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Making accurate judgments is a core human competence and a prerequisite for success
in many areas of life. Plenty of evidence exists that people can employ different
judgment strategies to solve identical judgment problems. In categorization, it has been
demonstrated that similarity-based and rule-based strategies are associated with activity
in different brain regions. Building on this research, the present work tests whether
solving two identical judgment problems recruits different neural substrates depending
on people’s judgment strategies. Combining cognitive modeling of judgment strategies
at the behavioral level with functional magnetic resonance imaging (fMRI), we compare
brain activity when using two archetypal judgment strategies: a similarity-based exemplar
strategy and a rule-based heuristic strategy. Using an exemplar-based strategy should
recruit areas involved in long-term memory processes to a larger extent than a heuristic
strategy. In contrast, using a heuristic strategy should recruit areas involved in the
application of rules to a larger extent than an exemplar-based strategy. Largely consistent
with our hypotheses, we found that using an exemplar-based strategy led to relatively
higher BOLD activity in the anterior prefrontal and inferior parietal cortex, presumably
related to retrieval and selective attention processes. In contrast, using a heuristic
strategy led to relatively higher activity in areas in the dorsolateral prefrontal and the
temporal-parietal cortex associated with cognitive control and information integration.
Thus, even when people solve identical judgment problems, different neural substrates
can be recruited depending on the judgment strategy involved.

Keywords: judgment and decision making, fMRI, exemplar model, cognitive strategies, cognitive modeling, multi-

attribute decision making

INTRODUCTION
Making accurate judgments is an important human competence.
Doctors and judges routinely make judgments that may decide
whether someone lives or dies. Judgments usually are made on
the basis of several pieces of information or cues. For instance,
a doctor may set the medication dosage for a patient by con-
sidering the severity of the symptoms and the patient’s medical
history. Naturally, the neural substrates underlying judgments
have raised the interest of numerous researchers (e.g., Greene
and Haidt, 2002; Paulus and Frank, 2003; Heekeren et al., 2005;
Moll et al., 2005; Knutson et al., 2007; Hare et al., 2009; Pine
et al., 2009). However, so far, little attention has been paid to
the fact that identical judgment problems can be solved by dif-
ferent judgment strategies. This implies that the variety in neural
substrates underlying human judgments could result from dif-
ferent judgment strategies. The majority of imaging studies have
largely ignored people’s strategies or focused on a single strategy
(Zysset et al., 2006; Kahnt et al., 2011; Khader et al., 2011). This
is surprising because a plethora of research in cognitive psychol-
ogy suggests that people frequently adopt a variety of different
strategies in cognitive tasks such as judgment, decision making
or problem solving (e.g., Gigerenzer and Goldstein, 1996; Ashby

et al., 1998; Lemaire, 2002; Juslin et al., 2008; Rieskamp and
Hoffrage, 2008; von Helversen and Rieskamp, 2008). In this vein,
a distinction between similarity-based and rule-based strategies
has been drawn in research on judgment and this is supported by
a large amount of behavioral evidence (see e.g., Karlsson et al.,
2007; Juslin et al., 2008; Hoffmann et al., 2013; von Helversen
et al., 2013). People’s use of different judgment strategies should
be reflected at the neural level. Indeed, in categorization research
a related distinction between similarity-based and rule-based
strategies has led to research suggesting that these categoriza-
tion strategies largely rely on different brain regions (for reviews
see Nomura and Reber, 2008; Smith and Grossman, 2008). In
the current work we will investigate the neural underpinnings of
similarity-based and rule-based judgment strategies.

SIMILARITY- AND RULE-BASED STRATEGIES IN JUDGMENT AND
CATEGORIZATION
Overall, categorization and judgment tasks share many features
as both involve the evaluation of an object based on its attributes
or characteristics. However, they differ in the type of response
that is required. Whereas categorization involves a dichotomous
decision such as deciding whether a patient needs medication
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or not, judgments require a more fine-grained response such as
estimating the exact dosage that is prescribed. Despite these dif-
ferences, it has been suggested that people rely on similarity-based
and rule-based strategies in both tasks. Similarity-based strategies
in judgment and categorization follow the assumption that cat-
egory decisions or judgments are made based on the similarity
of the current object under evaluation to previously encountered
instances that are retrieved from memory (Medin and Schaffer,
1978; Juslin et al., 2003). For instance, a doctor facing the prob-
lem how to set the medication dosage for a patient could think
back to similar patients and the medication dosage they required.
In contrast, rule-based strategies usually follow the assumption
that people make judgments or decisions by applying a previously
abstracted rule that defines how the characteristics or features
of the object under evaluation relate to the decision criterion.
Following this strategy the doctor would, for instance, assign a
high dosage if the patient had severe symptoms, but did not fall
into a risk group.

In comparison to the similarity-based approach, rule-based
strategies do not necessarily require the retrieval of previously
encountered instances, but require keeping the rule active in
working memory (e.g., Bruner et al., 1956; Hahn and Chater,
1998; Juslin et al., 2003; Hoffmann et al., 2013, in press). In gen-
eral, this suggests that similarity-based strategies should lead to
relatively higher activation compared to rule-based strategies in
the left inferior and anterior prefrontal cortex (aPFC) and the infe-
rior parietal cortex (IPC)—areas that past research has strongly
connected to memory retrieval and comparison processes (e.g.,
Badre and Wagner, 2007; Martin, 2007; Spaniol et al., 2009;
Kim, 2011; Grossman et al., 2013). In contrast, using a rule-
based judgment strategy should lead to relatively higher activity
in the dorsolateral prefrontal cortex (dlPFC) and the anterior cin-
gulate cortex, areas that have been strongly connected to cognitive
control and rule use (e.g., Grossman et al., 2002; Bunge, 2004;
Heekeren et al., 2004).

