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Foreign-accented speech often presents a challenging listening condition. In addition to
deviations from the target speech norms related to the inexperience of the nonnative
speaker, listener characteristics may play a role in determining intelligibility levels. We
have previously shown that an implicit visual bias for associating East Asian faces
and foreignness predicts the listeners’ perceptual ability to process Korean-accented
English audiovisual speech (Yi et al., 2013). Here, we examine the neural mechanism
underlying the influence of listener bias to foreign faces on speech perception. In a
functional magnetic resonance imaging (fMRI) study, native English speakers listened to
native- and Korean-accented English sentences, with or without faces. The participants’
Asian-foreign association was measured using an implicit association test (IAT), conducted
outside the scanner. We found that foreign-accented speech evoked greater activity in
the bilateral primary auditory cortices and the inferior frontal gyri, potentially reflecting
greater computational demand. Higher IAT scores, indicating greater bias, were associated
with increased BOLD response to foreign-accented speech with faces in the primary
auditory cortex, the early node for spectrotemporal analysis. We conclude the following:
(1) foreign-accented speech perception places greater demand on the neural systems
underlying speech perception; (2) face of the talker can exaggerate the perceived
foreignness of foreign-accented speech; (3) implicit Asian-foreign association is associated
with decreased neural efficiency in early spectrotemporal processing.
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INTRODUCTION
Foreign-accented speech (FAS) can constitute an adverse listen-
ing condition (Mattys et al., 2012). Perception of FAS is often less
accurate and more effortful compared to native-accented speech
(NAS; Munro and Derwing, 1995b; Schmid and Yeni-Komshian,
1999; Van Wijngaarden, 2001). The reduced FAS intelligibility
has been attributed to deviations from native speech in terms
of segmental (Anderson-Hsieh et al., 1992; Van Wijngaarden,
2001) and suprasegmental (Anderson-Hsieh and Koehler, 1988;
Anderson-Hsieh et al., 1992; Tajima et al., 1997; Munro and
Derwing, 2001; Bradlow and Bent, 2008) cues. Nevertheless, lis-
teners can adapt to FAS following exposure or training (Clarke
and Garrett, 2004; Bradlow and Bent, 2008; Sidaras et al., 2009;
Baese-Berk et al., 2013). Thus, listener’s perception of FAS per-
ception can improve over time (Bradlow and Pisoni, 1999; Bent
and Bradlow, 2003). The neuroimaging literature on FAS percep-
tion is scant. However, perception of foreign phonemes has been
shown to engage multiple neural regions. These include the supe-
rior temporal cortex, which matches the auditory input to the
preexisting phonological representations (“signal-to-phonology
mapping”) in the articulatory network, encompassing the motor
cortex, inferior frontal gyrus, and the insula (Golestani and

Zatorre, 2004; Wilson and Iacoboni, 2006; Hickok and Poeppel,
2007; Rauschecker and Scott, 2009). In particular, the inferior
frontal gyrus exhibits phonetic category invariance, in which the
response patterns differ according to between-category phono-
logical variances but not to within-category acoustical variances
(Myers et al., 2009; Rauschecker and Scott, 2009; Lee et al., 2012).
Accordingly, processing of artificially distorted speech which,
reduces speech intelligibility but does not necessarily introduce
novel phonological representations, has been shown to involve
additional recruitment of the superior temporal areas, the motor
areas, and the insula, but not the inferior frontal gyrus (for review,
see Adank, 2012). These findings lead to two predictions regard-
ing neural activity during FAS processing. First, lack of adaptation
to FAS would manifest in increased activity in the superior tem-
poral auditory areas, due to the increased demand on auditory
input processing. The primary auditory cortex is sensitive not
only to rudimentary acoustic information such as frequency,
intensity, and complexity of the auditory stimuli (Strainer et al.,
1997), but also to the stochastic regularity in the input (Javit et al.,
1994; Winkler et al., 2009) and attention (Jäncke et al., 1999;
Fritz et al., 2003). The response patterns of the primary audi-
tory cortex is modulated by task demands (attentional focus: Fritz

Frontiers in Human Neuroscience www.frontiersin.org October 2014 | Volume 8 | Article 768 | 1

HUMAN NEUROSCIENCE

http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/about
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/journal/10.3389/fnhum.2014.00768/abstract
http://community.frontiersin.org/people/u/114439
http://community.frontiersin.org/people/u/184754
http://community.frontiersin.org/people/u/29744
mailto:bchandra@utexas.edu
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Yi et al. Neural processing of foreign-accented speech

et al., 2003; target properties: Fritz et al., 2005), attention, train-
ing effects (frequency discrimination: Recanzone et al., 1993), and
predictive regularity in the auditory input (Winkler et al., 2009).
Furthermore, early acoustic signal processing time for speech
stimuli has been shown to be reduced with accompanying visual
information, indicating that the primary auditory cortex activ-
ity is modulated by crossmodal input (Van Wassenhove et al.,
2005). Thus, the primary auditory cortex is attuned to ana-
lyzing the details of the incoming acoustic signals, but is also
influenced by contextual information and modulated by expe-
rience. Second, difficulty in resolving phonological categories
would manifest in increased activity in the articulatory network.
In contrast to the early spectrotemporal analyses of speech, later
stages of phonological processing are largely insensitive to within-
category acoustic differences and exhibit enhanced sensitivity to
across-category differences. Such phonological categorization is
achieved via a complex network involving the inferior frontal cor-
tex, insula, and the motor cortex (Myers et al., 2009; Lee et al.,
2012; Chevillet et al., 2013).

