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The relationship between eye movement and vision
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While the visuomotor system is known to develop rapidly after birth, studies have
observed spontaneous activity in vertebrates in visually excitable cortical areas already
before extrinsic stimuli are present. Resting state networks and fetal eye movements
were observed independently in utero, but no functional brain activity coupled with visual
stimuli could be detected using fetal fMRI.This study closes this gap and links in utero eye
movement with corresponding functional networks. BOLD resting-state fMRI data were
acquired from seven singleton fetuses between gestational weeks 30–36 with normal brain
development. During the scan time, fetal eye movements were detected and tracked in
the functional MRI data. We show that already in utero spontaneous fetal eye movements
are linked to simultaneous networks in visual- and frontal cerebral areas. In our small but in
terms of gestational age homogenous sample, evidence across the population suggests
that the preparation of the human visuomotor system links visual and motor areas already
prior to birth.
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INTRODUCTION
Postnatal sensory development is critical (Lewis and Maurer,
2005), as external stimuli shape the cortical architecture and its
initial genetic roadmap (Bengoetxea et al., 2012). The nervous
structures responsible for initial stimulus processing and evidence
from animal studies suggest that already before the onset of vision,
genetic factors, and spontaneous activity form the basis for sub-
sequent topographic refinement of functional networks driven by
experience. Vaidya and Gordon (2013) suggested that both genetic
and experience-dependent maturational processes shape intrinsic
connectivity networks.

Spontaneous neuronal activity is suspected to affect initial
organization necessary for subsequent formation of more mature
networks (Katz and Shatz, 1996). Recently, spontaneous retinal
activity was described in mice in vivo, but the extent to which
corresponding structured information is transmitted through the
sensory system is still unknown (Ackman et al., 2012). Comparable
activity has not yet been observed in humans. While substan-
tial work exists on postnatal visual development in children, little
is known about the events during the prenatal stimulus scarce
period, when intrinsic activity is expected to dominate. Responses
to visual stimuli were reported from as early as the 28th gestational
week using neural electromagnetic activity measures acquired with

magnetic resonance encephalography (MEG; Eswaran et al., 2004).
In utero resting state networks (Schöpf et al., 2012; Thomason
et al., 2013), and fetal eye movements (Birnholz, 1981; Woitek
et al., 2013) were observed independently, but no visual stimulus
response could be located in fetal functional magnetic resonance
imaging (fMRI; Fulford et al., 2003). It is well established that
resting-state fMRI is a powerful tool to study the organization of
functional brain networks (Rosazza et al., 2012). The analysis of
fMRI is not trivial and often requires data driven algorithms, such
as independent component analysis [e.g., Schöpf et al. (2010a,b)].
The emergence of the visuomotor system is particularly infor-
mative regarding the precursory period of post-natal vision. It
involves the relationship of intrinsic and extrinsic components
suspected to shape the subsequent development of perception. The
interaction of active eye movements and vision remains central
in adult perception. In this work we investigated the relation-
ship between eye movements and functional activity in utero,
to identify the corresponding functional networks present before
birth.

Even-though the questions where functional visual activity
occurs in utero, and how primary visual areas do respond to extrin-
sic stimuli are not yet answered, voxel based morphometry studies
in congenitally blind subjects hint at brain areas that change due
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to the processing of extrinsic stimuli. While congenitally blind
subjects exhibit lower cortical volume in both frontal areas (BA
44, 45) and visual areas (BA 17, 18; Ptito et al., 2008), compared
to a control population, functional connectivity between frontal
areas (parts of BA 44, 45, and 47) and occipital areas is stronger in
early blind (Liu et al., 2007). This suggests an ambiguous relation-
ship between associated intrinsic and extrinsic processing systems
(Golland et al., 2007). It might indicate that an initial abundance
in connectivity between such areas as those implicated for lan-
guage and visual processing is pruned after vision onset. While
this then results in a clearer separation between the two systems,
the network as a whole is relevant during initial organization of
functional architecture.

Here we use data driven methodology to first show that there
exists a link between spontaneous eye movements and functional
networks in the occipital brain regions associated with vision. Fur-
thermore, we detected stable functional networks involving both
occipital and frontal regions.