Largely in line with these hypotheses, past research in catego-
rization has demonstrated that relying on rule-based strategies
leads to relatively higher activation in the dlPFC and the anterior
cingulate cortex than similarity-based categorizations. However,
frequently a higher activation in the posterior parietal cortex
(PPC)—an area associated with selective attention—has also been
found (Patalano et al., 2001; Grossman et al., 2002; Koenig et al.,
2005). Consequently, if using similarity- and rule-based strategies
in judgment involves cognitive demands similar to their counter-
parts in categorization, one would also expect a higher activation
in the PPC for rule-based judgment strategies.

Although similarity- and rule-based judgment strategies share
a conceptual basis with the respective strategies in categorization,
they also differ in important aspects. For instance, rule-based
strategies in categorization and judgment may differ in the cog-
nitive demands they pose: Research in categorization has mostly
compared rule-based strategies that rely on a single dimension
with similarity-based strategies that consider similarity on sev-
eral dimensions (Erickson and Kruschke, 1998; Grossman et al.,
2002). For instance, when deciding whether an unknown bug
is toxic one could follow a single dimensional rule that bugs in
warning colors such as red or yellow tend to be dangerous and

ignore other characteristics such as the bug’s size. In contrast
a similarity-based strategy would rely on the overall similarity
of the bug in question to bugs one knows to be dangerous,
taking into account other features such as size or the type of
wings besides the coloring. In contrast, in judgment tasks usu-
ally both rule- and similarity-based strategies are assumed to
integrate information on several dimensions (Juslin et al., 2008;
von Helversen and Rieskamp, 2008). For making a fine-grained
judgment it is usually necessary to consider several characteris-
tics of the object. For instance, a rule-based judgment strategy
could identify a bug as medium toxic if about half of its char-
acteristics are typical for toxic bugs. This difference between
judgment and categorization strategies could affect which brain
areas are activated. To the degree that the higher activation in
the PPC frequently found in rule-based categorization processes
reflects selective attention to only one or two characteristics (e.g.,
Grossman et al., 2002), it is possible that a different pattern of
activation would be found in a judgment task.

The goal of the present research was twofold. First, we aimed
at investigating whether similar to categorization tasks an iden-
tical judgment task recruits different brain areas depending on
whether a rule-based or a similarity-based judgment strategy was
followed. Secondly, we wanted to examine whether similarity-
based and rule-based judgment strategies have neural correlates
similar to categorization strategies. Specifically, we investigated
whether rule-based judgment strategies lead to a higher activa-
tion in the dlPFC and the PPC, and similarity-based strategies
result in higher activation in the aPFC and IPC.

To investigate these questions, we conducted an experimen-
tal study where we compared the neural activations when relying
on a similarity-based judgment strategy and a rule-based judg-
ment strategy. In the experiment participants performed two
judgment tasks. These two tasks were selected from three differ-
ent judgment scenarios. For instance, in one medical scenario,
participants had to estimate the medication dosage for a patient
that could range between 200 and 300 mg based on the patient’s
symptoms (the cues). The patients differed on six cue (symp-
tom) dimensions that could be used to make the judgment. For
example, the patient’s blood pressure could be high or low, the
worst time period could be in the morning or the evening, and
the virus could be type A or B. In another employment scenario,
the task was to evaluate the suitability of a job applicant for an
IT position based on the applicants’ knowledge in different fields
such as foreign language skills or special qualifications. In the
last biological scenario, the task was to estimate the amount of
toxin in a bug’s saliva based on the bug’s appearance. Each par-
ticipant performed one judgment task with each strategy, each
with a different scenario. The third scenario was used as a dis-
tractor task in the functional magnetic resonance imaging (fMRI)
session.

Because we were interested in how participants apply
rule- and similarity-based judgment strategies, we instructed
participants to solve the judgment tasks using either a typ-
ical rule-based strategy—a judgment heuristic—or a typi-
cal similarity-based strategy: an exemplar-based strategy (von
Helversen and Rieskamp, 2009a). The content of the two judg-
ment tasks differed, but both tasks had the same underlying
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structure. In our subsequent analysis, we focused on comparing
the cognitive processes of the two judgment tasks against each
other.

MATERIALS AND METHODS
PARTICIPANTS
Twenty-three right-handed, healthy participants, with normal
or corrected to normal vision, were recruited to take part in
the experiment (17 women, mean age = 20.13, SD = 2.67).
Participants reported no psychiatric or neurological disorder.
Written informed consent was obtained from all participants after
the study procedures had been explained. The Basel canton ethics
committee approved all procedures in this study. We excluded five
participants from the analyses: Three participants were excluded
because of excessive head movement (>3 mm) and two partici-
pants because modeling their judgments suggested that they did
not use the instructed strategies (see details in behavioral results).

GENERAL PROCEDURE
To ensure that participants learnt to apply the two judgment
strategies accurately, we conducted the study on two consecutive
days. On the first day, participants learnt to solve the judgment
tasks by using the two judgment strategies; on the second day,
they solved trials from both judgment tasks switching between
strategies while we recorded fMRI data.

JUDGMENT TASK
Stimuli
The participants’ task was to make fictitious quantitative judg-
ments of several items using a scale with 100 possible values. Each
item was described by six binary cues and a criterion value (see
Table 1). The task was to learn to estimate the correct criterion
value of items given the items’ cue values. In Table 1 cue values
are denoted by “0” or “1,” where a value of “0” indicates a “nega-
tive” cue value and “1” a “positive” cue value. A positive cue value
means that on average an item with a “1” for this cue will have a
higher criterion value than an item with a “0” for this cue. Thus a
positive cue value indicates a higher criterion value than a nega-
tive cue value. The criterion values for each item were determined
by a multiplicative function of the cue values (for the function
used, see von Helversen and Rieskamp, 2009a). To help partici-
pants to be able to switch between the two judgment strategies
according to the instruction and to control for content specific
effects, participants learnt each strategy using a different judg-
ment task scenario. Overall, we used three different judgment
scenarios that had the same underlying information structure
but differed in content: (1) a medical task in which participants
judged the medication dose for a patient based on the patient’s
symptoms (i.e., the cues) such as location of headache (front or
back), blood pressure (high or low), color of mucus (yellow or
green), or type of rash (reddening or itching), (2) an employment

Table 1 | Overview of the task structure.