Signal-to-phonology mapping, however, is not the only fac-
tor that modulates FAS perception. Listener beliefs regarding
talker characteristics have been shown to modify the percep-
tual experience of speech (Campbell-Kibler, 2010; Drager, 2010).
Specifically, different assumptions held about speaker proper-
ties by the individual listeners can potentially alter perception
of the otherwise identical speech sounds. For instance, explicit
talker labels (e.g., Canadian vs. Michigan) and indexical prop-
erties (e.g., gender, age, socioeconomic status) implied in visual
representation of the talkers can change phonemic perception for
otherwise identical speech sounds, even when the listeners are
aware that this information is not accurate (Niedzielski, 1999;
Strand, 1999; Hay et al., 2006a,b; Drager, 2011). The impact of
perceived talker characteristics on FAS perception can be com-
plex. Explicit labels have been linked to increased response times
in lexical tasks for FAS, thus indicating increased processing load
(Floccia et al., 2009), while visual presentation of race-matched
faces have been shown to increase intelligibility for Chinese-
accented speech (McGowan, 2011). These findings suggest that
listener variability in FAS intelligibility may be partly accounted
for using measures of listeners’ susceptibility to these indexi-
cal cues (Hay et al., 2006b). In social psychology, the implicit
association test (IAT) has been used extensively to quantify the
degree of implicit bias which may not be measured using explicit
self-reported questionnaire entries (Greenwald et al., 1998, 2009;
Mcconnell and Leibold, 2001; Bertrand et al., 2005; Devos and
Banaji, 2005; Kinoshita and Peek-O’leary, 2005). During an IAT,
the participants are instructed to make associations between two
sets of stimuli (e.g., American vs. Foreign scenes; Caucasian vs.
Asian faces). The response times between two conditions (e.g.,
Caucasian-American and Asian-Foreign vs. Caucasian-Foreign
and Asian-American) are compared, and the magnitude of the
difference between the mean RTs are considered to reflect the
degree of implicit bias toward the corresponding association. In
non-speech research domains, the IAT measures have been shown
to be positively correlated with neural responses to dispreferred
stimuli in various networks, including the amygdala, prefrontal
cortex, thalamus, striatum, and the anterior cingulate cortex

(Richeson et al., 2003; Krendl et al., 2006; Luo et al., 2006; Suslow
et al., 2010). A recent study has shown that native American
English listeners with greater implicit bias toward making Asian-
to-foreign and Caucasian-to-American associations experienced
greater relative difficulties in transcribing English sentences in
background noise, which were produced by native Korean speak-
ers than that produced by native English speakers. This relation-
ship between racial bias and FAS intelligibility was only observed
when the auditory stimuli were paired with video recordings of
the speakers producing the sentences (Figure 1; Yi et al., 2013).
In spite of the novelty of the finding, did not reach a conclusive
implication of the behavioral results, but rather cautiously sug-
gesting that the listener bias likely led to altered incorporation
of visual cues which are beneficial for enhancing speech intelli-
gibility in adverse listening situations (Sumby and Pollack, 1954;
Grant and Seitz, 2000). The precise neural mechanism underlying
the relationship between listener bias and FAS perception remains
unclear.

In this fMRI study, monolingual native English speakers (N =
19) were presented with English sentences produced by native
English or native Korean speakers in an MR scanner. The sen-
tences were presented either along with video recordings of the
speakers producing the sentences (“audiovisual modality”) or
without (“audio-only modality”). A rapid event-related design
was used to acquire functional images. This setup allowed us to
independently estimate BOLD responses to stimulus presentation
and motor response on a trial-by-trial basis. Outside the scanner,
the participants performed an IAT which was designed to measure
the extent of the association between Asian faces and foreignness.
Whole brain analyses were conducted to test the prediction that
FAS perception would involve increased activation in the superior
temporal cortex and the articulatory-phonological network, con-
sistent with previous research on foreign phonemes processing
(Golestani and Zatorre, 2004; Wilson and Iacoboni, 2006), speech
intelligibility processing (Adank, 2012), and categorical percep-
tion in the inferior frontal gyrus (Myers et al., 2009; Rauschecker
and Scott, 2009; Lee et al., 2012). ROI analyses were conducted to
test whether the degree of implicit association between Asian faces
and foreignness would be associated with modifications in the
signal-to-phonology mapping process. For this purpose, the ROI
analysis was restricted to the primary auditory cortex, involved in
auditory input processing, and the inferior frontal gyrus, involved
in phonological processing. Previous neuroimaging studies utiliz-
ing IAT as a covariate have consistently shown positive correlation
between the IAT scores and the neural response to the dispre-
ferred stimuli, which has led us to hypothesize that higher IAT
scores (stronger Asian-Foreign and Caucasian-American associ-
ation) would be associated with greater BOLD response to FAS,
especially in the audiovisual modality.

MATERIALS AND METHODS
MATERIALS
Participants
Nineteen young adults (age range: 18–35; 11 female) were
recruited from the Austin community. All participants passed
a hearing-screening exam (audiological thresholds <25 dB HL
across octaves from 500 to 4000 Hz), had normal or corrected
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FIGURE 1 | Left: Example stimuli for native-accented and
foreign-accented speech. Center: Example stimuli and the design
schematic for the implicit association test. Right: Implicit Asian-foreign

association was associated with relative foreign-accented speech
perception difficulties when faces were accessible to the listeners
(figures adapted from Yi et al., 2013).

to normal vision, and self-reported to be right-handed. Potential
participants were excluded if their responses to a standardized
language history questionnaire revealed significant exposure to
any language other than American English (LEAP-Q; Marian
et al., 2007). Data from one participant (male) were excluded
from all analysis due to detection of a structural anomaly.
All recruitment and participation procedures were conducted
in adherence to the University of Texas at Austin Institutional
Review Board.

