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This study used for the first time event-related potentials (ERPs) to examine the well-known
arithmetic problem size effect in children.The electrophysiological correlates of this problem
size effect have been well documented in adults, but such information in children is lacking.
In the present study, 22 typically developing 12-year-olds were asked to solve single-digit
addition problems of small (sum ≤ 10) and large problem size (sum > 10) and to speak the
solution into a voice key while ERPs were recorded. Children displayed similar early and late
components compared to previous adult studies on the problem size effect. There was no
effect of problem size on the early components P1, N1, and P2.The peak amplitude of the
N2 component showed more negative potentials on left and right anterior electrodes for
large additions compared to small additions, which might reflect differences in attentional
and working memory resources between large and small problems. The mean amplitude
of the late positivity component which follows the N2, was significantly larger for large than
for small additions at right parieto-occipital electrodes, in line with previous adult data.The
ERPs of the problem size effect during arithmetic might be a useful neural marker for future
studies on fact retrieval impairments in children with mathematical difficulties.
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INTRODUCTION
Arithmetic skills are fundamental in our everyday life and repre-
sent an important part of the children’s curriculum at school.
These skills have been extensively investigated with behavioral
methods but more recently the use of neural measures, such as
functional magnetic resonance neuroimaging or fMRI (see Arsali-
dou and Taylor, 2011 for a review of adult studies; see Kaufmann
et al., 2011 for a review of children studies) and electrophysiol-
ogy (e.g., adults: Núñez-Peña et al., 2011; children: Zhou et al.,
2011), has provided evidence on the neurobiological basis of arith-
metic processing. These neurobiological insights are particularly
relevant for understanding the origins of atypical mathematical
development or dyscalculia (Butterworth et al., 2011), an approach
that has already been successful in the domain of dyslexia (Gabrieli,
2009). In sharp contrast to the number of fMRI studies about the
neural correlates of arithmetic, only a limited number of stud-
ies in this field have used electrophysiological methods. However,
electrophysiology is particularly relevant because it offers a higher
temporal resolution and might be more child friendly than fMRI.

One of the most robust phenomena in the field of mathematical
cognition is the problem size effect, which indicates that reac-
tion time (RT) and error rate increase as the magnitude of the
operands in an arithmetic problem increases (e.g., Stazyk et al.,
1982; Campbell and Graham, 1985; Dehaene, 1992; Ashcraft and
Guillaume, 2009). Numerous behavioral studies have reported
this problem size effect in adults and children (see for a review
Zbrodoff and Logan, 2005). The electrophysiological correlates of

this problem size effect have been well documented in adults (Jost
et al., 2004a,b; Núñez-Peña et al., 2005, 2006, 2011; Núñez-Peña,
2008), which makes this effect an excellent paradigm to investigate
mental arithmetic. To the best of our knowledge, there are no stud-
ies that have examined this problem size effect in children. Against
this background, the present study sets out to explore the elec-
trophysiological correlates of the arithmetic problem size effect in
children.

The problem size effect can be observed in all four
basic arithmetic operations (addition, subtraction, multipli-
cation, and division; e.g., Ashcraft and Battaglia, 1978;
Campbell and Graham, 1985; LeFevre and Morris, 1999; Seyler
et al., 2003) and has been obtained in both production and verifi-
cation tasks (Parkman, 1972; Zbrodoff and Logan, 1990; Ashcraft,
1992; Campbell and Fugelsang, 2001). The problem size effect
in adults is determined by different factors. First, strategic per-
formance differences are significant sources of the problem size
effect (e.g., LeFevre et al., 1996a; Campbell and Xue, 2001; see
for a review: Zbrodoff and Logan, 2005). More specifically, the
problem size effect is influenced by strategy selection and strat-
egy efficiency. Strategy selection refers to the choice of a strategy
among a set of available strategies (Imbo and Vandierendonck,
2008), often subdivided into direct memory retrieval and more
procedural strategies such as counting (e.g., 8 + 3 = 9, 10, 11) and
decomposition (e.g., 8 + 3 = 8 + 2 + 1 = 10 + 1 = 11). Memory
retrieval is typically used more frequently on small than on large
problems, and because retrieval is more efficient than procedure
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use, this explains the problem size effect. Strategy efficiency refers
to how quickly and accurately strategies lead to the solution (Imbo
and Vandierendonck, 2008). Both retrieval and procedural use
are more efficient on small than on large problems, again lead-
ing to the problem size effect. Several studies have addressed the
relationship between strategy selection and arithmetic skill and it
has been reported that high-skilled individuals retrieve arithmetic
facts more frequently and more efficiently than low-skilled indi-
viduals (LeFevre et al., 1996a; Imbo et al., 2007). Second, it has also
been suggested that practice is an important determinant of the
problem size effect (Pauli et al., 1994; Núñez-Peña, 2008). Small
problems are more frequently processed than large problems and
consequently small problems have a stronger memory trace and
are therefore retrieved faster from long-term memory than large
problems (Zbrodoff and Logan, 2005; Imbo and Vandierendonck,
2008; Grabner and De Smedt, 2011). In fact, practice can help to
strengthen the problem-answer association and reduces the prob-
lem size effect. Current explanations of the problem size effect
in children consider it to be driven by the same strategic perfor-
mance differences as in adults (Barrouillet and Lepine, 2005; Imbo
and Vandierendonck, 2008). More specifically, a smaller prob-
lem size effect has been associated with higher retrieval frequency
and higher strategy efficiency (Imbo and Vandierendonck, 2008).
Moreover, this strategy efficiency was related to individual dif-
ferences in working memory span: low-span children executed
both retrieval and procedural strategies less efficiently than high-
span children. In line with these findings, Barrouillet and Lepine
(2005) reported that children with lower working memory capaci-
ties exhibit a stronger problem size effect even when they only rely
on retrieval, compared with children with high working memory
capacities.

By recording event-related potentials (ERPs), previous elec-
trophysiological studies have provided objective quantitative data
on the temporal course of calculation. The solution of an arith-
metic problem typically consists of three parts: encoding (i.e.,
converting a stimulus into appropriate internal codes), retriev-
ing or calculating the answer, and responding (i.e., reporting the
answer; Campbell, 1994; Campbell and Epp, 2005). Several ERP
studies in adults have suggested that the early portion of the ERPs
(i.e., up to around 250 ms post-stimulus) reflects physical iden-
tification of the stimuli (Iguchi and Hashimoto, 2000; El Yagoubi
et al., 2003). The P1, N1, and P2 components typically occur at
posterior electrodes within the first 250 ms post-stimulus. Stud-
ies in adults have reported no differences in these early posterior
ERP components P1, N1, and P2 between small and large prob-
lems (Núñez-Peña et al., 2005), which indicates that the encoding
is a similar mental process for small and large problems. After
the encoding phase, a negativity between 300 and 500 ms with a
maximum over anterior electrodes is usually observed, and this
negativity, mostly referred to as N2 or N400, is larger for incor-
rect than for correct solutions in verification tasks (Niedeggen and
Rösler, 1999; Niedeggen et al., 1999; Jost et al., 2004b; Szucs and
Csepe, 2004, 2005; Zhou et al., 2006). The interpretation of this
early anterior negativity has been highly debated. The component
is sometimes interpreted as an index of mismatch processing, a
reflection of the subject being surprised by the incorrect solu-
tion in verification tasks because it is elicited whenever a solution

does not fit with the preceding equation (Niedeggen and Rösler,
1999; Niedeggen et al., 1999; Szucs and Csepe, 2004, 2005). This
frontal negativity is probably not specific to calculation as it has
been elicited in various tasks with diverse types of stimuli (for
a review see Folstein and Van Petten, 2008). More specifically,
the N2 with an anterior scalp distribution has been observed by
using auditory as well as visual stimuli and in tasks such as ver-
ification, standard odd-ball and go/no-go paradigms that have
been used to study, for example, arithmetic, reading, executive
functioning, and working memory. On the other hand, this neg-
ativity around 400 ms post-stimulus is also thought to be related
to differences in linguistic and working memory functions. In
some adult studies, this component is interpreted as an “arith-
metic” N400 similar to the classic “semantic” N400 (Niedeggen
and Rösler, 1999; Niedeggen et al., 1999; Jost et al., 2004b; Zhou
et al., 2006), which suggests the implication of verbal processing
in arithmetic. Zhou et al. (2006) reported a smaller anterior neg-
ativity around 300 ms for addition than for multiplication, which
might point to less phonological processing in addition than in
multiplication. Furthermore, large problems are typically solved
more often by procedural strategies, which require more working
memory resources. The effect of problem size on this anterior neg-
ativity may therefore reflect differences in attentional and working
memory resources, which are recruited more during large prob-
lems than during small problems. This also echoes data from fMRI
studies, which show larger frontal activity in large than in small
problems (e.g., Arsalidou and Taylor, 2011, for a review). To the
best of our knowledge, only Jost et al. (2004b) investigated the
problem size effect of the N2 component. They found that adults
evoked relatively more negative potentials for large problems than
for small problems between 360 and 780 ms and that the peak was
reached later for large than for small problems. These authors sug-
gested that the problem size effect was caused by both differences
in the activation of the correct result and differences in solution
strategies for small and large problems.