Item no. Cue 1 Cue 2 Cue 3 Cue 4 Cue 5 Cue 6 Crit. Prediction: Prediction: Item type

mapping strategy exemplar strategy

1 0 0 0 0 1 0 1 1 1 Training

2 0 0 1 0 0 1 3 3 3 Training

3 0 1 0 0 1 1 7 9 7 Training

4 1 0 1 1 0 0 10 9 10 Training

5 1 1 1 1 0 0 27 27 27 Training

6 1 1 1 0 1 1 47 47 47 Training

7 0 0 0 1 1 1 5 9 4 *Test Q1

8 0 0 1 1 1 0 7 9 6 Test Q2

9 0 0 1 0 1 1 6 9 3 Test Q3

10 1 1 1 0 0 0 13 9 27 *Test Q1

11 1 1 0 0 0 1 10 9 27 Test Q2

12 1 1 0 1 0 0 12 9 27 Test Q3

13 1 0 0 0 0 1 4 3 3 Test

14 1 1 0 0 0 0 6 3 27 *Test

15 1 0 0 1 0 0 4 3 10 *Test

16 0 0 1 1 1 1 12 27 3 Test

17 0 1 1 1 1 0 18 27 27 *Test

18 1 0 1 1 0 1 18 27 10 *Test

19 0 1 1 1 1 1 33 47 27 Test

20 1 1 1 1 1 1 100 47 47 Test

This table indicates the cue and criterion values of the items, the predictions of the strategies and whether items appeared during training and/or test. Training items

appeared during the training phase and the test phase whereas test items only appeared during the test phase. Test items with a star indicate the test items that

also appeared in the fMRI test phase; Crit. stands for the items’ criterion value. Cue values of “0” indicate that an item has a negative value on this cue and cue

values of “1” that the item has a positive value on this cue. The test items marked with a Q denote the pairs of items with three positive cue values but opposite

patterns of cue values used for the qualitative test.
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task in which participants rated the quality of a job applicant for
an IT position based on the applicant’s characteristics such as for-
eign language skills (French or Turkish) or special qualifications
(media law or web design), and (3) a biological task in which par-
ticipants estimated the amount of toxin in a bug’s saliva based
on the bug’s appearance, such as the color of the head (red or
brown) or the length of the antennae (short or long). In each task
the assignment of the six cues to the cue dimensions (i.e., if blood
pressure denoted cue 1 or cue 2) was randomized, but the assign-
ment of cue values as positive or negative was fixed. For instance,
patients with low blood pressure always needed a higher dosage
of medication than patients with a high blood pressure. For a full
list of positive and negative cue values see Table 2. In addition the
judgment scale changed with the three tasks. In the medical task
the dosage varied between 200 and 300 mg. In the employment
task the suitability was evaluated on a scale from 0 to 100 and in
the biological task the toxicity of the bugs varied between 100 and
200 mg per ml. Accordingly, depending on the judgment task the
criterion values reported in Table 1 were adjusted by adding 200
in the medical task and 100 in the biological bugs task.

Procedure behavioral judgment task
In the first session, participants were informed that they would
solve two different judgment tasks using two judgment strate-
gies. After they learnt the judgment strategy they would complete
a test phase in which they had to apply both strategies. For
each participant the assignment of the strategies to the task sce-
narios was stable throughout the study. The assignment of task
scenarios to strategies and the order with which strategies were
learnt was randomized between participants (i.e., one participant
would learn the rule-based strategy with the medical scenario
and the similarity-based strategy with the employment scenario
whereas another might learn the rule-based strategy with the
bugs scenario and the similarity-based strategy with the medi-
cal scenario). First, we taught participants one strategy. For this
they received a description of the strategy and then completed
three practice trials in which they received a detailed explanation

of how to calculate the criterion value according to the strat-
egy. After that, they practiced the strategy in a training phase.
During the training phase, participants had to repeatedly judge
six training items according to the strategy they had just learnt
(see Table 1). In each trial participants saw one of the training
items and entered their judgment. After that they received feed-
back on the correct criterion value of the training item and the
criterion value the strategy they were learning would have esti-
mated. Then they continued with the next trial. The training
continued until they gave the same judgments as the strategy that
they were instructed to use in two consecutive learning blocks
with each block consisting of judging all six training items in a
random order. After the first strategy had been learnt, partici-
pants rated the difficulty of the strategy on a scale from 1 (not
difficult at all) to 7 (very difficult). Then the second judgment
strategy was taught, practiced and the difficulty rated. Once train-
ing was completed, a test phase followed in which participants
made judgments for items from both judgment strategies/tasks
scenarios in a randomized order without feedback; that is, a par-
ticipant that had learnt the rule-based strategy with the medical
scenario and the similarity-based strategy with the employment
scenario would in one trial evaluate a patient based on the
patient’s symptoms and in another trial the suitability of a job
applicant based on the applicants’ skills. In each trial, they were
instructed to use the strategy with which they had learnt to solve
the task during training. The test trials consisted of 40 items
repeated twice, 20 from each judgment scenario. The 20 items of
each task consisted of the six training items and 14 new items
(see Table 1). The items for the training and test phase were
selected such that the heuristic strategy and the exemplar strategy
would make qualitatively different predictions. We explain these
qualitative differences in detail when we report the behavioral
results.

fMRI judgment task
The fMRI session took place at the university hospital in Basel.
After arrival, participants first repeated the strategy-training

Table 2 | Judgment scenarios.