Audiovisual speech stimuli
Four native American English (2 female) and four native Korean
speakers (2 female) produced 80 meaningful sentences with four
keywords each (e.g., “the GIRL LOVED the SWEET COFFEE”;
Calandruccio and Smiljanic, 2012). The speakers were between
18 and 35 years of age. The speakers were instructed to read text
provided on the prompter as if they were talking to someone
familiar with their voice and speech patterns. The NAS stim-
uli had been rated to be 96.2% native-like, and the FAS stimuli
had been rated to be 20.7% native-like (converted from a 1-to-
9 Likert scale; Yi et al., 2013). Twenty non-overlapping sentences
from each speaker was selected, resulting in 80 sentence stimuli
used in the experiment. The video track was recorded using a
Sony PMW-EX3 studio camera, and the audio track was recorded
with an Audio Technica AT835b shotgun microphone placed on
a floor stand in front of the speaker. Camera output was pro-
cessed through a Ross crosspoint video switcher and recorded on
an AJA Pro video recorder. The recording session was conducted
on a sound-attenuated sound stage at The University of Texas at
Austin. The raw video stream was exported using the following
specifications. Codec: DV Video (dvsd); resolution: 720 × 576;
frame rate: 29.969730 (Figure 1). The raw audio stream was RMS
amplitude normalized to 62 dB SNL and exported using the fol-
lowing specifications. Codec: PCM S16 LE (araw); mono; sample
rate: 48 kHz; 16 bits per sample.

IAT
Ten young adult Asian (5 female) and 10 Caucasian (5 female)
face images were used for Caucasian vs. Asian face categories
(Minear and Park, 2004). All face images had been edited to

exclude hair, face contour, ear, and neck information, then ren-
dered into grayscale with constant luminosity (Goh et al., 2010).
Public domain images of 10 iconic American scenes (Grand
Canyon, Statue of Liberty, Wrigley Field, Golden Gate Bridge,
Pentagon, Liberty Bell, White House, Capitol, New York Central
Park, Empire State Building) and 10 non-American foreign
scenes (Eiffel Tower, Pyramids, Angkor Wat, London Bridge,
Brandenburg Gate, Stonehenge, Great Wall of China, Leaning
Tower of Pisa, Sydney Opera House, Taj Mahal) were obtained
online and used for American vs. Foreign scene categories. No
scene image contained face information. All images were cropped
to a square proportion. The stimuli and the design used for the
IAT were identical to those used in our previous study (Figure 1;
Yi et al., 2013).

METHODS
Scan parameters
The participants were scanned via the Siemens Magnetom Skyra
3T MRI scanner at the Imaging Research Center of the University
of Texas at Austin. High-resolution whole-brain T1-weighted
anatomical images were obtained via MPRAGE sequence (TR =
2.53 s; TE = 3.37 ms; FOV = 25 cm; 256 × 256 matrix; 1 × 1 mm
voxels; 176 axial slices; slice thickness = 1 mm; distance factor =
0%). T2∗-weighted Whole-brain blood oxygen level dependent
(BOLD) images were obtained using a gradient-echo multi-band
EPI pulse sequence (flip angle = 60◦; TR = 1.8 s; 166 repeti-
tions; TE = 30 ms; FOV = 25 cm; 128 × 128 matrix; 2 × 2 mm
voxels; 36 axial slices; slice thickness = 2 mm; distance factor =
50%) using GRAPPA with an acceleration factor of 2. Three hun-
dred and thirty-four time points were collected, resulting in the
scanning duration of approximately 10 min. This was a part of a
larger scanning protocol which lasted for approximately 1 h for
each participant.

fMRI task
Participants were instructed to listen to the recorded sentences
and rate the clarity of each one. After the presentation of each
stimulus, a screen prompting the response was presented, upon
which the participants rated the clarity of the stimulus by press-
ing one of the four buttons on the button boxes, ranging from
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1 (not clear) to 4 (very clear). This was done to ensure that
participants were attending to the presentation of the stimuli.
The audio track for the sentences were presented auditorily via
MR-compatible insert earphones (ER30; Etymotic Research), and
the visual track was presented via projector visible by an in-
scanner mirror. The stimuli were spoken by native English or
native Korean speakers. There were two experimental conditions:
an audio-only condition where only the acoustic signals were
presented with a fixation cross being displayed, and an audio-
visual condition where the video recordings of the talkers’ faces
producing the sentences were also presented. All sentences were
presented only once in a single session without breaks. Therefore,
the 80 sentences were subdivided into 20 sentences per each of
the four conditions (native with visual cues; native without visual
cues; nonnative with visual cues; nonnative without visual cues).
We used a rapid event related design with jittered interstimulus
intervals of 2–3 s. The order of the stimuli followed a pseudoran-
dom sequence predetermined to avoid consecutive runs of stimuli
of a given condition.