MATERIALS AND METHODS
SUBJECTS
Seven singleton fetuses between gestational weeks (GW) 30–36
[mean: 32.86 (SD 1.81); mean age of mothers at MRI: 32.29 years
(3.99 SD)] with no pathological brain development were scanned
after informed consent was obtained from the mothers. The ethics
committee of the Medical University of Vienna approved the study.

IMAGE ACQUISITION
Magnetic resonance imaging was performed on a 1.5 T unit
(Philips Medical Systems, Best, The Netherlands) using a SENSE
(sensitivity encoding) cardiac coil with five elements. The preg-
nant women were examined in supine position, and neither
contrast agents nor sedatives were administered. Measurements
were performed using single-shot gradient-recalled echo-planar
imaging (EPI). Fifteen axial slices with slice thickness of 3 mm were

acquired with a matrix size of 144 × 144, FOV of 250 × 250 mm
and TE/TR of 50/1000 ms and a flip angle of 90◦. Axial slices were
positioned perpendicular to the fetal brainstem. Two experienced
neuroradiologists (GK and DP) evaluated the MR images.

TRACKING OF EYE MOVEMENTS RELATIVE TO HEAD AXIS
We tracked the movements of both fetal eyes computationally
based on the fMRI data (see Figure 1). First, we identified the
MR slice that contained the eyes, and then pixels were classified by
means of a random forest classifier (Breiman, 2001) to assign each
pixel a probability of being part of an eye. Based on this probability
map, eye center locations were estimated, and the segmentation of
the eye was refined by mathematical morphology operations. The
lens was detected along the eye border, and the view direction was
calculated as the direction from eye center to the lens center. The
head axis was defined as the symmetry axis between the two eyes.
Relative eye angles were calculated as the difference between each
eye angle (left and right) and the head central axis. Eye positions
and relative eye angles were calculated for each frame in the MRI
sequence resulting in a sequence of relative angles for the both eyes
for each fMRI frame (see Figure 2).

Based on the eye tracking sequences we create regressors and
event indicators defined as explanatory variables that reflect the
onset of eye movement. Eye movement events are defined as the
time points when the eye movement is initiated. We obtain these
points by marking peaks of the derivative of the absolute value of
the first derivative of the relative eye angles. These are time points
when the change of relative eye angle accelerates. We discard peaks
below a value of 1.4, and used the time points of the remaining
peaks as event-indicators. For each eye this vector is then convolved
with a standard hemodynamic response function corresponding
to the TR of the fMRI sequence to obtain the final explanatory
vector for each eye.

e :↔ (d(|d(α1)/dt|)/dt > t) ∨ (d(|d(α2)/dt|)/dt > t)

FIGURE 1 |Tracking eye movements over time. For every time point in the fMRI sequence, the angle of gaze direction relative to head orientation was
recorded for every subject and both eyes.
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FIGURE 2 | An example of an eye movement sequence. The top plot
shows the measures eye angles relative to the head axis (red for eye 1 and
green for eye 2). The images below show the imaging data depicting the
eyes at the corresponding time points. The eye movements are in the range
of 5–7◦ in this sequence, and therefore qualitative analysis by a reader is
difficult.

Description of main movement regressor: eye movement onset
left/right jointly.

MOTION CORRECTION AND REGISTRATION
Image preprocessing was performed with FSL (FMRIB’s Soft-
ware Library, www.fmrib.ox.ac.uk/fsl) including motion correc-
tion as implemented in MCFLIRT version 5.5 (Oakes et al.,
2005).

NUISANCE REGRESSORS
To lessen the confounding effects of non-neural signal fluctu-
ations, we used a GLM based procedure to orthogonalize the
fMRI signal to nuisance signals. Typically, such signals are orig-
inating from fetal head or maternal respiratory motion, and
physiological noise, such as cardiac effects. We utilized the Com-
pCor approach (Behzadi et al., 2007) which uses anatomical
priors and principal component analysis to define non-neural

signal. Fetal specific atlases were used to derive the CSF and
WM compartments. We used CompCor regressors from an
eroeded white matter mask, and from a region surrounding
the cortical surface, including the CSF and the skull. For
each region average signal and the most dominant six princi-
pal components were used as regressors. Furthermore derived
nuisance regressors from the head and eye tracking informa-
tion: (1,2) head position, (3,4) change of head position (x,y),
(5) head angle, (6) change of head angle. The measurements
from head tracking were convolved with a Gaussian filter,
with SD 2.

