parameter and simulated DA cell
firing rate changes during S1. The key question is how this corre-
lation compares with the corresponding correlation between the
parameter and the simulated S2 DA cell firing rate change.

For example, from the current simulation data, we found for
parameter wPD that the relationships with the S1 output were
even stronger than those with the S2 output reported above.
Using the same sample of random values for the parameter, the

mean value of the DA cell firing change was greater (0.704 c.f.
0.225) the correlation was even closer to 1 (0.9998 c.f. 0.98) but
more importantly the SD of the simulated output was strongly
increased (0.139 c.f. 0.052). Thus, if the psychobiological feature
corresponding to parameter wPD underpins the observed correla-
tion between extraversion and the FRN difference wave recorded
at S2, then the correlation between extraversion and the FRN dif-
ference wave recorded at S1 should be stronger. It is possible to
make these systematic comparisons for all the candidate indi-
vidual differences parameters reported above; this illustrates the
power of using a formal computational modeling framework.

One further remark seems especially noteworthy: the mod-
eling presented in this paper is an attempt to understand trait
correlations with an FRN difference wave. This ERP phenomenon
was chosen as a modeling target on the basis of the widespread
belief that the FRN is modulated by the phasic activity of mid-
brain dopaminergic neurons, and there are well-established mod-
els of dopamine neuron firing (such as the BBG model used
here). One might simplistically conclude that the FRN differ-
ence wave is a “dopaminergic phenomenon”; by extension the
observed correlation between the difference wave and extraver-
sion might be used to argue that extraversion has a dopaminergic
basis. However, the use of the model showed that extraversion-
related variation in our FRN difference wave might derive from
variation in the action of many other neurotransmitters, via
their receptor sites on the DA cells themselves, or at points on
the afferent pathways acting upon them. Above, we have made
a case that the trait effects could lie in any of the following:
glutamatergic, cholinergic, GABAergic, as well as dopaminergic,
processes. This valuable general insight flows directly from hav-
ing an explicit and biologically-anchored computational model.
It is hoped that the prospect of more nuanced explanations, of
this kind, will persuade more researchers to use similar compu-
tational approaches. We are convinced that they are one route
to gaining more sophisticated insights into the psychobiological
underpinnings of personality traits.

It should also be pointed out again that we have not simu-
lated the mechanism by which midbrain DA firing rate changes
actually modulate the FRN (generated in the ACC). We stressed
earlier that this modulation has to be via a non-dopaminergic
mechanism in order to occur quickly enough. It is therefore, of
course, possible that the parameters controlling this unmodeled
step (perhaps involving co-release of glutamate by these DA cells)
might be ones which explain the relationship with extraversion. If
this were correct, then this would be another illustration of how
extraversion might be in part dependent on non-dopaminergic
processes of neural transmission.

Finally, we close the discussion by considering how we might
pursue steps 5 and 6 of the DCN using variations of the current
model.

STEP 5: TEST THE MOST PLAUSIBLE, SPECIFIC MODEL PARAMETERS
FOR THEIR ABILITY TO SIMULATE VARIATION IN OTHER DISTINCT, BUT
CONCEPTUALLY RELATED, ENDOPHENOTYPES
As already noted, the current research emerged from the back-
drop of theorizing which linked extraversion in some (often
underspecified) way to “reward-based learning.” An obvious next
step would be to see which of the candidate parameters, reported

Frontiers in Human Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 740 | 18

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Pickering and Pesola Computational modelling of individual differences

here, might also have the potential to underlie the associations
between extraversion and performance on reward-dependent
learning tasks. To do this, we have begun to modify the BBG
model so that it is able to simulate tasks requiring reward-guided
choice responses by the participant. To do this, another ascending
projection from the midbrain DA cells could be used to control
the learning of stimulus-response associations, taking place in
another “response selection” module of the model. The learning
rule used, again based on phasic firing changes of the midbrain
DA cells, could be the same as that used in the excitatory path-
way of the BBG model (i.e., the one operating at location 4 in
Figure 3). We have unpublished data from a probabilistic reward-
learning task in which extraversion is positively associated with
reward-guided learning performance, and on another task (where
the contingencies change without warning during the task) in
which extraversion has a significant negative effect on task per-
formance. Being able to simulate both these effects, and the FRN,
via the same parameter, will be a significant challenge, but we
expect that it will reduce the number of candidate parameters
dramatically.

STEP 6: EXPLORE WHETHER, AND IN WHAT CONTEXTS, THE
PROPOSED PARAMETER VARIATION CAN SIMULATE ASPECTS OF
EXTRAVERTED BEHAVIOR IN “TOY” MODELS
The psychometric model of extraversion that we have advocated
(see Figure 1) makes it clear that we are not attempting to pro-
pose candidate psychobiological parameters which could account
for all the reliable measured variation in extraversion. Rather, we
have proposed a method for unearthing psychobiological param-
eters that might possibly underpin variance in responding to a
small subset of extraversion items. In this light, it seems possible
to us that the parameters we have concentrated on (i.e., ones that
influence reward prediction learning) might explain part of the
reason why extraverts learn to make more sociable responses than
do introverts when meeting people.

To test this idea, we are currently using a simplified, response-
dependent variant of the BBG model and using it to simulate
“toy” social interactions between a “modeled individual” who
“meets” a number of other simulated individuals. The modeled
individual in these simulations can respond to the people they
meet using a small repertoire of possible responses (e.g., either
with a sociable, neutral or “shy” response, each of which might
be equiprobable at the outset of the simulation). We make the
reasonable assumption that any sociable responses the modeled
person makes are more strongly socially reinforced than their
non-sociable responses. In the simulations, the modeled person
meets a computer-controlled set of “individuals” who provide
social reinforcement, after the modeled person has made their ini-
tial response. The individuals who are being met are programmed
to differ systematically in the mean and variance of the social
reinforcement they typically provide (over repeated encounters).

We are varying the nature of the modeled individual by adding
variance to some of the candidate parameters that were reported
in the current paper. Thereby, we can make predictions about
which types of individuals will elicit the greatest, and least, degree
of sociable responding from extraverts, and how introverts will
differ in their responses to these same simulated people. This
work is ongoing but the predictions which will emerge can then be

tested in a lab experiment in which the participants would take the
role of the modeled individual. The computer-controlled people
that they “meet” would be the same as those used in the simula-
tions and the same range of responses would be available. In this
way we may be able to show that our candidate parameters are
likely to affect (parts of) the phenotype, as well as affecting the
endophenotypes we have used as proxies for that phenotype.

AUTHOR NOTE
The ideas and modeling approach behind this work were initially
developed while Francesca Pesola was a doctoral student under
the supervision of Alan D. Pickering. The specific application and
models presented in the current paper were developed by Alan D.
Pickering.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fnhum.
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