IAT
Following the fMRI acquisition session, IAT was conducted out-
side the scanner in a soundproof testing room. The IAT proce-
dures were identical to those used in our previous study (Yi et al.,
2013). For each trial, a face or scene stimulus was displayed on
the screen. The face stimuli differed from the main task in the
scanner in that they were still images unrelated to sentence pro-
duction. In the congruous category condition, participants had to
press a key on the keyboard when they saw a Caucasian face or an
American scene, and a different key for an Asian face or a Foreign
scene. In the incongruous category condition, participants had to
press a key for a Caucasian face or a Foreign scene, and a dif-
ferent key for an Asian face or an American scene (Devos and
Banaji, 2005). Participants were instructed to respond as quickly
as possible without sacrificing accuracy. Each condition was pre-
sented twice with the key designations switched in a randomized
order. These yielded four test blocks. Four practice blocks were
included prior to the test blocks, in which only scenes or faces
were presented. An incorrect response led to a corrective feedback
of “Error!” (Greenwald et al., 2003).

ANALYSES
IAT
In a standalone analysis, a linear mixed effects analysis (Bates
et al., 2012) was run with the response times in milliseconds as
the dependent variable to directly quantify the delayed response
times due to the incongruous association. The category condition
(congruous vs. incongruous) and the neural index were entered as
the fixed effects to measure the delay effect of face-scene pairings
incongruent with the implicit association. By-subject random
intercepts were included. The optimizer was set to BOBYQA
(Powell, 2009). Individual IAT scores were calculated follow-
ing the standard guidelines (Greenwald et al., 2003). Trials with
response times longer than 10,000 ms or shorter than 400 ms
were excluded. Response times for incorrect trials were replaced
by the mean of the response times for correct trials within the
same block, increased by 600 ms. The average response time
discrepancies across the two pairs of congruous vs. incongruous

blocks were divided by the standard deviation of response times
in the two blocks. These two discrepancy measures were averaged
to yield in the final IAT score, which was used as a covariate in
other analyses.

Clarity rating
Clarity ratings for all sentences from each participant were
entered as the dependent variable, after being mean-centered to 0,
in a linear mixed effects analysis. In order to counteract different
clarity criteria across the participants, the model was corrected for
by-participant random intercepts. In the first analysis, the fixed
effects included the accent and modality of the stimuli, the indi-
vidual IAT measures, and the ensuing interactions. The optimizer
was set to BOBYQA (Powell, 2009).

fMRI preprocessing
fMRI data were analyzed using FMRIB’s Software Library Version
5.0 (Smith et al., 2004; Woolrich et al., 2009; Jenkinson et al.,
2012). BOLD images were motion corrected using MCFLIRT
(Jenkinson et al., 2002). All images were brain-extracted using
BET (Smith, 2002; Jenkinson et al., 2005). Registration to the
high-resolution anatomical image (df = 6) and the MNI 152
template (df = 12; Grabner et al., 2006a) was conducted using
FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002). Six
separate block-wise first-level analysis were run within-subject.
The following pre-statistics processing were applied; spatial
smoothing using a Gaussian kernel (FWHM = 5 mm); grand-
mean intensity normalization of the entire 4D dataset by a sin-
gle multiplicative factor; highpass temporal filtering (Gaussian-
weighted least-squares straight line fitting, with sigma = 50.0 s).
Each event was modeled as an impulse convolved with a canonical
double-gamma hemodynamic response function (phase = 0 s).
Motion estimates were modeled as nuisance covariates. Temporal
derivative of each event regressor, including the motion estimates,
was added. Time-series statistical analysis was carried out using
FILM with local autocorrelation correction (Smith et al., 2004).
The event regressors consisted of stimulus, response screen, and
clarity response. The stimulus regressors were subdivided into
accent (native vs. foreign) and modality (audiovisual vs. audio-
only) conditions. The missed trials were separately estimated as
nuisance variables. Three sets of t-test contrast pairs were tested,
which examined modality (audiovisual – audio-only; audio-
only – audiovisual), accent (native-accented – foreign-accented;
foreign-accented – native-accented), and the interaction effects
(audiovisual native – audiovisual foreign – audio-only native +
audio-only foreign; audiovisual foreign – audiovisual native –
audio-only foreign + audio-only native).

Whole brain analysis
Group analysis was performed for each contrast using FLAME1
(Woolrich et al., 2009). To correct for multiple comparisons,
post-statistical analysis was performed using randomize in FSL
to run permutation tests (n = 50, 000) for the GLM and yield in
threshold-free cluster enhancement (TFCE) estimates of statisti-
cal significance. The corresponding family-wise error corrected
p-values are presented in the results (Freedman and Lane, 1983;
Kennedy, 1995; Bullmore et al., 1999; Anderson and Robinson,
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Table 1 | Whole brain analysis results for the contrasts of interest.

Contrast Regions x y z Voxels

(mm) (mm) (mm)

MODALITY EFFECT

(a) Audiovisual – audio-only Bilateral occipital cortex; Bilateral fusiform
gyri; L posterior superior temporal gyrus;
Bilateral posterior middle temporal gyri

38 −46 −22 14108

R thalamus 16 −32 2 208

L thalamus −26 −30 −4 188

R amygdala 20 −4 −14 16

R temporal pole 56 6 −22 13

(b) Audio-only – audiovisual R supeior parietal lobule;
R somatosensory cortex;
R supramarginal gyrus

34 −38 50 1864

R superior frontal gyrus;
R primary motor cortex

24 4 64 804

L superior parietal lobule;
R somatosensory cortex

−38 −36 42 330

L middle frontal gyrus −32 42 30 315

L superior frontal gyrus −26 4 56 177

R middle frontal gyrus 30 36 22 82

ACCENT EFFECT

(c) Native – foreign R posterior middle temporal gyrus;
R posterior inferior temporal gyrus;
R angular gyrus; R supramarginal gyrus

64 −46 26 379

(d) Foreign – native Paracingulate gyrus 4 24 34 904

R motor cortex, R superior parietal lobule;
R somatosensory cortex

34 −52 62 868

L insular cortex −40 14 8 76

R superior frontal gyrus 20 −2 60 68

R insular cortex 32 20 −6 50

L inferior frontal gyrus −52 10 10 42

L insular cortex −26 24 0 31

R insular cortex 42 14 8 13

Modality by accent interaction n.s.