Event-related potentials during arithmetic in adults also
revealed the existence of a late positive slow wave (e.g., Pauli et al.,
1994, 1996; Niedeggen and Rösler, 1999; Iguchi and Hashimoto,
2000; El Yagoubi et al., 2003; Núñez-Peña et al., 2005, 2006; Szucs
and Csepe, 2005; Núñez-Peña and Escera, 2007; Núñez-Peña,
2008; Prieto-Corona et al., 2010; Szucs and Soltesz, 2010; Chen
et al., 2013). This late component, which shows a posterior dis-
tribution and starts at about 400 to 500 ms post-stimuli, may
be the brain signature of the problem size effect. More specifi-
cally, the amplitude of this late positive slow wave increases as the
problem size increases (Pauli et al., 1994, 1996; Núñez-Peña et al.,
2005, 2006; Núñez-Peña, 2008). This amplitude modulation has
been reported for multiplication (Pauli et al., 1994, 1996), addition
and subtraction (Núñez-Peña et al., 2005, 2006). The amplitude
of this positive slow wave is reduced by practice, probably because
practice strengthens the memory trace and encourages the use of
retrieval (Pauli et al., 1994; Núñez-Peña, 2008).

In sharp contrast to the number of ERP studies on arithmetic
in adults, little is known about the neurophysiological corre-
lates of arithmetic in children. To the best of our knowledge,
only three studies have investigated this issue (Xuan et al., 2007;
Prieto-Corona et al., 2010; Zhou et al., 2011). These studies, which
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compared the ERPs of adults and children during calculation tasks,
indicate that similar to adults, children elicited an anterior nega-
tivity peaking around 400 ms post-stimulus and a subsequent late
positive slow wave during arithmetical tasks. Despite these simi-
larities, children displayed larger amplitudes, longer latencies, and
a more widespread activation for these components than adults,
probably due to greater cognitive effort. Importantly, it should be
noted that none of the existing ERP children studies investigated
the problem size effect.

Although several adult ERP studies have examined the effect
of problem size, most of them have investigated this effect in a
(delayed) verification task: the problem is presented first (either all
terms of the arithmetic problem at once or each term sequentially),
and after a specific time interval or together with the equation,
a potential solution is presented. Participants have to evaluate
whether the solution was correct or incorrect. Verification tasks
have several disadvantages. First, verification tasks with sequential
presentation of the arithmetic problem and solution generate two
phases related to calculation (Chen et al., 2013): the production
phase (between the offset of equations and the onset of poten-
tial solutions) and the verification/comparison phase (between
the onset of potential solutions and the participant’s response).
Some studies investigated the production phase by studying brain
activity time-locked to the offset of equations (Núñez-Peña et al.,
2011), whereas others investigated the verification phase by study-
ing the brain activity time-locked to the proposed solutions of
the problem (Niedeggen et al., 1999; Jost et al., 2004b; Szucs and
Csepe, 2005; Luo et al., 2009; Szucs and Soltesz, 2010). Secondly,
a growing number of studies have showed that mismatch pro-
cessing in verification tasks based on for example the plausibility
(Jost et al., 2004b; Núñez-Peña and Escera, 2007) and parity, i.e.,
whether the solution to a problem should be even or odd (Krueger
and Hallford, 1984; Vandorpe et al., 2005), of solutions affect par-
ticipants’ judgments and, consequently, the ERP waves. Taken
together, this means that the specific calculation of the solution
might take place either during the first phase (if the participants
start to calculate as soon as the equation is presented) or during the
second phase (if the participants do not start to calculate until the
potential solution is present). But in addition to this, participants
sometimes may not need to calculate the answer to a problem,
because they can solve it by means of the easier and faster side-
step strategies. For example, incorrect solutions might be rejected
based on plausibility criteria, such as being mathematically very
far from the correct solution (i.e., plausibility-checking strategy)
or incorrect solutions might be rejected when the odd/even sta-
tus of the proposed solution mismatches the correct answer (i.e.,
parity-checking strategy). The use of verification tasks therefore
fails to capture the specific calculation process. We aimed to over-
come this problem by using a production task, which guarantees
that a participant really calculates the solution. This avoids the
aforementioned mismatch effect. It is true that ERP studies typi-
cally avoid such verbal production tasks, because overt responses
might produce movement artifacts in the EEG signal. However, we
were primarily interested in the encoding and retrieval/calculation
phase. To eliminate as much as possible motor-and speech arti-
facts related to the production of the answer, we only included
EEG data from problem presentation until 125 ms before the

fastest oral response, i.e., 800 ms post-stimulus. This approach has
been successfully used in previous electrophysiological research
of arithmetic (De Smedt et al., 2009; Grabner and De Smedt,
2011).

The present ERP study is the first in which the problem size
effect was assessed in children using a verbal production task. We
presented 22 typically developing 12-year-olds single-digit addi-
tion problems of small and large problem size, with small problems
having sums ≤10 (e.g., 2 + 3) and large problems having sums
>10 (e.g., 8 + 7). This categorization of small and large addition
problems has been used in previous studies (e.g., LeFevre et al.,
1996a; De Smedt et al., 2011). The children were instructed to
solve the problem as quickly and accurately as possible. They had
to speak the solution into a voice-key. Based on the adult liter-
ature reviewed above, we focused on the early components (P1,
N1, and P2), the N2 component and the late positive slow wave in
the ERP pattern. Firstly, as the early part of ERPs is considered to
be a reflection of the identification of the stimulus, no differences
between small and large problems were expected up to 250 ms
post-stimulus, as the encoding of small and large problems was
expected to be similar. Secondly, we expected to find an anterior
negativity around 400 ms, with larger amplitudes for large than
for small problem sizes. Finally, we focused on a late positive slow
wave that emerges around 500 ms post-stimulus, the amplitude
of which we predicted to be dependent on problem size, with
smaller amplitudes for small problems and larger amplitudes for
large problems.

MATERIALS AND METHODS
PARTICIPANTS
Twenty-two typically developing 12-year-old children participated
in this study (M = 11.9 years; SD = 0.4; age range: 11.4–12.7 years;
11 boys; 17 right-handed). They all had normal intelligence
(IQ > 88; M = 109; SD = 12) as determined by an abbrevi-
ated version of the Dutch Wechsler Intelligence Scale for Children,
Third Edition (WISC-III-NL; Kort et al., 2005). All children had
normal or corrected-to-normal vision. The parents of the children
did not report any history of neurologic problems, psychiatric dis-
orders or learning difficulties. Children were recruited from local
schools. The study was approved by the local Medical Ethical Board
of the university and written informed consent according to the
Declaration of Helsinki was obtained from the children and their
parents.

STIMULI AND EXPERIMENTAL PROCEDURE
Single-digit addition problems of the form a + b were used as
stimuli. The problems were selected from all possible pairwise
combinations of the digits between 2 and 9, with the exclusion
of tie problems (e.g., 4 + 4) and problems containing a 0 or
1 as operand or answer. These problems were excluded due to
their unique encoding characteristics, an approach that has been
used in previous studies in arithmetic (e.g., LeFevre et al., 1996b;
Imbo and Vandierendonck, 2008; De Smedt et al., 2011). This
set comprises 56 problems. From this set, 20 small (sums ≤ 10)
en 20 large (sums > 10) problems were selected and each prob-
lem was presented twice. The position of the largest addend was
counterbalanced for both problem types.
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The experiment was executed by using Presentation software
(Neurobehavioral Systems, Inc., Albany, CA, USA). Numbers were
presented in white against a black background, and subtended
a visual angle of 2.01◦ vertically and 5.27◦ horizontally. Arith-
metic problems were presented on the screen and the participant
was instructed to mentally solve the problem and subsequently
speak the solution into a voice-key. Both accuracy and speed were
stressed.