ANALYSIS
Single subject independent component analysis was per-
formed using probabilistic ICA as implemented in Multivari-
ate Exploratory Linear Decomposition Optimized into Inde-
pendent Components (MELODIC) version 3.10, a part of
FSL (FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl), using
FastICA (Beckmann and Smith, 2004). The number of sources
was estimated from the data by maximizing the Laplacian
approximation to the Bayesian evidence of the model order
(Minka, 2000; Beckmann and Smith, 2004). For the opti-
mization of the non-Gaussian sources, contrast function, and
convergence thresholds, as suggested by Hyvärinen et al. (2001),
were used. Estimated component maps were divided by the
SD of the residual noise and thresholded by fitting a mix-
ture model to the intensity values histogram (Beckmann and
Smith, 2004). Cross correlation coefficients of the derived inde-
pendent components with all eye movement parameters were
calculated.

RESULTS
To investigate if the networks active at movement onsets are stable,
and can be detected from the data regardless of the eye movement,
we performed ICA on the fMRI data. On average 13 independent
components were estimated per subject (SD 4.03). Correlation
of single-subject component time courses with the eye move-
ment regressor was calculated. The independent component with
maximum correlation coefficients for each subjects were evalu-
ated [mean correlation coefficient: 0.33 (SD 0.07)]. The networks
showing the highest correlation with fetal eye movement (see
Figure 3) include association related areas as the angular gyrus, the
inferior parietal gyrus, the superior frontal gyrus, as well as a pri-
mary visual area the medial occipital gyrus and motion associated
function.

DISCUSSION
The present results indicate a relationship between fetal eye move-
ments and activation in visual brain areas, motor areas, and
orbitofrontal areas in utero. The observed functional networks
correlating to visuomotor activity may offer a new perspective of
the time period in which the orbitofrontal prepares for extrinsic
sensory processing. The presence and relationship of the reported
functional networks between visual and frontal areas in fetuses
may prepare the developing brain for the processing of visual pat-
terns as a precursor for the subsequent postnatal stimulus driven
development of visual perception. Although observations are
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FIGURE 3 | Results of subjects 3–7 of the independent components with the maximum correlation coefficients with the eye movement on-set

regressor derived from eye tracking. Maps are overlaid on individual mean EPIs.

based on a limited number of subjects, the results were consistent
across the population.

FETAL EYE MOVEMENTS
Previous work on in utero fMRI provides insight in the develop-
ing brain ranging from stimulus processing (Schöpf et al., 2011)
to intrinsic resting-state activity (Schöpf et al., 2012; Thoma-
son et al., 2013). The observation of brain networks in utero
suffers from the uncertainty of the status of the fetus at rest
or asleep, which cannot be controlled. According to the cate-
gorization of fetal behavioral states from Romanini and Rizzo
(1995), periods of “quiet sleep” or “quiet awake” can only
be differentiated upon fetal eye movement. Four fetal eye
movement patterns were initially characterized based on early
ultrasound observations (Birnholz, 1981): Type I eye move-
ments were described as single, transient deviations consisting
of a bulb deviation, and a slower return back to the rest-
ing position, single but prolonged eye movements as Type
II, complex sequences of eye movements to different direc-
tions without periodicity as Type III, and repetitive nystagmoid
eye movements as Type IV. Additionally splitting of Type I
eye movements into Type Ia (fast deviation, slower reposi-
tion) and Type Ib (fast deviation, equally fast reposition) was
based on eye movement observation during MRI measure-
ments (Woitek et al., 2013). It has already been shown that

MRI sequences provide a valuable tool for visualizing and cat-
egorizing fetal eye movements (Brémond-Gignac et al., 1997;
Woitek et al., 2013). While this method was initially devel-
oped to serve as an indicator for ocular development and as
an indirect biomarker to detect malformations affecting the
brainstem, our study investigates for the first time the net-
works responsible for the processing of eye movement in utero,
enabling the purest form of a natural self induced stimulus, eye
movement.