Clusters are based on the p < 0.025 threshold as well as the size criterion of 10 voxels.

2001; Nichols and Holmes, 2002; Hayasaka and Nichols, 2003).
The results are presented in the Table 1.

ROI analysis
The ROIs were anatomically defined as the left and right primary
auditory cortices (combination of Te 1.0, 1.1, and 1.2; Morosan
et al., 2001) and the left inferior frontal gyrus (Brodmann
area 44; Amunts et al., 1999) using the Jülich histological atlas
(threshold = 25%; Eickhoff et al., 2005, 2006, 2007). Percent
changes in BOLD responses for the stimuli in four condi-
tions (native-accented with faces; native-accented without faces;
foreign-accented with faces; foreign-accented without faces) were
calculated by first linearly registering the ROIs to the individual
BOLD spaces using FLIRT with the appropriate transforma-
tion matrices generated from the first level analysis and nearest
neighbor interpolation (Jenkinson and Smith, 2001; Jenkinson
et al., 2002). Then, the parameter estimate images were masked
for the transformed ROIs, multiplied by height of the double

gamma function for the stimulus length of 2 s (0.4075), converted
into percent scale, divided by mean functional activation, and
averaged within the ROI, using fslmaths (Mumford, 2007). The
percent signal change was entered as the dependent variable in
a linear mixed effects analysis. In the mixed effects analysis, the
fixed effects included the accent (native vs. foreign), face (faces vs.
no faces), individual IAT values and their interaction terms. The
model was corrected for by-participant random intercepts (Bates
et al., 2012). The optimizer was set to BOBYQA (Powell, 2009).

RESULTS
BEHAVIORAL RESULTS
Clarity ratings
The overall mean clarity rating was 2.94 (SD = 1.09). The mean
clarity rating for the NAS was 3.28 (SD = 1.10) in the audio-
only condition and 3.34 (SD = 1.06) in the audiovisual condi-
tion, while the rating for the FAS was 2.55 (SD = 0.96) in the
audio-only condition and 2.57 (SD = 0.96) in the audiovisual
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condition. In this analysis, the fixed effects of modality, accent,
the IAT scores, and their interaction terms were included as fixed
effects for the dependent variable of clarity ratings for each sen-
tence, which was mean-centered to 0. The three-way interaction
was not significant, which was excluded in the final model. The
accent effect was significant, b = −0.89, SE = 0.095, t = −9.36,
p < 0.0001, 95% CI [−1.08, −0.70], indicating that FAS was per-
ceived to be less clear than NAS. The accent by IAT interaction
was significant, b = 0.33, SE = 0.15, t = 2.13, p = 0.034, 95%
CI [0.026, 0.63], indicating that higher IAT values were more
associated with higher perceived clarity ratings for the FAS rel-
ative to NAS. The intercept was significant, b = 0.97, SE = 0.39,
t = 2.45, p = 0.024, 95% CI [0.15, 1.78]. The modality effect was
not significant, b = −0.015, SE = 0.094, t = −0.16, p = 0.88,
95% CI [−0.20, 0.17], failing to provide evidence that perceived
clarity was modified by the availability of visual cues. This is
in contrast to the extensive previous literature that have indi-
cated the intelligibility benefit from the audiovisual modality
(Sumby and Pollack, 1954; Macleod and Summerfield, 1987; Ross
et al., 2007). We ascribe this null finding to the task properties
which did not require the participants to actively decipher the
sentences, but only to rate their clarity (Munro and Derwing,
1995a). The IAT effect was not significant, b = −0.34, SE = 0.70,
t = −0.49, p = 0.63, 95% CI [−1.79, 1.10]. The modality by
accent interaction was not significant, b = −0.054, SE = 0.077,
t = −0.71, p = 0.48, 95% CI [−0.20, 0.096]. The modality by
IAT interaction was not significant, b = 0.15, SE = 0.15, t =
0.97, p = 0.33, 95% CI [−0.15, 0.45]. These results altogether
suggest that FAS is perceived to be less clear by the listeners.
Participants with higher IAT scores, i.e., those who were more
likely to implicitly associate East Asian faces with foreignness,
have decreased tendency to perceive FAS to be unclear, compared
to NAS.

IAT
The overall mean response time was 948 ms (SD = 586 ms). The
mean RT was 824 ms (SD = 408 ms) in the congruous condition,
and 1073 ms (SD = 700 ms) in the incongruous condition. One
fixed effects term was included in the model: incongruity of the

stimuli pairing. The intercept was significant, b = 823.83, SE =
50.92, t = 19.50, p < 0.0001, 95% CI [718.84, 928.81], showing
approximately 820 ms baseline response time. The incongruity
effect was significant, b = 249.24, SE = 19.90, t = 12.52, p <

0.0001, 95% CI [210.22, 288.27], suggesting that incongruous
stimuli pairing delayed each response by approximately 250 ms.
The mean IAT score was calculated to be 0.51 (SD = 0.25),
indicating a general trend of implicit bias toward making the
Asian-Foreign association.