Following electrode placement and impedance calibration, the
experimental procedure was described to the child. The child
was seated comfortably in a dimly lit registration room and was
instructed to avoid movements to reduce muscle artifacts in the
EEG signal. The child had to look at the middle of the com-
puter screen placed in front and to maintain fixation to avoid
unnecessary eye movements. The instruction for the task was
given immediately before the task. During the experiment, the
experimenter sat out of sight of the child.

The child performed one practice run with 12 trials to ensure
good understanding of the task and to prevent movements during
the experimental task. More specifically, the children were trained
in avoiding any movement during the mental calculation process
that preceded the overt solution production. In addition, the chil-
dren were trained in limiting articulatory movements during the
actual production of the solution. Following the practice run, all
participants were tested on 80 trials, which were organized into 4
runs of 20 trials separated by rest periods. The temporal sequence
of one trial is depicted in Figure 1. Each trial consisted of (1) a
fixation cross in the center of the screen which remained visible for
500 ms, (2) the addition problem which was shown until response
or for a maximum 10,000 ms, and (3) a fixed interstimulus interval
(ISI) of 1500 ms.

ELECTROPHYSIOLOGICAL RECORDING
Electrode placement was done according to the international 10-
10 system (Nuwer et al., 1998; Jurcak et al., 2007) with use of EEG
recording cap with Ag/AgCl sintered ring electrodes (Easy Cap).
Thirty-one electrodes were placed at Fp1, Fp2, F3, F4, F7, F8, Fz,
FC1, FC2, FC5, FC6, FT9, FT10, C3, C4, Cz, CP1, CP2, CP5, CP6,
T3, T4, T5, T6, P3, P4, Pz, PO9, PO10, O1, and O2. Additional
four electro-oculogram (EOG) electrodes were placed resulting
in two EOG channels: horizontal EOG – two electrodes on the
outer canthi of eyes, and vertical EOG – two electrodes above and
below one eye. EOG channels allowed us to detect both vertical
and horizontal eye movements and to effectively remove these eye

FIGURE 1 | Schematic display of one trial. ISI, interstimulus interval of
1500 ms.

movements from EEG recording during subsequent preprocess-
ing of the signal (see below). Two linked mastoid electrodes were
used as a reference. EEG was sampled at a frequency of 1000 Hz
with 12 bits A/D converter and amplified using a band-pass fil-
ter of 70 Hz. Registration of the digital EEG was made using the
software program BrainRT (OSG, Belgium). The impedance of all
electrodes was monitored for each participant prior to recording
and was always kept below 5 k�.

DATA ANALYSIS
Behavioral data
Mean error rate (percentage of incorrect responses) and mean RT
for correctly solved trials were analyzed with a three-way repeated
measures analysis of variances (ANOVAs), taking Problem size
(small vs. large) as within-subject factor. P-values were corrected
by Greenhouse–Geisser correction for sphericity departures when
appropriate.

EEG analysis
Data processing was performed offline using the EEGLAB vs.10.2
toolbox (Matlab R2008a platform; Delorme and Makeig, 2004).
During preprocessing, data were filtered with a 30 Hz digital low
pass filter. Eye movement artifacts were marked and removed
from the continuous signal without affecting the signal itself with
an algorithm based on the principle of Independent Compo-
nent Analysis (Hyvarinen and Oja, 2000; Mennes et al., 2010).
EEG fragments that contained other movement artifacts were
removed based on visual inspection of the data. After prepro-
cessing, the continuous EEG signal was epoched including a
200 ms pre-stimulus baseline period and a 900 ms post-stimulus
period. Next, epochs for every participant in each experimen-
tal condition were averaged and incorrect trials and trials with
artifacts (voltage exceeded ± 120 μV in any electrode site) were
excluded.

ERPs were time-locked to the onset of the arithmetic prob-
lems and were quantified as peak amplitudes and latencies in the
100–150 (P1 component), 150–250 (N1 component), 150–250 (P2
component) and 250–500 (N2 component) milliseconds windows
following the arithmetic stimuli. The time windows of these early
components were based on the grand mean waveforms and previ-
ous ERP research in arithmetic in children (Xuan et al., 2007; Zhou
et al., 2011) and adults (Núñez-Peña et al., 2005; Núñez-Peña and
Escera, 2007; Luo et al., 2009; Prieto-Corona et al., 2010; He et al.,
2011). The late slow wave, i.e., late positivity component (LPC),
which has been put forward as a brain signature of the problem
size effect, was defined as having a mean amplitude value in the
500–675 ms range. This time window was chosen because it is
the window where the LPC has been described in previous ERP
research in adults (Niedeggen and Rösler, 1999; Núñez-Peña et al.,
2005, 2006, 2011; Núñez-Peña and Escera, 2007; Núñez-Peña,
2008) and children (Prieto-Corona et al., 2010). We only analyzed
the mean amplitude of the LPC, and not the peak amplitude or
peak latency of the LPC because the LPC is a slow wave component
without a clear starting point, peak, and ending point. Therefore
we analyzed the mean amplitude over a time window where the
LPC has been described in previous research. This approach has
been used previous studies on the LPC (e.g., Niedeggen and Rösler,
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1999; Núñez-Peña et al., 2006, 2011; Núñez-Peña and Escera,
2007). Data later than 125 ms before the first oral response of
any child as registered by the voice key (i.e., 800 ms post-stimulus)
were not included to account for the delay of the voice-key trig-
ger signal and to eliminate motor- and speech-related artifacts
when producing the answer into the voice-key. This approach has
been successfully used in previous electrophysiological research
during arithmetic (De Smedt et al., 2009; Grabner and De Smedt,
2011).

The early components P1, N1, and P2 were analyzed at the
following posterior electrode sites: C3, Cz, C4, CP5, CP1, CP2,
CP6, P3, Pz, P4, PO9, PO10, O1, and O2. The selection of
electrode sites was based on the existing body of evidence (e.g.,
Núñez-Peña et al., 2005; Zhou et al., 2011) and visual inspec-
tion of the data. For statistical analyses, ERPs were aggregated
over five cortical areas per hemisphere: central left (C3), cen-
tral right (C4), centro-parietal left (CP5, CP1), centro-parietal
right (CP2, CP6), parietal left (P3), parietal right (P4), parieto-
occipital left (PO9), parieto-occipital right (PO10), occipital left
(O1), occipital right (O2). Peak latencies and amplitudes of these
early components were analyzed using ANOVA, taking problem
size (small vs. large), caudality (central vs. centro-parietal vs. pari-
etal vs. parieto-occipital vs. occipital), and hemisphere (left vs.
right) as within-subject factors. Midline sites, i.e., Cz and Pz, were
analyzed separately. For these midline sites, a two-way repeated
measures ANOVA was carried out with problem size (small
vs. large) and caudality (central vs. parietal) as within-subject
factors.

The following electrode sites (Fp1, Fp2, F7, F3, Fz, F4, F8, FC5,
FC1, FC2, FC6, C3, Cz, and C4) were selected for statistical anal-
ysis of the N2 component. The analysis of this N2 component
was restricted to these electrodes based on inspection of the data
and because the early negativity component is known to have reg-
ularly an anterior maximum (e.g., Szucs and Csepe, 2005; Zhou
et al., 2006, 2011; Xuan et al., 2007; Luo et al., 2009). For statistical
analyses, ERPs were aggregated over four cortical areas per hemi-
sphere: prefrontal left (Fp1), prefrontal right (Fp2), frontal left (F7,
F3), frontal right (F4, F8), fronto-central left (FC5, FC1), fronto-
central right (FC2, FC6), central left (C3), and central right (C4).
Peak latencies and amplitudes of this N2 component were analyzed
using a three-way repeated measures ANOVA, taking problem size
(small vs. large), caudality (prefrontal vs. frontal vs. fronto-central
vs. central), and hemisphere (left vs. right) as within-subject fac-
tors. Midline sites, i.e., Fz and Cz, were analyzed separately. For
these midline sites, a two-way repeated measures ANOVA was car-
ried out with problem size (small vs. large) and caudality (frontal
vs. central) as within-subject factors.