FUNCTIONAL SENSORI MOTOR NETWORKS IN UTERO
We did not observe activations in the frontal eye field, which is
known to be related to saccadic eye movements. As saccades are
very fast (20–400 ms), we do not expect them to be correlated
with the MRI tracked motion events due to the limited temporal
resolution of the MRI eye tracking.

Slow pursuit or gazing movements (looking at directions
intentionally or following a moving object) are controlled with
involvement of deep-parieto-occipital cortex. Although we cannot
confirm on intentional focusing in utero, we do see parietal–
occipital activity in four out of seven cases. It is known from
studies on macaques that the parieto-occipital cortex shows acti-
vation during self-generated eye movements (Law et al., 1998)
and plays a crucial role in encoding extrapersonal visual space
(Galletti et al., 1995). As we did not provide the fetus with visual
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stimuli, the activation we observed in the parietal–occipital area
might hint at the generator of intrinsic eye movements in human
fetuses.

There is only little motor activity and little involvement
of the supplementary motor cortex or the typical frontal eye
field (see below). These results are in line with findings in
macaques reporting on fetal eye motion mainly governed by
brainstem and midbrain processes. They suggest supratentorial
control of eye motion gaining functional importance during brain
development.

The networks we observed in fetuses differ from those known in
the adult brain, and do not include a number of regions typically
associated with eye movements in adults. Instead, they include
areas identified with extrinsic stimulus processing (V1 in subjects
3,4,5,6) and motor control (subjects 3,4,6,7). So far no visual stim-
ulus fMRI response activity in utero could be located (Fulford et al.,
2003).

THE FETAL- VERSUS THE ADULT BRAIN
Most experiments investigating sensory systems in utero, as for
example visual and auditory systems, were constituted based on
block length and stimulus sequences of adult paradigm settings,
which might be a poor fit for fetal function and could explain
the non-detection of activity patterns in, e.g., the primary sensory
areas [for a review see Schöpf et al. (2011)]. The lack of previous
localizations in primary sensory areas as a response to sensory
stimuli strongly indicates that conventional fMRI paradigms used
in adult settings do not capture the fetal brain settings. In light
of (Dehorter et al., 2012) proposition that the developing brain is
not a small adult brain but that the voltage- and transmitter-gated
currents act like network driven patterns following a develop-
mental sequence, the present results point to endogenous activity
in the developing cortex as modulating the formation of func-
tional units in the sensorimotor system. Instead of linking primary
sensory activity to external stimuli, they evidence a link to spon-
taneous eye motion as part of the sensorimotor system. The
function of these early patterns is to enable heterogeneous neu-
rons to fire and wire together and prepare for subsequent stimulus
driven development rather than to code specific modalities at this
point.

Colonnese et al. (2010) already observed the change of func-
tional units and a switch to mature visual response shortly before
delivery in humans based on recordings from the visual cortex
of preterm human infants. They proposed a “bursting” period
of visual responsiveness during which weak retinal information
is amplified by endogenous network oscillations, which in turn
enable a primitive form of vision. Colonnese et al. (2010) con-
cluded that an intrinsic program that is able to switch cortical
responses in anticipation of patterned vision operates early visual
developmental processing.

LIMITATIONS
A constraining factor of the presented work is the limited sample
size. According to this issue results are based on a single subject
level analysis. As the sample was very homogenous with regard
to gestational age this setting was chosen specifically to abstain
from technical nuisance introduction emerging from registration

to a template, which could influence the quality of single eye
movement trackings. On the other hand, this homogeneity of
developmental age does not allow for the analysis of eye move-
ment related networks across gestational development, which will
be of interest in future investigation. Furthermore, an important
open question regarding our understanding of the hemodynamic
developmental trajectory across in utero development, could be
addressed by model driven data analysis.
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