fMRI RESULTS
Audio-only vs. Audiovisual
BOLD signals were compared across the audiovisual and audio-
only stimuli. The [audiovisual – audio-only] contrast revealed
extensive activity in the occipital cortex, as the visual information
in the faces required computations in the visual modality. Activity
in the bilateral middle temporal gyri, left posterior superior tem-
poral gyrus, and the right temporal pole was also observed,
presumed to reflect integrative effort of the visual cues available
in the facial stimuli (Sams et al., 1991; Möttönen et al., 2002;
Pekkola et al., 2005). The [audio-only – audiovisual] contrast
revealed activity in the bilateral superior and middle frontal gyri,
right motor and somatosensory cortices, and the bilateral supra-
marginal gyri (Figure 2). The increased activation in the motor
and somatosensory areas for audio-only speech than for audio-
visual speech is in contrast to previous research that has shown
the opposite pattern (Skipper et al., 2005). It is possible that
the absence of visual cues induced more effortful processing in
these areas. The activity in these regions is presumed to reflect
the necessity of additional computation in the speech processing
network.

Native- vs. Foreign-accented speech
BOLD signals were compared across the speaker accent. The
[native – foreign] contrast revealed greater activity in the right
angular gyrus, supramarginal gyrus, the posterior middle, and
inferior temporal gyri. Supramarginal gyri have been suggested to
be involved in making phonological decisions, which in the con-
text of this study is presumed to reflect improved phonological

FIGURE 2 | BOLD signals in the audio-only vs. audiovisual comparison.

The [audiovisual – audio-only] contrast revealed extensive activity in the
occipital cortex and the bilateral posterior middle temporal gyri. The

[audio-only – audiovisual] contrast revealed activity in the right middle
frontal gyrus, right motor and somatosensory areas and the superior
parietal lobule.
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FIGURE 3 | BOLD signals in the native vs. foreign accented speech

comparison. The [native – foreign] contrast revealed greater activity in
the right angular gyrus and the posterior middle temporal gyrus. The
[foreign – native] contrast revealed greater activity along the bilateral

superior temporal gyri, anterior cingulate cortex, and the bilateral
caudate nuclei. The articulatory network, encompassing the bilateral
inferior frontal gyri, insula, and the right motor cortex were also
additionally activated.

processing for NAS than for FAS (Hartwigsen et al., 2010). The
[foreign – native] contrast revealed greater activity in the motor
cortex, somatosensory cortex, inferior frontal gyrus, insula, and
the anterior cingulate cortex. These areas have been previously
indicated to be additionally recruited for perception of foreign
phonemes (Golestani and Zatorre, 2004; Wilson and Iacoboni,
2006) or distorted speech (Adank, 2012). The omission of the
superior temporal areas are significant, which run counter to our
initial hypothesis regarding increased computational demand due
to unfamiliar auditory input. A potential interpretation of this
null finding is that the activity in the superior temporal cortex
was more variable than that in the motor and frontal areas, an idea
which was tested in the subsequent ROI analysis (Figure 3). The
modality by accent interaction contrasts did not yield significant
results.

ROI analyses
The ROI analyses were constrained to the left and right pri-
mary auditory cortices and the left inferior frontal gyrus. The
fixed effects included accent (foreign- vs. native-accented speech),
modality (audiovisual vs. audio-only), IAT scores, and their
interaction terms. In the left primary auditory cortex, no three-
way or two-way interactions were significant, leaving the model
with only three main effects of accent, modality and IAT to
be considered. The modality effect was significant, b = −0.047,
SE = 0.014, t = −3.34, p = 0.0016, 95% CI [−0.075, −0.020],
suggesting that the audiovisual stimuli reduced computational
demand in this region, relative to the audio-only stimuli. The
accent effect was not significant, b = 0.010, SE = 0.014, t = 0.71,
p = 0.48, 95% CI [−0.018, 0.038]. The IAT effect was not sig-
nificant, b = −0.27, SE = 0.20, t = −1.31, p = 0.21, 95% CI
[−0.66, 0.13]. The intercept was significant, b = 0.45, SE = 0.11,
t = 3.89, p = 0.0013, 95% CI [0.22, 0.67]. In the right pri-
mary auditory cortex, the three-way interaction across modality,
accent, and IAT was significant, b = 0.25, SE = 0.11, t = 2.26,
p = 0.028, 95% CI [0.042, 0.46], suggesting that higher IAT
scores were associated with increased response to FAS with faces
(Figure 4). The interaction between accent and modality was

FIGURE 4 | Higher a given participant’s IAT score, greater the BOLD

response for the interaction contrast between foreign-accented

speech and the availability of faces in the right primary auditory

cortex. This indicated that participants with higher IAT scores required
additional processing resources for foreign-accented speech with faces.