The LPC was analyzed at the following electrode sites: P3, Pz,
P4, PO9, PO10, O1, and O2. Statistical analyses were performed
over three areas per hemisphere: parietal left (P3), parietal right
(P4), parieto-occipital left (PO9), parieto-occipital right (PO10),
occipital left (O1), and occipital right (O2).The mean amplitudes
of this LPC were analyzed using a three-way repeated measures
ANOVA, with problem size (small vs. large), caudality (pari-
etal vs. parieto-occiptal vs. occipital), and hemisphere (left vs.
right) as within-subject factors. The midline site Pz was ana-
lyzed separately. For this electrode site, a one-way ANOVA was

carried out with problem size (small vs. large) as within-subject
factor.

For all the statistical analyses the F value, the uncorrected
degrees for freedom and probability level are reported. We
used the Bonferroni correction for multiple comparisons where
appropriate.

RESULTS
BEHAVIORAL DATA
The children solved small additions within 803–1531 ms
(M = 1129 ± 212 ms) with an error rate of 0–5%
(M = 3.14 ± 0.97%), whereas large additions were solved within
1045–2708 ms (M = 1707 ± 0 415 ms) with an error rate of
0–22.5% (M = 7.73 ± 0.94%). With regard to RT, there was a
significant effect of problem size [F(1,24) = 91.37, p < 0.0001],
showing that small problems were solved faster than large prob-
lems. Turning to error rate, there was a significant effect of problem
size [F(1,24) = 14.27, p < 0.01], showing that fewer errors were
made on small problems than on large problems.

EVENT-RELATED POTENTIALS
Early components P1, N1, P2
As expected, no differences between small and large problem
size were found up to approximately 250 ms post-stimulus (see
Figure 2). More specifically there was no significant main effect of
problem size for P1 peak amplitude (p = 0.973), P1 peak latency
(p = 0.678), N1 peak amplitude (p = 0.145) or N1 peak latency
(p = 0.079). On P2, there was no main effect of problem size for the
peak amplitude (p = 0.191), nor for the peak latency (p = 0.559).

N2 effect
The overall ANOVA for N2 peak amplitude revealed a significant
main effect of problem size [F(1,21) = 0 12.57, p = 0.002]. Post
hoc comparisons with Bonferroni adjustments revealed that large

FIGURE 2 |The mean event-related potentials elicited by single-digit

additions over representative electrode O2 (blue line, large problems;

red line = small problems). No differences among problem size in the
early components P1, N1, and P2.
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problems, when compared to small problems, elicited more neg-
ative potentials at the anterior electrodes over the scalp peaking
around 400 ms, i.e., –6.39 μV versus –3.76 μV. Pairwise compar-
isons showed significant problem size effects at the prefrontal left
area [t(21 = –2.51; p = 0.021], prefrontal right [t(21) = –2.48;
p = 0.022], frontal left [t(21) = –3.32; p = 0.003], frontal right
[t(21) = –2.28; p = 0.033], fronto-central left [t(21) = –2.51;
p = 0.001], fronto-central right [t(21) = –2.30; p = 0.032], and
central left [t(21) = –2.94; p = 0.008]. No significant differ-
ence was found at the central right area (p > 0.05). N2 peak
amplitudes also showed significant main effects of problem size
[F(3,63) = 6.25, p = 0.022] and caudality [F(3,63) = 54.86,
p < 0.0001] in midline regions. The problem size only reached
significance at Fz [t(21) = –2.53; p = 0.019; see Figure 3] and
not at Cz (p > 0.05). The N2 amplitude was significantly more
negative at Fz (–9.08 ± 1.36 μV) than at Cz (–1.63 ± 1.53 μV)
and again large problems elicited larger amplitudes than small
problems. The significant problem size effect (large minus small)
in the peak amplitude of the N2 component varied between –
1.79 and –2.62 μV depending on the topographical area (see
Table 1). In addition to the significant problem size effect, the
overall ANOVA for N2 peak amplitude revealed a significant main
effect of caudality [F(3,63) = 49.41, p < 0.0001] as well. Post
hoc comparisons with Bonferroni adjustments revealed that the
N2 peak amplitude was significantly more negative at prefrontal
(–8.95 ± 1.36 μV) than at frontal (–7.24 ± 1.32 μV) than fronto-
central (–3.76 ± 1.19 μV) and central (–0.35 ± 1.10 μV) electrode
sites. There was no effect of hemisphere (p > 0.05).

Turning to N2 latency, the overall ANOVA showed no effect
for problem size (p = 0.709) or hemisphere (p = 0.342), but a
significant main effect of caudality [F(3,63) = 4.43, p = 0.008].
Post hoc comparisons with Bonferroni adjustments revealed
that the N2 peak latency was significantly lower at prefrontal
(358.76 ± 9.65 ms) than at frontal (365.64 ± 9.30 ms) than
fronto-central (373.04 ± 9.62 ms) and central (373.04 ± 8.24 ms)

FIGURE 3 |The mean event-related potentials elicited by single-digit

additions over representative electrode Fz (blue line, large problems;

red line, small problems). A significant problem size effect of amplitude
can be observed in the N2 component around 400 ms.

Table 1 |The effect of problem size on the amplitude of the N2

component.

Topographical area Problem size effect (μV,

large minus small)

Prefrontal left –2.12*

Prefrontal right –2.12*

Frontal left –2.38**

Frontal midline –2.69*

Frontal right –2.07*

Fronto-central left –2.62**

Fronto-central right –1.79*

Central left –2.33**

Central midline –

Central right –

*p < 0.05; **p < 0.01.
Only significant problem size effects are shown.

electrode sites. No significant differences were found for midline
regions.

LPC effect
The overall ANOVA for the mean amplitude of the LPC revealed a
significant main effect of problem size [F(1,21) = 5.85, p = 0.025].
Post hoc comparisons with Bonferroni adjustments revealed that
large problems had larger mean amplitudes in the 500–625 ms
range compared with small problems, i.e., 7.91 ± 0.92 μV vs.
6.44 ± 0.084 μV. Pairwise comparisons showed significant prob-
lem size effects at the parietal right area [t(21) = 2.32; p = 0.030],
parieto-occipital right [t(21) = 2.45; p = 0.023], occipital left
[t(21) = 2.12; p = 0.046], and occipital right area [t(21) = 3.00;
p = 0.007]. No significant differences were found in the left parietal
area (p = 0.95) and left parieto-occipital area (p = 0.151). An effect
of problem size [F(1,21) = 106.41, p < 0.0001] was significant at
the midline electrode Pz (see Figure 4). Again large problems
had larger mean amplitudes than small problems. Depending
on the topographical area, the problem size-effect (large minus
small) varied between 1.68 and 2.65 μV (see Table 2). The overall
ANOVA for the mean amplitude of the LPC revealed significant
effects of caudality [F(2,42) = 32.03, p < 0.0001] and hemisphere
[F(1,21) = 5.66, p = 0.027]. Post hoc comparisons with Bonferroni
adjustments revealed that the mean amplitude in the 500–625 ms
range was higher in the right hemisphere (7.98 ± 0.93 μV) than
in the left hemisphere (6.36 ± 0.86 μV) and that the mean ampli-
tude was higher at parietal (11.63 ± 1.36 μV) than at occipital
(7.95 ± 1.13 μV) and at parieto-occipital (1.93 ± 0.65 μV)
electrode sites.

The overall ANOVA for the mean amplitude of the LPC
revealed an interaction between problem size and hemisphere
[F(1,21) = 8.47, p = 0.008]. Follow-up analyses revealed that
the problem size effect was observed in the right [F(1,21) = 10.00,
p = 0.005] but not in the left hemisphere.

The overall ANOVA for the mean amplitude of the LPC
also revealed an interaction of problem size and caudality
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FIGURE 4 |The mean event-related potentials elicited by single-digit

additions over representative electrode Pz (blue line, large problems;

red line, small problems). A significant problem size effect can be
observed in the mean amplitude of the late positivity component (LPC)
component.