Cue 1 Cue 2 Cue 3 Cue 4 Cue 5 Cue 6

MEDICAL SCENARIO: MEDICATION DOSAGE (SCALE FROM 200 TO 300 mg)

Cue label Rash Blood pressure Mucus Virus Worst period Headache

Positive cue value Reddening Low Green Type A Morning In the back

Negative cue value Itching High Yellow Type B Evening In the front

BIOLOGICAL SCENARIO: TOXICITY OF BUGS (SCALE FROM 100 TO 200 mg/ml)

Cue label Wings Antennae Legs Size Body Head

Positive cue value Dotted Long Thick Large Furry Red

Negative cue value Uni-colored Short Thin Small Smooth Brown

EMPLOYMENT SCENARIO: SUITABILITY OF APPLICANT FOR IT POSITION (SCALE FROM 0 TO 100)

Cue label Programming
language

Foreign language Work experience Industrial sector Special qualifications Operating system

Positive cue value Java French Development Financial sector Media law Unix

Negative cue value C++ Turkish Consulting Pharmaceutical sector Web design Windows

Overview of the material used. Positive cue values indicate that an item with this cue value has on average a higher criterion value than an item with a negative

value on this cue.
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phase and practiced using a button box to enter their judgments.
Then they proceeded with a judgment test phase in the MRI
scanner. The test phase consisted of 90 trials structured in three
blocks of 30 trials. In each block participants solved 12 trials with
the exemplar strategy and 12 trials with the heuristic strategy.
Six of the 12 items were old items from training, six items were
new (see Table 1). In the six remaining trials they worked on
a distractor task in which they had to locate a spelling mistake
and report the line in which it occurred. Originally the distrac-
tor task was included to allow for a comparison between the
judgment task and the distractor task. However, the distractor
task proved quite difficult for participants, resulting in frequent
errors and making a meaningful comparison not very useful.
Therefore, in our analysis we focused on direct comparison of the
two judgment tasks. As a cover story for the distractor task, we
used the judgment scenario out of the three scenarios described
above that had not been selected for the judgment strategy
training.

Each trial in the scanner started with a fixation cross (100 ms),
followed by a primer slide announcing the judgment scenario
(1 s). We included the task prime to enable participants to pre-
pare using the correct strategy for the task and to reduce switching
costs. After that, the cue information for item that had to be
judged was provided for a minimum of 5 s and a maximum of
15 s. Participants were instructed to make their judgment and
press a button using a button box as soon as they had made a deci-
sion. The next slide was presented after participants had pressed
the button and 5 s had passed. If 15 s passed and the participant
had not pressed a button, the next slide appeared. In the next
slide, participants had to enter the number they judged within
15 s using the button box. To enable participants to enter the cri-
terion value with the button box without clicking through up to

100 values, participants were taught to enter the criterion value
similar to how one would set a digital clock: first they entered the
value at the hundreds position, with the first button of the button
box increasing the value by one and the second button decreas-
ing the value by one. Once they had selected the desired value
for the hundreds position, they could confirm it with the third
button. Then they could enter the digit for the tens position con-
firm it and continue with the single unit position. The starting
value was set at the lowest value possible in the respective task
(i.e., 200 in the medical scenario, 100 in the bug task and 0 in the
employment scenario). Participants received ample training with
the button box before starting the session in the scanner. After
the trial, the fixation cross appeared and was shown for between 2
and 4 s (see Figure 1) The session in the scanner lasted 30 min on
average.

JUDGMENT STRATEGIES
Participants were instructed to rely on two judgment strate-
gies, the exemplar strategy and a heuristic judgment strategy, the
mapping strategy. To analyze whether participants indeed used
the instructed strategies, we implemented computational mod-
els of the strategies and fitted them to participants’ individual
judgments averaged over the repeated presentations. Goodness-
of-fit was measured as the root mean squared deviation (RMSD)
between model predictions and participants’ judgments on the
new items.

Exemplar strategy
The exemplar strategy is a memory-based judgment strategy that
assumes that judgments are made based on the similarity of
the object under evaluation to previously encountered objects.
Accordingly, we instructed participants to store the training

FIGURE 1 | Schematic of a single trial in the fMRI task. A single trial
consisted of fixation cross (100 ms) and a primer slide announcing the
judgment scenario (1 s). After that, the information for the judgment task was
provided for a minimum of 5 s and a maximum of 15 s. Participants were
instructed to make their judgment and press a button as soon as they had

made a decision. The next slide was presented after participants had pressed
the button and 5 s passed. If 15 s passed and the participant had not pressed
a button, the next slide appeared. In the next slide, participants had to enter
the number they judged within 15 s by using a button box. After the trial, the
fixation cross appeared and was shown for 2–4 s.
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objects in memory. When judging new items they were asked to
retrieve the most similar item(s) from memory and make a judg-
ment based on the criterion value of the retrieved item(s). If two
items with the same similarity were retrieved, judgments should
be the average of the criterion values of the two items. Participants
were instructed to judge similarity between two items on the basis
of their cue values; that is, the more cue values matched the higher
the similarity. Accordingly, the exemplar strategy estimates, for
instance, a criterion value of 27 for test item 19 (see Table 1),
because it retrieves the most similar training items 3 and 6 from
memory. The criterion values of these items are 7 and 47, respec-
tively, resulting on an estimated criterion value of about 27 for
item 19.