significant, b = −0.15, SE = 0.062, t = −2.43, p = 0.019, 95%
CI [−0.27, −0.34], suggesting that the decreased neural effi-
ciency due to FAS was ameliorated by the availability of faces.
The accent effect was significant, b = 0.090, SE = 0.044, t =
2.04, p = 0.047, 95% CI [0.0070, 0.17], suggesting that FAS
increased the computational demand in this region. The inter-
cept was significant, b = 0.32, SE = 0.12, t = 2.57, p = 0.020,
95% CI [0.077, 0.55]. The accent by IAT interaction was not sig-
nificant, b = −0.061, SE = 0.078, t = −0.78, p = 0.44, 95% CI
[−0.21, 0.087]. The IAT by modality interaction was not sig-
nificant, b = −0.13, SE = 0.078, t = −1.65, p = 0.11, 95% CI
[−0.28, 0.018]. The modality by accent interaction was not sig-
nificant, b = −0.15, SE = 0.062, t = −2.43, p = 0.019, 95% CI
[−0.27, −0.034]. The IAT main effect was not significant, b =
−0.23, SE = 0.22, t = −1.03, p = 0.32, 95% CI [−0.65, 0.20].
The modality main effect was not significant, b = 0.011, SE =
0.044, t = 0.25, p = 0.81, 95% CI [−0.072, 0.094]. The intercept
was significant, b = 0.32, SE = 0.12, t = 2.57, p = 0.020, 95% CI
[0.077, 0.55].
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In the left inferior frontal gyrus, no three-way or two-way
interactions were significant, leaving the model with only three
main effects of accent, modality and IAT to be considered.
The accent effect was significant, b = 0.058, SE = 0.018, t =
3.15, p = 0.0028, 95% CI [0.022, 0.094], suggesting that FAS
increased computational demand in this region. The IAT effect
was not significant, b = −0.37, SE = 0.20, t = −1.83, p = 0.086,
95% CI [−0.76, 0.024]. The modality effect was not significant,
b = −0.026, SE = 0.018, t = −1.41, p = 0.16, 95% CI [−0.062,
0.010]. The intercept was not significant, b = 0.12, SE = 0.11,
t = 1.02, p = 0.32, 95% CI [−0.11, 0.34]. In the right inferior
frontal gyrus, no three-way or two-way interactions were signif-
icant, leaving the model with only three main effects of accent,
modality, and IAT to be considered, The accent effect was not
significant, b = 0.0080, SE = 0.019, t = 0.43, p = 0.67, 95% CI
[−0.029, 0.045]. The IAT effect was not significant, b = −0.36,
SE = 0.19, t = −1.89, p = 0.077, 95% CI [−0.74, 0.011]. The
modality effect was not significant, b = −0.0090, SE = 0.019,
t = −0.48, p = 0.63, 95% CI [−0.046, 0.028]. The intercept was
not significant, b = 0.12, SE = 0.11, t = 1.10, p = 0.29, 95% CI
[−0.093, 0.33].

DISCUSSION
Listening to FAS can be challenging compared to NAS. This
difficulty can be partly attributed to a demanding process of map-
ping somewhat unreliable incoming signals to phonology. We
hypothesized that FAS perception will require additional spec-
trotemporal analysis of the acoustic signal and place a greater
demand on the phonological processing network. We therefore
predicted increased functional activity in the superior temporal
cortex and the inferior frontal gyrus, insula, and the motor cortex
(Hickok and Poeppel, 2007; Rauschecker and Scott, 2009; Adank
and Devlin, 2010; Adank et al., 2012a,b). Furthermore, FAS per-
ception is additionally modulated by listeners’ underlying implicit
bias (Greenwald et al., 1998, 2009; Mcconnell and Leibold, 2001;
Bertrand et al., 2005; Devos and Banaji, 2005; Kinoshita and
Peek-O’leary, 2005; Yi et al., 2013). Thus, we hypothesized that
individual variability in implicit Asian-foreign association will be
associated with functional activity during early spectrotemporal
analysis in the primary auditory cortex or for later, more categor-
ical processing in the inferior frontal gyrus (Hickok and Poeppel,
2007; Rauschecker and Scott, 2009).

INCREASED COMPUTATIONAL DEMAND FOR FOREIGN-ACCENTED
SPEECH PROCESSING
Relative to native speech, FAS was associated with increased
BOLD response in the bilateral superior temporal cortices,
potentially reflecting increased computational demand on these
regions. The anterior and posterior portions of the superior tem-
poral cortex have been associated with spectrotemporal analysis
of the speech signal (Hickok and Poeppel, 2007), as well as with
speech intelligibility processing (Scott et al., 2000; Narain et al.,
2003; Okada et al., 2010; Abrams et al., 2013). While these pre-
vious studies have observed increased activation of the superior
temporal cortex for intelligible speech compared to unintelligi-
ble acoustically complex stimuli, we found increased activation
for the FAS stimuli than for the NAS stimuli, although FAS is

less intelligible than NAS (Yi et al., 2013). This contradiction is
resolved by considering the nature of comparisons involved in
previous neuroimaging studies examining mechanisms underly-
ing speech intelligibility. Both native- and FAS used in the current
study have semantic and syntactic content which are absent in
non-speech stimuli used as control in the previous studies (e.g.,
spectrally-rotated speech), and both functions have been sug-
gested to occur within the superior temporal cortex (Friederici
et al., 2003). The superior temporal cortex is a large region with
possibly multiple functional roles in processing information in
the speech signal. A direct recording study has shown that speech
sound categorization is represented in the posterior superior tem-
poral cortex (Chang et al., 2010), while a direct stimulation study
had indicated the role of anterior superior temporal cortex in
comprehension but not auditory perception (Matsumoto et al.,
2011).

We found that presentation of FAS was associated with greater
activity in the articulatory-phonological network, encompass-
ing bilateral inferior frontal gyri, insula, and the right motor
cortex. The inferior frontal gyrus is thought to be responsible
for mapping auditory signals onto articulatory gestures (Myers
et al., 2009; Lee et al., 2012; Chevillet et al., 2013). It has
been suggested that the role of the inferior frontal gyrus is
defined by the linkage between motor observation and imita-
tion, which allows for abstraction of articulatory gestures from
the auditory signals, along with the motor cortex and the insula
(Ackermann and Riecker, 2004, 2010; Molnar-Szakacs et al., 2005;
Pulvermüller, 2005; Pulvermüller et al., 2005, 2006; Skipper et al.,
2005; Galantucci et al., 2006; Meister et al., 2007; Iacoboni, 2008;
Kilner et al., 2009; Pulvermüller and Fadiga, 2010). On the other
hand, both fMRI and transcranial magnetic stimulation (TMS)
studies have indicated a functional heterogeneity within the infe-
rior frontal cortex, which includes semantic processing (Homae
et al., 2002; Devlin et al., 2003; Gough et al., 2005). The FAS
and NAS stimuli had been controlled for syntactic, semantic, and
phonological complexity (Calandruccio and Smiljanic, 2012).
Since the task for each stimulus had also been identical (clar-
ity rating), the increased activation across the speech processing
network—including the superior temporal cortex and the articu-
latory network—during FAS perception is interpreted to reflect
decreased neural efficiency for FAS processing (Grabner et al.,
2006b; Rypma et al., 2006; Neubauer and Fink, 2009).