Table 2 | Mean amplitude differences (in μV) between small and large

problems in the 500–675 ms window.

Topographical area Problem size effect (μV,

large minus small)

Parietal left –

Parietal midline 2.65*

Parietal right 1.68*

Parieto-occipital left –

Parieto-occipital right 1.96*

Occipital left 1.74*

Occipital right 2.57**

*p < 0.05; **p < 0.01.
Only significant problem size effects are shown.

[F(1,21) = 3.58, p = 0.047]. A more detailed analysis of this
interaction effect was performed by using separate ANOVAs at
each caudality. The effect of problem size was only significant
at parieto-occipital [F(1,21) = 4.62, p = 0.043] and occipital
electrode sites [F(1,21) = 6.94, p = 0.015].

DISCUSSION
Most of the existing electrophysiological studies on mental arith-
metic have dealt with adult participants (e.g., Pauli et al., 1994,
1996; Iguchi and Hashimoto, 2000; Jost et al., 2004a,b; Núñez-
Peña et al., 2005, 2006, 2011; Núñez-Peña and Escera, 2007;
Núñez-Peña, 2008; Jasinski and Coch, 2012; Chen et al., 2013)
while only a few of them have focused on children (Xuan et al.,
2007; Prieto-Corona et al., 2010; Zhou et al., 2011). Extending
this body of data, the present study is the first to use ERPs to
investigate the arithmetic problem size effect, which is one of

the most robust effects in the field of mathematical cognition.
Although this effect has been investigated in adults (Jost et al.,
2004b; Núñez-Peña et al., 2005, 2006, 2011; Núñez-Peña, 2008),
there are no studies that examined this issue in children. Such
research is relevant because knowledge about the electrophysio-
logical correlates of the problem size effect in typically developing
children might be useful for future studies in children with math-
ematical difficulties, particularly in view of the large individual
differences in arithmetic strategy use in children (e.g., Dowker,
2005). Therefore, the main aim of the present study was to exam-
ine the ERPs elicited by small and large arithmetic problems in
children.

The behavioral data of the current study showed clear prob-
lem size effects both on RTs and error rates, i.e., slower and less
accurate performance on large problems than on small problems
(see Zbrodoff and Logan, 2005 for a review). This observation is
in line with previous behavioral research in children of a simi-
lar age (Barrouillet and Lepine, 2005; Imbo and Vandierendonck,
2008).

No differences between small and large problem sizes were
found up to approximately 250 ms post-stimulus, i.e., in the P1,
N1, and P2 component. This finding replicated previous ERP
studies with verification tasks in adults (Iguchi and Hashimoto,
2000; El Yagoubi et al., 2003; Núñez-Peña et al., 2005), in which
these early components were associated with the identification
of the stimulus. This is also in line with the classical ERP pat-
tern connected to visual stimuli recognition in adults (Simson
et al., 1985; Czigler and Csibra, 1990). Only Zhou et al. (2011)
investigated some of these early components, namely P1 and N1,
during arithmetic in children and suggested that these early com-
ponents likely reflect low-level processing rather than arithmetic
processing. It should be noted that although Zhou et al. (2011)
administered small and large addition problems, the authors
did not analyze potential differences in the ERPs between these
small and large additions. The present study adds new infor-
mation to the findings of Zhou et al. (2011) by showing the
existence of similar low-level processes for small problems and
large problems.

With respect to the N2 component, our results show that
large additions, compared to small additions elicit more nega-
tive potentials on the anterior electrodes over the scalp between
250 and 500 ms in both hemispheres. This finding is consis-
tent with the observation of Jost et al. (2004b) who also found
that larger problems evoked a relatively more negative poten-
tial than smaller problems. This observation might reflect the
use of more attentional resources and working memory when
solving large relative to small single-digit additions. This is also
consistent with fMRI data collected during calculation tasks in
children (De Smedt et al., 2011) and adults (e.g., Zhou et al.,
2007; Jost et al., 2009), which showed higher activity over frontal
areas when solving large problems. These researchers explained
this observation by the use of more attentional and work-
ing memory resources when solving large problems compared
to small problems. Likewise, differences in anterior negativity
may reflect differences in load on working memory and con-
trol functions. This interpretation is in line with previous ERP
findings of Prieto-Corona et al. (2010) and Xuan et al. (2007),
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who found greater N400 amplitudes in children than adults and
explained this by the fact that children may exert greater effort
when solving arithmetic problems. Similarly, our results may
reflect slower and more effortful calculation for large problems
than for small problems. We would like to point out that some
authors have suggested that the left negativity around 400 ms
observed in their ERP studies is an index of phonological pro-
cessing (Niedeggen and Rösler, 1999; Niedeggen et al., 1999; Zhou
et al., 2006, 2011; Luo et al., 2009). These adult studies have
indicated that the left negativity is associated with verbal pro-
cessing in arithmetic because phonological representations might
be important for retrieval of existing arithmetic facts. Our pat-
tern of N2 findings does not fit this interpretation. From this
point of view, one would predict larger amplitudes for small
problems than for large problems, because small problems are
expected to be solved more with retrieval of verbally stored arith-
metic facts. However, we observed the opposite effect. This
seems to suggest that in the current study the effect of prob-
lem size on the N2 component reflects differences in working
memory load and executive processes rather than phonological
processing.

Prior adult ERP studies on arithmetic have reported that the
negativity around 400 ms is followed by an LPC with posterior
distribution (e.g., Niedeggen et al., 1999; Szucs and Csepe, 2005;
Núñez-Peña, 2008) and an amplitude that is modulated by prob-
lem size (Pauli et al., 1994, 1996; Núñez-Peña et al., 2005, 2006;
Núñez-Peña, 2008). Previous investigations of the LPC compo-
nent in children are scarce. Only one ERP study in children
examined the LPC in children during arithmetic (Prieto-Corona
et al., 2010). In this study, children displayed an LPC in arith-
metic verification tasks, but only for correct solutions. However,
it is unclear whether this LPC is modulated by problem size, as
in adults (Pauli et al., 1994, 1996; Núñez-Peña et al., 2005, 2006;
Núñez-Peña, 2008). The children in the present study showed
larger mean amplitudes of the LPC for large additions than for
small additions at right parieto-occipital electrodes. This obser-
vation is in line with previous ERP studies in adults about the
problem size effect (Pauli et al., 1994, 1996; Núñez-Peña et al.,
2005, 2006; Núñez-Peña, 2008) that observed an increase in the
mean amplitude of the LPC with problem size. Previous adult
research explained the problem size effect for the LPC by the differ-
ences in frequency of exposure between small and large problems
together with the use of different strategies (Núñez-Peña, 2008).
More specifically, small problems are processed more frequently
than large problems and therefore have a stronger problem-answer
association in long-term memory, which means that they can
be solved quickly by retrieval. On the other hand, larger prob-
lems are more often solved by slow procedures, such as counting
and decomposition, and the answer is not directly retrieved from
long-term memory.

We observed a right lateralized problem size effect on the
LPC. To the best of our knowledge, no previous studies on the
problem size effect on the LPC explored hemispherical differ-
ences, except for Núñez-Peña (2008). They found a somewhat
right lateralized problem size effect. More specifically, the prob-
lem size effect reached only statistical significance at L2, L3,
L4, and L5 when laterality was subdivided into five levels from

left to right. This observation is in line with the right later-
alized problem size effect in the current study. Our finding is
also consistent with previous fMRI research that found greater
activity for large than for small problems at right posterior
brain areas, such as the right IPS (e.g., Stanescu-Cosson et al.,
2000; Prado et al., 2013). The right lateralization of the LPC
effect at posterior electrode sites might thus have originated
from right posterior brain regions which are involved in visu-
ospatial working memory and spatial attention (Corbetta et al.,
2000; Diwadkar et al., 2000; Linden et al., 2003; Postle et al.,
2004). In other words, the larger mean amplitude of the LPC
at right posterior electrodes for large problems than for small
problems might suggest that large problems involved more visu-
ospatial processing to support the manipulation of numerical
magnitudes.