When fitting the strategy to participants’ behavior we used a
computational model following the implementation suggested by
Juslin et al. (2008). This model follows the same basic assump-
tions of the exemplar strategy that we instructed participants to
use but allows taking into account that people may not remember
all cue dimensions. The model has been frequently and success-
fully used to describe human judgments when people rely on
exemplar similarity (e.g., Karlsson et al., 2007; Juslin et al., 2008).
This exemplar model assumes that the judgment is the average
of the criterion values xi, of the exemplars stored in memory
weighted by their similarity to the probe (i.e., the current object
under evaluation).

ŷp =
∑I

i = 1 S
(
p, i

) · xi∑I
i = 1 S

(
p, i

) (S1)

where ŷp is the estimated criterion value for the probe p; S is the
similarity of the probe to the stored exemplars; xi is the criterion
value of the exemplar i; and I is the number of stored exemplars
in memory. The similarity S between the stored exemplar and the
probe is calculated by the similarity rule of the generalized context
model (GCM; Nosofsky, 1984):

The similarity S(p, i) between a probe p and an exemplar i is a
nonlinearly decreasing function of their distance d(p, i):

S
(
p, i

) = e−d(p,i). (S2)

The distance between a probe p and an exemplar i is

d
(
p, i

) = h

⎡
⎣

J∑
j = 1

sj

∣∣cpj − cij

∣∣
⎤
⎦ , (S3)

where cpj and cij, respectively, are the cue values of the probe p
and an exemplar i for the jth cue; h is a sensitivity parameter that
reflects discriminability in the psychological space (e.g., Nosofsky
and Zaki, 1998); and the parameters sj are the attention weights
associated with cue dimension j. Attention weights vary between
0 and 1 and are constrained to sum to 1.

The exemplar model was fitted individually to participants’
judgments of the behavioral and fMRI test phases, assuming that
the six training exemplars were stored in memory and retrieved
when making a judgment. Parameter values were estimated by a
nonlinear, least squares optimization algorithm.

Mapping strategy
The mapping strategy is a rule-based heuristic strategy that allows
making fast, but relatively accurate judgments (von Helversen and
Rieskamp, 2008, 2009b). It makes a judgment by counting the
number of positive cue values an object possesses and assigning
the typical criterion value of objects with the same number of pos-
itive cues. The typical value is defined as the mean of the criterion
values of objects with the same number of positive cue values.
To shorten the time participants would need to learn apply-
ing this strategy, before they started with the behavioral training
participants were informed which cue values in the judgment sce-
nario in which the mapping strategy was learnt were positive.
For instance, a participant learning the mapping strategy in the
medical scenario would be informed in the instructions that usu-
ally patients with low blood pressure required higher doses than
patients with high blood pressure and patients with green mucus
required higher doses than patients with yellow mucus and so on
(see Table 2). Then participants were told to count the number
of positive cue values for each item they saw. For each number
of positive cue values, they learnt to estimate the typical crite-
rion value during the training phase. Accordingly, when judging
test item 19, using the mapping strategy a participant would first
assess the number of positive cue values (four), and then retrieve
the typical criterion value for this cue sum category. The only
training item with four positive cue values is item 6, which has
a criterion value of 47. Thus, the typical criterion value for an
item with four positive cue values is 47, which would be given as
an estimate for the criterion value for the test item.

We implemented the mapping strategy as a computational
model to derive its predictions (von Helversen and Rieskamp,
2008). The mapping model classified test items according to their
cue sums and then estimated the typical criterion values of each
cue sum category. The typical criterion values for each cue sum
category were calculated based on the criterion values of the six
training exemplars, or if no training exemplar with the respective
cue sum was available they were based on the adjacent cue sum
categories.

NEUROIMAGING
Neuroimaging data were collected at the university hospital in
Basel using a 3T Siemens Magnetom Verio (Erlangen, Germany)
with a 12-channel head coil. Functional runs [echo-planar images
(EPIs)] used a T2∗-weighted sequence with the following acquisi-
tion parameters: repetition time (TR), 2280 ms; echo time (TE),
30 ms; flip angle (FA), 80◦; field of view (FoV), 228 mm, acqui-
sition matrix 76 × 76 with GRAPPA (generalized autocalibrating
partially parallel acquisitions). Each volume consisted of 40 slices
acquired parallel to the anterior commissure–posterior commis-
sure plane (interleaved acquisition; 3 mm thick with 0 mm gap;
3 × 3 mm in-plane resolution). Stimuli were viewed through a
mirror attached to the head coil and a projection screen at the
back of the scanner. Each trial was associated with a different
(individually jittered) EPI scan sequence. A localizer (to position
the EPI), a gradient recalled echo (GRE) field map, and a T1
(TR, 2000 ms; TE, 3.37 ms; FA, 8◦; FoV, 256, 176 sagittal slices,
three-dimensional acquisition; 1 mm thick; 1 × 1 mm in-plane
resolution; 256 × 256 matrix) were run before the EPI scan.
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Preprocessing was performed using SPM8 (Statistical
Parametric Mapping, Wellcome Department of Cognitive
Neurology, London, UK) implemented in Matlab 2010Ra
(Mathworks Inc., Natick, MA, USA). The first three volumes
of each run were discarded to allow for magnetic saturation
effects. Volumes were slice-time corrected to the first slice and
realigned to the first acquired volume. A mean image created
from the realigned volumes was co-registered with the structural
T1 volume and the structural volumes were spatially normalized.
The spatial transformation was applied to the realigned T2
volumes, which were spatially smoothed using a Gaussian kernel
of 8 mm full-width half maximum.