IMPLICIT ASIAN-FOREIGN ASSOCIATION ASSOCIATED WITH EARLY
SPECTROTEMPORAL ANALYSIS
Previous behavioral studies have shown that FAS perception is
modulated not only by the signal-driven factors, but also by the
listener-driven factors. These listener factors can include listeners’
familiarity and experience with the talkers (Bradlow and Pisoni,
1999) or language experience (Bradlow and Pisoni, 1999; Bent
and Bradlow, 2003). Multiple studies have shown that listeners
are also sensitive to the information regarding talker properties
(Campbell-Kibler, 2010; Drager, 2010), either through explicit
labels (Niedzielski, 1999; Hay et al., 2006a; Floccia et al., 2009)
or facial cues (Strand, 1999; Hay et al., 2006b; Drager, 2011;
McGowan, 2011; Yi et al., 2013). Listeners vary in their suscep-
tibility to these talker cues (Hay et al., 2006b), which can override
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their explicit knowledge (Hay et al., 2006a). Accordingly, listeners’
implicit association between faces and foreignness (Greenwald
et al., 1998, 2009; Mcconnell and Leibold, 2001; Bertrand et al.,
2005; Devos and Banaji, 2005; Kinoshita and Peek-O’leary, 2005)
modulates FAS perception only when the faces are present,
through a neural mechanism hitherto unknown (Yi et al., 2013).
In this study, the IAT was used to measure the degree of listener
bias in which the East Asian faces are associated with foreign-
ness of the speakers (Greenwald et al., 1998, 2009; Mcconnell
and Leibold, 2001; Bertrand et al., 2005; Devos and Banaji, 2005;
Kinoshita and Peek-O’leary, 2005). Previous fMRI studies that
have used IAT as a covariate have consistently showed a pattern in
which higher measures of implicit association are associated with
higher activation in various neural areas for dispreferred stimuli
(Richeson et al., 2003; Krendl et al., 2006; Luo et al., 2006; Suslow
et al., 2010).

Examining the connection between FAS perception and lis-
tener bias, we found that listeners’ implicit Asian-foreign asso-
ciation was reflected in the functional activity in the right
primary auditory cortex. Participants with higher IAT scores
showed greater activity in the primary auditory cortex for Korean-
accented sentences when audiovisual information was presented.
The primary auditory cortex is the site for early spectrotemporal
analysis for the speech signal, sensitive to acoustic properties of
the signal (Strainer et al., 1997), as well as task demands (Fritz
et al., 2003, 2005), attention (Jäncke et al., 1999), context (Javit
et al., 1994), and training effects (Recanzone et al., 1993). In con-
trast, IAT scores were not associated with the activity in the infe-
rior frontal gyrus. Past findings indicated that individual listeners’
perceived talker properties from pictorial stimuli differentially
modulate the perceptual experience (Hay et al., 2006b). In the
case of FAS, the presentation of race-matched faces enhanced per-
ception of Chinese-accented English speech (McGowan, 2011),
and the individual variability in implicit Asian-foreign associ-
ation predicted Korean-accented speech intelligibility (Yi et al.,
2013). The present findings suggest that the listeners’ implicit bias
for associating Asian speakers with foreignness may be related
to the early neural processing for FAS, specifically low-level
spectrotemporal analysis of the acoustic properties of the signal.

LIMITATIONS AND FUTURE DIRECTIONS
In this study, Korean-accented speech was used as the proxy
for FAS. Accordingly, all foreign-accented talkers appeared East
Asian. In order to extend our results to the general phenomenon
of FAS perception, we propose a multifactorial design in future
studies where, in addition to the stimuli produced by Caucasian
native speakers and Asian nonnative speakers, those by Asian
native speakers and Caucasian nonnative speakers are incorpo-
rated into the study design. Also, additional explicit questionnaire
on listener experience and exposure to foreign-accented stimuli
could be collected to augment our understanding of the complex
nature in which underlying listener biases modulate speech per-
ception. Finally, we acknowledge that the current study did not
incorporate parametric variations on the intelligibility or accent-
edness of the FAS stimuli. Therefore, it is impossible to determine
whether the increased BOLD response in the speech processing
areas and the anterior cingulate cortex reflects increased difficulty

in comprehension or the degree of perceived foreign accent per se
(Peelle et al., 2004; Wong et al., 2008).

CONCLUSIONS
In this study, we presented evidence of increased computational
demand for FAS perception. Changes in the reduced neural effi-
ciency for FAS processing was associated with the variability in
the underlying listener biases (Yi et al., 2013). These results sug-
gest that implicit racial association is associated with early neural
response to FAS. Future studies on speech perception should
examine the contribution of visual cues and listener implicit
biases in order to obtain a more comprehensive understanding
of the phenomenon of FAS processing.
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