Different from most of the existing ERP studies in arithmetic
(e.g., Jost et al., 2004a,b; Núñez-Peña et al., 2005, 2006, 2011;
Núñez-Peña and Escera, 2007; Núñez-Peña, 2008; Prieto-Corona
et al., 2010; Zhou et al., 2011), the present study used a produc-
tion and not a verification task to examine the electrophysiological
correlates of arithmetic. This was done because verification tasks
might fail to capture the specific calculation process. Indeed, in
these verification tasks, multiple numerical and non-numerical
processes can contribute to task execution. As mentioned in the
introduction, participants may not need to calculate the prob-
lem to give their answer, because they can solve the problem
by means of easier and faster side-step strategies such as the
plausibility-checking strategy (Zbrodoff and Logan, 1990; Camp-
bell and Tarling, 1996; Núñez-Peña and Escera, 2007). It is true
that production tasks are often avoided in ERP-research, because
they might increase the occurrence of movement artifacts that
distort the EEG-signal. However, as we have described above,
we have tried to avoid as much as possible such movement arti-
facts by thorough training of the children and by only analyzing
the EEG-signal from stimulus presentation until 125 ms before
the first verbal response of any child. The current study showed
similar early and late components on ERPs during arithmetic
by using a verbal-production task. To the best of our knowl-
edge, this is the first ERP study that uses a verbal production
paradigm to compare small and large problems. This is of partic-
ular interest because production tasks are more ecologically valid
measures of mathematical performance than verification tasks.
Indeed, verification tasks are rarely used in real-world classroom
situations.

A growing body of evidence points to deficits in arithmetic
fact retrieval in children with atypical mathematical develop-
ment or dyscalculia (e.g., Jordan et al., 2003; Geary, 2004, 2010).
The underlying causes of these deficits are largely unknown
but structural (e.g., Isaacs et al., 2001; Rotzer et al., 2008) and
functional (e.g., Price et al., 2007; Kucian et al., 2011) abnormal-
ities in the brain, in particular in the inferior parietal cortex,
have been observed (e.g., Butterworth et al., 2011). Develop-
mental studies on brain activity during arithmetic have the
potential to unravel the biological origin of dyscalculia and in
the long run, these studies might lead to neural makers for
detection of this disorder. This approach has already been suc-
cessful in the domain of dyslexia (see for a review: Habib, 2000;
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Heim and Keil, 2004; Lyytinen et al., 2005), where ERPs have
been shown to be effective indices of difficulties in auditory
processing in dyslexia and ERPs to speech sounds in infants pre-
dict (impairments in) their reading development 8 years later
(Molfese, 2000). Similarly, ERPs following arithmetic might be
a neural marker of subsequent mathematical difficulties. Future
research should investigate how the electrophysiological prob-
lem size effect differs between typically developing children and
children with dyscalculia. Such research should also investigate
whether training of arithmetic fact retrieval in children with
dyscalculia has an impact on the brain signatures of their prob-
lem size effect. The ERP problem size design of the current
study provides an excellent paradigm to probe such outstanding
questions.

ACKNOWLEDGMENTS
This research was supported by the “Research Foundation Flan-
ders” FWO (grant number G.0359.10). We thank the children and
their families for their time and contribution to this study. We also
thank Ivan Myatchin for his assistance with the ERP design and
data analysis.

REFERENCES
Arsalidou, M., and Taylor, M. J. (2011). Is 2+2=4? Meta-analyses of brain

areas needed for numbers, and calculations. Neuroimage 54, 2382–2393. doi:
10.1016/j.neuroimage.2010.10.009

Ashcraft, M. H. (1992). Cognitive arithmetic: a review of data, and theory. Cognition
44, 75–106. doi: 10.1016/0010-0277(92)90051-I

Ashcraft, M. H., and Battaglia, J. (1978). Cognitive arithmetic: evidence for retrieval,
and decision-processes in mental addition. J. Exp. Psychol. Hum. Learn. Mem. 4,
527–538. doi: 10.1037//0278-7393.4.5.527

Ashcraft, M. H., and Guillaume, M. M. (2009). Mathematical cognition and the
problem size effect. Psychol. Learn. Motiv. 51, 121–151. doi: 10.1016/S0079-
7421(09)51004-3

Barrouillet, P., and Lepine, R. (2005). Working memory, and children’s use of
retrieval to solve addition problems. J. Exp. Child Psychol. 91, 183–204. doi:
10.1016/j.jecp.2005.03.002

Butterworth, B., Varma, S., and Laurillard, D. (2011). Dyscalculia: from brain to
education. Science 332, 1049–1053. doi: 10.1126/science.1201536

Campbell, J. I., and Epp, L. J. (2005). “Architectures for arithmetic,” in Handbook
of Mathematical Cognition, ed. J. I. D. Campbell (New York: Psychology Press),
347–360.

Campbell, J. I., and Tarling, D. P. (1996). Retrieval processes in arithmetic produc-
tion, and verification. Mem. Cognit. 24, 156–172. doi: 10.3758/BF03200878

Campbell, J. I. D. (1994). Architectures for numerical cognition. Cognition 53, 1–44.
doi: 10.1016/0010-0277(94)90075-2

Campbell, J. I. D., and Fugelsang, J. (2001). Strategy choice for arithmetic
verification: effects of numerical surface form. Cognition 80, B21–B30. doi:
10.1016/S0010-0277(01)00115-9

Campbell, J. I. D., and Graham, D. J. (1985). Mental multiplication skill: struc-
ture, process, and acquisition. Can. J. Psychol. 39, 338–366. doi: 10.1037/
h0080065

Campbell, J. I. D., and Xue, Q. L. (2001). Cognitive arithmetic across cultures. J. Exp.
Psychol. Gen. 130, 299–315. doi: 10.1037//0096-3445.130.2.299

Chen, Y., Campbell, J. I. D., and Liu, C. (2013). The N3 is sensitive to odd-even
congruency information in arithmetic fact retrieval. Exp. Brain Res. 225, 603–611.
doi: 10.1007/s00221-013-3404-9

Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P., and Shul-
man, G. L. (2000). Voluntary orienting is dissociated from target detection
in human posterior parietal cortex. Nat. Neurosci. 3, 292–297. doi: 10.1038/
73009

Czigler, I., and Csibra, G. (1990). Event-related potentials in a visual-discrimination
task: negative waves related to detection, and attention. Psychophysiology 27,
669–676. doi: 10.1111/j.1469-8986.1990.tb03191.x

De Smedt, B., Grabner, R. H., and Studer, B. (2009). Oscillatory EEG correlates of
arithmetic strategy use in addition, and subtraction. Exp. Brain Res. 195, 635–642.
doi: 10.1007/s00221-009-1839-9

De Smedt, B., Holloway, I. D., and Ansari, D. (2011). Effects of problem size,
and arithmetic operation on brain activation during calculation in children
with varying levels of arithmetical fluency. Neuroimage 57, 771–781. doi:
10.1016/j.neuroimage.2010.12.037

Dehaene, S. (1992). Varieties of numerical abilities. Cognition 44, 1–42. doi:
10.1016/0010-0277(92)90049-N

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for anal-
ysis of single-trial EEG dynamics including independent component analysis.
J. Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Diwadkar, V. A., Carpenter, P. A., and Just, M. A. (2000). Collaborative activ-
ity between parietal, and dorso-lateral prefrontal cortex in dynamic spatial
working memory revealed by fMRI. Neuroimage 12, 85–99. doi: 10.1006/nimg.
2000.0586

Dowker, A. (2005). Individual Differences in Arithmetic: Implications for Psychology,
Neuroscience and Education. Hove: Psychology Press.

El Yagoubi, R., Lemaire, P., and Besson, M. (2003). Different brain mecha-
nisms mediate two strategies in arithmetic: evidence from Event-Related brain
Potentials. Neuropsychologia 41, 855–862. doi: 10.1016/S0028-3932(02)00180-X

Folstein, J. R., and Van Petten, C. (2008). Influence of cognitive control, and mis-
match on the N2 component of the ERP: a review. Psychophysiology 45, 152–170.
doi: 10.1111/j.1469-8986.2007.00602.x

Gabrieli, J. D. E. (2009). Dyslexia: a new synergy between education, and cognitive
neuroscience. Science 325, 280–283. doi: 10.1126/science.1171999

Geary, D. C. (2004). Mathematics, and learning disabilities. J. Learn. Disabil. 37,
4–15. doi: 10.1177/00222194040370010201

Geary, D. C. (2010). “Mathematical learning disabilities,” in Advances in Child
Development and Behavior: Developmental Disorders and Interventions, Vol. 39,
Advances in Child Development and Behavior, ed. J. Holmes (San Diego: Elsevier
Academic Press Inc.), 45–77.