General linear model analyses
For the statistical evaluation, we defined a general linear model
that included four regressors of interest and 10 regressors of
non-interest. The four regressors of interest consisted of the judg-
ment items for new and old items for the exemplar task and the
mapping task (“Exemplar Task New Items,” “Exemplar Task Old
Items,” “Mapping Task New Items,” “Mapping Task Old Items”).
Onsets for these regressors were at the time when the judgment
items appeared on screen. Participants indicated when they had
formed a judgment by a button press. We used the response times
to model the duration of each event.

The regressors of no interest consisted of the distractor task,
the task prime (1 s), the response screen (duration modeled
with participants’ response times), and the fixation cross (2–4 s).
All regressors were convolved with a canonical hemodynamic
response function. Last, the six scan-to-scan motion parameters
produced during realignment were included as additional para-
metric regressors in the SPM analysis to account for residual
effects of scan-to-scan motion.

We computed linear contrasts of regression coefficients at the
individual subject level and then took them to a second-level ran-
dom effects analysis. We calculated the following contrast images:
Mapping Task New Items > Exemplar Task New Items, Exemplar
Task New Items > Mapping Task New Items, Mapping Task Old
Items > Exemplar Task Old Items and Exemplar Task Old Items >

Mapping Task Old Items. Because judgments for the old items
not only depend on the strategies, but also involve other pro-
cesses such as recognition memory, the first two contrasts are
the most diagnostic for comparing the two strategies and will
thus be the main focus of the results and the discussion. For
second-level random effects analysis, the single-subject contrasts
were entered into one-sample t-tests. All statistical images were
thresholded with p < 0.0001 uncorrected and a cluster signifi-
cance level of p < 0.05, corrected for multiple comparisons at
the cluster level (FWE), for clusters with more than 20 vox-
els (see Thirion et al., 2007; Gureckis et al., 2011 for a similar
procedure). Activations were located based on the Automated
Anatomical Labeling atlas and manually checked (AAL; Tzourio-
Mazoyer et al., 2002). Locations of peak activations are indicated
in MNI (Montreal Neurological Institute) space. To determine
Brodmann areas, we converted the MNI coordinates of the peak
activations into Talairach space (Lancaster et al., 2007) and then
used the Talairach daemon to locate the closest Brodmann area
(Lancaster et al., 1997, 2000).

RESULTS
BEHAVIORAL DATA
We analyzed the behavioral judgments in the behavioral test
phase and the fMRI test phase together to increase the relia-
bility of the strategy assessment. On average participants made
similar judgments in both tasks. Using a scale from 0 to 100,
mean judgments were M = 14.2 (SD = 13.8) in the mapping
task and M = 14.6 (SD = 8.4) in the exemplar task. Also, the
spread of judgments was comparable, ranging from 1 to 47 dur-
ing the fMRI test phase for both tasks. Thus, on the average
behavioral level participants appear to solve the task in a similar
way. However, having a closer look confirmed that the judgments
were generated by different strategies. Focusing on the more diag-
nostic new items, Figure 2 (left panel) illustrates that for the
mapping task, the mapping model described on average partic-
ipants’ judgments better than the exemplar model, whereas for
the exemplar task the exemplar model described on average par-
ticipants’ judgments better than the mapping model. This was
supported by a repeated measurement analysis of variance with
model and task as within-subject factors resulting in a highly
significant interaction, [F(1, 17) = 79.9, p < 0.001, partial η2 =
0.83]1 . Nevertheless, in the exemplar task the mapping model fit-
ted the judgments of two participants better than the exemplar
model. Thus, we excluded these two participants from further
analyses.

Although judgments are comparable on the mean level, an
analysis of the judgments on the item level for the new items
showed that participants’ judgments differed in the two condi-
tions as predicted. For a strong qualitative test of the models we
had selected the new items so that the strategies make opposing
judgments for pairs of items (for this qualitative test see also von
Helversen and Rieskamp, 2009a). Specifically we created pairs of
items for which each item always had three positive cues values
out of the six cues; however, which cue had a positive value was
different for all cues between the pairs of items. For these specific
pairs of items the mapping model predicts the same value for the
two items with three positive cue values even though these two
items had no single dimension out of six with the same cue val-
ues. In contrast, these two items were treated quite differently by
the exemplar model, which made very different predictions (see
also Table 1). Figure 2 (right panel) illustrates that the judgments
were in line with the predictions, so that participants made similar
judgments for the item pairs in the mapping task but made differ-
ent judgments in the exemplar task. Additionally we analyzed how
easily participants learnt the strategies, how difficult they judged
using a strategy, and how long they took to give a judgment using
the strategies. Overall, the results suggest that the exemplar strat-
egy was more difficult than the mapping strategy. Participants
required more training trials to learn the exemplar strategy than
the mapping strategy (MExemplar = 96, SD = 52; MMapping = 33,
SD = 21), they reported it as more difficult to use after learning
it [MExemplar = 4.7, SD = 1.7; MMapping = 2.9, SD = 1.2; t(17) =
4.63, p < 0.001], and were slower in the exemplar task than

1The same conclusion holds when using the Bayesian information criterion
(BIC; Schwartz, 1978; Raftery, 1995) as measure of model fit, which takes the
models’ complexities (i.e., their number of free parameters) into account.
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FIGURE 2 | Behavioral evidence for the two strategies in the two tasks.

(A) Shows the model fits for participants’ judgments of the new items in the
two tasks. (B) Shows the differences in judgments for item pairs with always
three positive cue values each, but different cue values on each cue

dimension. The results for the behavioral and the imaging study show that, as
predicted by the mapping model, participants made similar judgments for
these item pairs in the mapping task, but as predicted by the exemplar
strategy made different judgments in the exemplar task (error bars = 1 SE).

in the mapping task in the fMRI test phase [MExemplar = 6.9 s,
SD = 2.2; MMapping = 5.5 s, SD = 1.3; t(17) = 2.71, p < 0.02].