Grabner, R. H., and De Smedt, B. (2011). Neurophysiological evidence for the
validity of verbal strategy reports in mental arithmetic. Biol. Psychol. 87, 128–136.
doi: 10.1016/j.biopsycho.2011.02.019

Habib, M. (2000). The neurological basis of developmental dyslexia – an
overview, and working hypothesis. Brain 123, 2373–2399. doi: 10.1093/brain/123.
12.2373

He, W. Q., Luo, W. B., He, H. M., Chen, X., and Zhang, D. J. (2011). N170 effects
during exact and approximate calculation tasks: an ERP study. Neuroreport 22,
437–441. doi: 10.1097/WNR.0b013e32834702c1

Heim, S., and Keil, A. (2004). Large-scale neural correlates of developmental
dyslexia. Eur. Child Adolesc. Psychiatry 13, 125–140. doi: 10.1007/s00787-004-
0361-7

Hyvarinen, A., and Oja, E. (2000). Independent component analysis: algorithms,
and applications. Neural Netw. 13, 411–430. doi: 10.1016/S0893-6080(00)
00026-5

Iguchi, Y., and Hashimoto, I. (2000). Sequential information processing dur-
ing a mental arithmetic is reflected in the time course of event-related brain
potentials. Clin. Neurophysiol. 111, 204–213. doi: 10.1016/S1388-2457(99)
00244-8

Imbo, I., and Vandierendonck, A. (2008). Effects of problem size, operation,
and working-memory span on simple-arithmetic strategies: differences between
children, and adults? Psychol. Res. 72, 331–346. doi: 10.1007/s00426-007-0112-8

Imbo, I., Vandierendonck, A., and Rosseel, Y. (2007). The influence of problem
features, and individual differences on strategic performance in simple arithmetic.
Mem. Cognit. 35, 454–463. doi: 10.3758/BF03193285

Isaacs, E. B., Edmonds, C. J., Lucas, A., and Gadian, D. G. (2001). Calculation
difficulties in children of very low birthweight – a neural correlate. Brain 124,
1701–1707. doi: 10.1093/brain/124.9.1701

Jasinski, E. C., and Coch, D. (2012). ERPs across arithmetic operations in a delayed
answer verification task. Psychophysiology 49, 943–958. doi: 10.1111/j.1469-
8986.2012.01378.x

Jordan, N. C., Hanich, L. B., and Kaplan, D. (2003). Arithmetic fact mastery in
young children: a longitudinal investigation. J. Exp. Child Psychol. 85, 103–119.
doi: 10.1016/S0022-0965(03)00032-8

Jost, K., Beinhoff, U., Hennighausen, E., and Rosler, F. (2004a). Facts,
rules, and strategies in single-digit multiplication: evidence from event-related

Frontiers in Human Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 756 | 9

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Van Beek et al. ERP problem size effect children

brain potentials. Brain Res. Cogn. Brain Res. 20, 183–193. doi:
10.1016/j.cogbrainres.2004.02.005

Jost, K., Hennighausen, E., and Rosler, F. (2004b). Comparing arithmetic, and
semantic fact retrieval: effects of problem size, and sentence constraint on
event-related brain potentials. Psychophysiology 41, 46–59. doi: 10.1111/1469-
8986.00119

Jost, K., Khader, P., Burke, M., Bien, S., and Rosler, F. (2009). Dissociating the
solution processes of small, large, and zero multiplications by means of fMRI.
Neuroimage 46, 308–318. doi: 10.1016/j.neuroimage.2009.01.044

Jurcak, V., Tsuzuki, D., and Dan, I. (2007). 10/20, 10/10, and 10/5 systems revisited:
their validity as relative head-surface-based positioning systems. Neuroimage 34,
1600–1611. doi: 10.1016/j.neuroimage.2006.09.024

Kaufmann, L., Wood, G., Rubinsten, O., and Henik, A. (2011). Meta-analyses
of developmental fMRI studies investigating typical, and atypical trajectories
of number processing, and calculation. Dev. Neuropsychol. 36, 763–787. doi:
10.1080/87565641.2010.549884

Kort, W., Schittekatte, M., Dekker, P. H., Verhaeghe, P., Compaan, E. L.,
Bosmans, M., et al. (2005). WISC-III NL Wechsler Intelligence Scale for Chil-
dren. Derde Editie NL. Handleiding en Verantwoording. Amsterdam: Harcourt
Test Publishers/Nederlands Instituut voor Psychologen.

Krueger, L. E., and Hallford, E. W. (1984). Why 2+2 looks so wrong: on the odd-
even rule in sum verification. Mem. Cognit. 12, 171–180. doi: 10.3758/BF03
198431

Kucian, K., Loenneker, T., Martin, E., and von Aster, M. (2011). Non-
symbolic numerical distance effect in children with, and without developmental
dyscalculia: a parametric fMRI study. Dev. Neuropsychol. 36, 741–762. doi:
10.1080/87565641.2010.549867

LeFevre, J. A., Bisanz, J., Daley, K. E., Buffone, L., Greenham, S. L., and Sadesky, G.
S. (1996a). Multiple routes to solution of single-digit multiplication problems. J.
Exp. Psychol. Gen. 125, 284–306. doi: 10.1037/0096-3445.125.3.284

LeFevre, J. A., Sadesky, G. S., and Bisanz, J. (1996b). Selection of procedures in
mental addition: reassessing the problem size effect in adults. J. Exp. Psychol.
Learn. Mem. Cogn. 22, 216–230. doi: 10.1037/0278-7393.22.1.216

LeFevre, J. A., and Morris, J. (1999). More on the relation between division,
and multiplication in simple arithmetic: evidence for mediation of divi-
sion solutions via multiplication. Mem. Cogn. 27, 803–812. doi: 10.3758/
BF03198533

Linden, D. E. J., Bittner, R. A., Muckli, L., Waltz, J. A., Kriegeskorte, N., Goebel, R.,
et al. (2003). Cortical capacity constraints for visual working memory: dissocia-
tion of fMRI load effects in a fronto-parietal network. Neuroimage 20, 1518–1530.
doi: 10.1016/j.neuroimage.2003.07.021

Luo, W. B., Liu, D. Z., He, W. Q., Tao, W. D., and Luo, Y. J. (2009). Dissociated
brain potentials for two calculation strategies. Neuroreport 20, 360–364. doi:
10.1097/WNR.0b013e328323d737

Lyytinen, H., Guttorm, T. K., Huttunen, T., Hämäläinen, J., Leppänen, P. H. T., and
Vesterinen, M. (2005). Psychophysiology of developmental dyslexia: a review of
findings including studies of children at risk for dyslexia. J. Neurolinguistics 18,
167–195. doi: 10.1016/j.jneuroling.2004.11.001

Mennes, M., Wouters, H., Vanrumste, B., Lagae, L., and Stiers, P. (2010). Val-
idation of ICA as a tool to remove eye movement artifacts from EEG/ERP.
Psychophysiology 47, 1142–1150. doi: 10.1111/j.1469-8986.2010.01015.x

Molfese, D. L. (2000). Predicting dyslexia at 8 years of age using neonatal brain
responses. Brain Lang. 72, 238–245. doi: 10.1006/brln.2000.2287

Niedeggen, M., and Rösler, F. (1999). N400 effects reflect activation spread during
retrieval of arithmetic facts. Psychol. Sci. 10, 271–276. doi: 10.1111/1467-
9280.00149

Niedeggen, M., Rosler, F., and Jost, K. (1999). Processing of incongruous mental
calculation problems: evidence for an arithmetic N400 effect. Psychophysiology
36, 307–324. doi: 10.1017/S0048577299980149

Núñez-Peña, M. I. (2008). Effects of training on the arithmetic problem-size
effect: an event-related potential study. Exp. Brain Res. 190, 105–110. doi:
10.1007/s00221-008-1501-y

Núñez-Peña, M. I., Cortinas, M., and Escera, C. (2006). Problem size effect,
and processing strategies in mental arithmetic. Neuroreport 17, 357–360. doi:
10.1097/01.wnr.0000203622.24953.c2