NEUROIMAGING
To compare brain activation when using the exemplar strategy to
when using the mapping strategy, we calculated contrasts between
the trials of the mapping task and the exemplar task involving
old (training) items and new items, where the comparison of
new items is more informative. The results for the new items
show that the strategies rely partially on different neural sub-
strates involving prefrontal and parietal regions. As shown in
Figures 3A–C, in the exemplar task we found higher activations
relative to the mapping task bilaterally in the (aPFC) at the supe-
rior frontal gyrus (−27, 62, 13; 33, 59, 10) and the left inferior
frontal gyrus (−42, 47, −8). In addition we found higher activa-
tions in the dlPFC and the ventrolateral prefrontal cortex (vlPFC)
at the inferior frontal gyrus (48, 17, 37) on the right side and
between the dlPFC and the vlPFC at the inferior frontal sulcus
(−54, 17, 34) on the left side. Furthermore, we found higher
activations in the IPC on the right at the inferior parietal lobe
(36, −67, 37) and on the left at the angular gyrus (−36, −58,
43). For a full list of activations, see Table 3. In contrast, in the
mapping task relative to the exemplar task, we found higher acti-
vations in the prefrontal cortex in the left dlPFC at the middle
frontal gyrus (−30, 41, 25) and the right vlPFC at the inferior
frontal gyrus (57, 8, 7), see Figure 3A. In the parietal cortex
we found higher activations in the left temporal-parietal cor-
tex at the supramarginal gyrus (−57, −43, 28). In addition, we
found higher activations in the precentral and postcentral gyrus
and supplementary motor areas. See Table 3 for a full list of
activations.

The behavioral results had shown differences in the per-
ceived difficulty of the strategies and response times. Thus,
to ensure that the differences in neural activation were not
mainly caused by differences in strategy difficulty, we ran fur-
ther second-level analyses statistically controlling for difference

in mean response times and difference in perceived strategy dif-
ficulty. To do this we first calculated for each participant the
difference in difficulty ratings between the two strategies and
the difference in mean response times for the trials in which
the mapping and the exemplar strategy had been used. Then
we added both variables as additional covariates in the second-
level analysis using the same statistical thresholds as in the
original analysis (p < 0.0001, k = 20). The analysis showed the
same pattern of activations for the exemplar task > mapping
task contrast. For the mapping task > exemplar task contrast
we also found a similar pattern of results, but the activation
in the left parietal lobe was somewhat reduced (see Table 3).
In sum, these results suggest that the differences between the
two types of strategies cannot simply be explained by strategy
difficulty.

The results for the old items also show a similar but some-
what weaker pattern of results than the new items (see Table 4)
suggesting that, overall, participants used the instructed strategy
for old and new items. The results for the old items, however,
are less diagnostic regarding the neural processes underlying
the strategies than the new items, because the old items had
been extensively practiced previously and thus participants could
have recruited additional judgment processes such as recognition
memory.

DISCUSSION
The neural substrates of judgments have sparked considerable
interest (e.g., Greene and Haidt, 2002; Paulus and Frank, 2003;
Heekeren et al., 2005; Knutson et al., 2007; Park et al., 2011).
Relatively little attention has been given to the intra-individual
variability in strategies when people make judgments. Behavioral
research has illustrated people’s flexibility in solving judgment
problems: people often apply different strategies, even for solv-
ing identical problems (Juslin et al., 2008). This variability must
to some extent be reflected in variability in the neural sub-
strates underlying judgments. Without a method to capture the
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FIGURE 3 | Regions with significant activation differences in (A)

the right cortex, (B) the left cortex, and (C) frontal cortex,

with threshold p < 0.0001 (cluster level: p < 0.05, FWE). Regions

that were more highly activated in the exemplar task are shown in
blue, regions that were more highly activated in the mapping task
are in orange.

Table 3 | Activation differences between the exemplar and the mapping task for new items.

Region Hem. BA MNI coordinates No. of voxels Z P

x y z

EXEMPLAR TASK > MAPPING TASK NEW ITEMS

Inferior frontal sulcus L 9 −54 17 34 51 4.97 0.001

Inferior parietal lobe R 19 36 −67 37 151 4.88 <0.001

Inferior frontal gyrus R 9 48 17 37 155 4.76 <0.001

Superior frontal gyrus L 10 −27 62 13 53 4.72 0.001

Medial superior frontal gyrus L 32 −3 29 43 63 4.61 <0.001

Cerebellum Crus2 L −9 −79 −29 32 4.56 0.006

Superior frontal gyrus R 10 33 59 10 42 4.54 0.002

Inferior frontal gyrus L 10 −42 47 −8 47 4.40 0.001

Inferior parietal lobe Angular gyrus L 39 −36 −58 43 57 4.27 <0.001

MAPPING TASK > EXEMPLAR TASK NEW ITEMS

Precentral gyrus L 4 −27 −13 52 155 5.07 <0.001

Middle frontal gyrus L 9 −30 41 25 42 4.92 0.002

Supplementary motor area R 6 12 −4 52 217 4.77 0.001

Inferior frontal gyrus R 44 57 8 7 23 4.37 0.019

*Supramarginal gyrus L 40 −57 −43 28 21 4.20 0.024

*Postcentral gyrus L 40 −33 −34 49 25 4.18 0.014

Superior temporal gyrus R 42 69 −28 13 23 3.99 0.019

N = 18. Hem, hemisphere; R, right; L, left; BA, Brodmann area; Z, z-value for peak voxel, number of voxels indicated as thresholded at p < 0.0001, uncorrected;

P, p-value for the cluster, corrected for multiple comparisons at the cluster level (p < 0.05, FWE). Areas that were no longer significant in analyses controlling for

differences in subjective difficulty and response times are marked with a *.

strategy used, such as cognitive modeling, the neural activation
can easily be misinterpreted. For instance, investigating neural
activations in judgments under cognitive load—a situation that
sometimes induces strategy shifts (Hoffmann et al., 2013)—the
results should differ widely, depending on whether a strategy shift
occurred or not. In contrast, taking into account the strategies
people use can inform imaging research by guiding predictions
about the neural substrates involved. For instance, the activa-
tion of areas involved in memory retrieval appears to be essential
from the perspective of an exemplar strategy, but not when a
rule-based strategy is employed. Furthermore, if unique neural
signatures for strategies could be identified, it could make it pos-
sible to deduce the strategy a person is using from the neural
activations.