Núñez-Peña, M. I., and Escera, C. (2007). An event-related brain potential
study of the arithmetic split effect. Int. J. Psychophysiol. 64, 165–173. doi:
10.1016/j.ijpsycho.2007.01.007

Núñez-Peña, M. I., Gracia-Bafalluy, M., and Tubau, E. (2011). Individual differences
in arithmetic skill reflected in event-related brain potentials. Int. J. Psychophysiol.
80, 143–149. doi: 10.1016/j.ijpsycho.2011.02.017

Núñez-Peña, M. I., Honrubia-Serrano, M. L., and Escera, C. (2005). Problem size
effect in additions, and subtractions: an event-related potential study. Neurosci.
Lett. 373, 21–25. doi: 10.1016/j.neulet.2004.09.053

Nuwer, M. R., Comi, G., Emerson, R., Fuglsang-Frederiksen, A., Guerit, J. M.,
Hinrichs, H., et al. (1998). IFCN standards for digital recording of clinical EEG.
Electroencephalogr. Clin. Neurophysiol. Suppl. 106, 259–261. doi: 10.1016/S0013-
4694(97)00106-5

Parkman, J. M. (1972). Temporal aspects of simple multiplication, and comparison.
J. Exp. Psychol. 95:437. doi: 10.1037/h0033662

Pauli, P., Lutzenberger, W., Birbaumer, N., Rickard, T. C., and Bourne, L. E. (1996).
Neurophysiological correlates of mental arithmetic. Psychophysiology 33, 522–
529. doi: 10.1111/j.1469-8986.1996.tb02428.x

Pauli, P., Lutzenberger, W., Rau, H., Birbaumer, N., Rickard, T. C., Yaroush, R.
A., et al. (1994). Brain potentials during mental arithmetic: effects of exten-
sive practice and problem difficulty. Brain Res. Cogn. Brain Res. 2, 21–29. doi:
10.1016/0926-6410(94)90017-5

Postle, B. R., Awh, E., Jonides, J., Smith, E. E., and D’Esposito, M. (2004).
The where, and how of attention-based rehearsal in spatial working mem-
ory. Brain Res. Cogn. Brain Res. 20, 194–205. doi: 10.1016/j.cogbrainres.2004.
02.008

Prado, J., Lu, J. Y., Liu, L., Dong, Q. L., Zhou, X., and Booth, J. R. (2013). The
neural bases of the multiplication problem-size effect across countries. Front.
Hum. Neurosci. 7:189. doi: 10.3389/fnhum.2013.00189

Price, G. R., Holloway, I., Rasanen, P., Vesterinen, M., and Ansari, D. (2007).
Impaired parietal magnitude processing in developmental dyscalculia. Curr. Biol.
17, R1042–R1043. doi: 10.1016/j.cub.2007.10.013

Prieto-Corona, B., Rodriguez-Camacho, M., Silva-Pereyra, J., Marosi, E., Fernan-
dez, T., and Guerrero, V. (2010). Event-related potentials findings differ between
children, and adults during arithmetic-fact retrieval. Neurosci. Lett. 468, 220–224.
doi: 10.1016/j.neulet.2009.10.094

Rotzer, S., Kucian, K., Martin, E., von Aster, M., Klaver, P., and Loenneker,
T. (2008). Optimized voxel-based morphometry in children with develop-
mental dyscalculia. Neuroimage 39, 417–422. doi: 10.1016/j.neuroimage.2007.
08.045

Seyler, D. J., Kirk, E. P., and Ashcraft, M. H. (2003). Elementary subtraction. J. Exp.
Psychol. Learn. Mem. Cogn. 29, 1339–1352. doi: 10.1037/0278-7393.29.6.1339

Simson, R., Ritter, W., and Vaughan, H. G. (1985). Effects of expectation on negative
potentials during visual processing. Electroencephalogr. Clin. Neurophysiol. 62,
25–31. doi: 10.1016/0168-5597(85)90032-2

Stanescu-Cosson, R., Pinel, P., van de Moortele, P. F., Le Bihan, D., Cohen, L.,
and Dehaene, S. (2000). Understanding dissociations in dyscalculia – a brain
imaging study of the impact of number size on the cerebral networks for exact,
and approximate calculation. Brain 123, 2240–2255. doi: 10.1093/brain/123.
11.2240

Stazyk, E. H., Ashcraft, M. H., and Hamann, M. S. (1982). A network approach
to mental multiplication. J. Exp. Psychol. Learn. Mem. Cogn. 8, 320–335. doi:
10.1037/0278-7393.8.4.320

Szucs, D., and Csepe, V. (2004). Access to numerical information is dependent
on the modality of stimulus presentation in mental addition: a combined
ERP, and behavioral study. Brain Res. Cogn. Brain Res. 19, 10–27. doi:
10.1016/j.cogbrainres.2003.11.002

Szucs, D., and Csepe, V. (2005). The effect of numerical distance, and
stimulus probability on ERP components elicited by numerical incongruen-
cies in mental addition. Brain Res. Cogn. Brain Res. 22, 289–300. doi:
10.1016/j.cogbrainres.2004.04.010

Szucs, D., and Soltesz, F. (2010). Event-related brain potentials to violations of
arithmetic syntax represented by place value structure. Biol. Psychol. 84, 354–367.
doi: 10.1016/j.biopsycho.2010.04.002

Vandorpe, S., De Rammelaere, S., and Vandierendonck, A. (2005). The odd-even
effect in addition – an analysis per problem type. Exp. Psychol. 52, 47–54. doi:
10.1027/1618-3169.52.1.47

Xuan, D., Wang, S. H., Yang, Y. L., Meng, P., Xu, F., Yang, W., et al.
(2007). Age difference in numeral recognition, and calculation: an event-related
potential study. Child Neuropsychol. 13, 1–17. doi: 10.1080/092970406007
60465

Frontiers in Human Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 756 | 10

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Van Beek et al. ERP problem size effect children

Zbrodoff, N. J., and Logan, G. D. (1990). On the relation between production, and
verification tasks in the psychology of simple arithmetic. J. Exp. Psychol. Learn.
Mem. Cogn. 16, 83–97. doi: 10.1037/0278-7393.16.1.83

Zbrodoff, N. J., and Logan, G. D. (2005). “What everyone finds: the problem size
effect,” in Handbook of Mathematical Cognition, ed. J. I. D. Campbell (New York:
Psychology Press), 331–345.

Zhou, X., Chen, C., Dong, Q., Zhang, H., Zhou, R., Zhao, H., et al. (2006).
Event-related potentials of single-digit addition, subtraction, and multiplication.
Neuropsychologia 44, 2500–2507. doi: 10.1016/j.neuropsychologia.2006.04.003

Zhou, X. L., Booth, J. R., Lu, J. Y., Zhao, H., Butterworth, B., Chen, C. S., et al.
(2011). Age-independent, and age-dependent neural substrate for single-digit
multiplication, and addition arithmetic problems. Dev. Neuropsychol. 36, 338–
352. doi: 10.1080/87565641.2010.549873

Zhou, X. L., Chen, C. S., Zang, Y. F., Dong, Q., Chen, C. H., Qiao, S. B., et al. (2007).
Dissociated brain organization for single-digit addition, and multiplication.
Neuroimage 35, 871–880. doi: 10.1016/j.neuroimage.2006.12.017

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 08 July 2014; accepted: 08 September 2014; published online: 25 September
2014.
Citation: Van Beek L, Ghesquière P, De Smedt B and Lagae L (2014) The arithmetic
problem size effect in children: an event-related potential study. Front. Hum. Neurosci.
8:756. doi: 10.3389/fnhum.2014.00756
This article was submitted to the journal Frontiers in Human Neuroscience.
Copyright © 2014 Van Beek, Ghesquière, De Smedt and Lagae. This is an open-
access article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Human Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 756 | 11

http://dx.doi.org/10.3389/fnhum.2014.00756
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive

	The arithmetic problem size effect in children: an event-related potential study
	Introduction
	Materials and methods
	Participants
	Stimuli and experimental procedure
	Electrophysiological recording
	Data analysis
	Behavioral data
	Eeg analysis


	Results
	Behavioral data
	Event-related potentials
	Early components p1, n1, p2
	N2 effect
	Lpc effect


	Discussion
	Acknowledgments
	References