In the present work we took a first step, aiming to show that
two judgment strategies have different neural signatures in the
identical judgment problem and to compare them to research
investigating the differences between similarity-based and rule-
based strategies in categorization. Overall, our results show acti-
vations in areas that have been frequently implicated in research
on the neural substrates of complex judgments such as the ven-
tromedial prefrontal cortex, the dlPFC and the PPC (Greene and
Haidt, 2002; Paulus and Frank, 2003; Kahnt et al., 2011) but also
in categorization (Grossman et al., 2002; Koenig et al., 2005; Li
et al., 2007).

In the following, we will discuss how the findings relate
to the cognitive processes that the strategies assume and the
categorization literature.
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Table 4 | Activation differences between the exemplar and the mapping task for old items.

Region Hem. BA MNI coordinates No. of voxels Z P

x y z

EXEMPLAR TASK > MAPPING TASK OLD ITEMS

Inferior frontal gyrus L 46 −42 44 −5 94 4.79 <0.001

Medial superior frontal gyrus L 8 −3 26 43 44 4.61 0.001

Middle frontal gyrus L 8 −51 17 37 36 4.55 0.002

MAPPING TASK > EXEMPLAR TASK OLD ITEMS

Superior temporal gyrus L 42 −57 −31 19 259 5.49 <0.001

Postcentral gyrus R 7 9 −37 55 997 5.39 <0.001

Superior temporal gyrus R 13 45 −40 19 398 5.26 <0.001

Rolandic operculum L 22 −57 5 1 99 4.55 <0.001

Putamen L −30 −13 10 33 4.38 0.003

Middle cingulate gyrus R 24 6 11 34 20 4.30 0.018

Postcentral gyrus L 4 −54 −7 40 27 4.19 0.006

N = 18. Hem, hemisphere; R, right; L, left; BA, Broadman area; Z, z-value for peak activation, number of voxels indicated as thresholded at p < 0.0001, uncorrected;

P, p-value for the cluster, corrected for multiple comparisons at the cluster level.

SIMILARITY-BASED JUDGMENTS: EXEMPLAR STRATEGY
Consistent with our hypotheses and resonating well with research
on memory retrieval, we found that when using the exemplar
strategy participants had higher bilateral activation in the aPFC
and the IPC than when using the mapping strategy. The aPFC
is commonly recruited in the retention and retrieval of semantic
material from long-term memory (Buckner and Koutstaal, 1998;
Lepage et al., 2000; De Zubicaray et al., 2001). Meta-analyses
on retrieval processes in memory have identified comparable
parietal and frontal areas (Spaniol et al., 2009; Kim, 2011). We
did not find increased activation in the medial temporal lobe
or the hippocampus. Yet, the hippocampus has not consistently
been reported in memory retrieval (see Henson, 2005). Also, a
meta-analysis suggested that the medial temporal areas are more
strongly involved in encoding than in retrieval (Spaniol et al.,
2009).

Additionally, we found a higher activation for the exemplar
strategy in the dlPFC, reaching into the mid vlPFC on the right
side and between the dlPFC and the vlPFC on the left side.
Although activation in the dlPFC is often linked to executive
functioning and thus may be expected when using a rule-based
strategy such as the mapping strategy (e.g., Grossman et al., 2002;
Filoteo et al., 2005), it is frequently implicated in memory pro-
cesses. For instance, the right dlPFC has been connected to spatial
working memory (McCarthy et al., 1994) and the vlPFC to the
cognitive control of memory (Badre and Wagner, 2007; Martin,
2007). Specifically, the mid vlPFC is involved in the selection of
competing traces in memory retrieval (Badre et al., 2005; Spaniol
et al., 2009).

Our results on similarity-based judgments also resonate with
studies comparing similarity- and rule-based strategies in catego-
rization. For instance, Koenig et al. (2005) also reported higher
activation for similarity-based vs. rule-based strategies in the
aPFC. However, studies comparing rule- with similarity-based
categorization have usually reported higher activation in the
parietal and occipital cortex for rule-based strategies than for

similarity-based strategies (Patalano et al., 2001; Filoteo et al.,
2005; Koenig et al., 2005; Seger and Miller, 2010). In contrast, we
found a higher activation for the exemplar strategy than the map-
ping strategy in the parietal cortex. Although these results seem to
contradict our results at first glance, they can be reconciled when
considering the differences between rule-based and similarity-
based strategies in categorization and judgment. Activation in
the IPC and parietal-occipital lobe is often linked to percep-
tual processing and selective attention (Wager and Smith, 2003;
Smith and Grossman, 2008). The rule-based strategies investi-
gated in categorization usually require focusing attention on a
single cue dimension such as deciding whether a bug is toxic
solely based on the color of its head. In contrast, similarity-based
strategies usually involve attention to several or all dimensions
such as considering a bug as toxic if it overall resembles toxic
bugs, thus considering, for instance, not only the color of the
head but also the size or whether the wings are dotted. In con-
trast, in our tasks the exemplar strategy allowed more selective
attention to specific cue dimension than the mapping strategy.
Even though we instructed participants to consider all cues, this
is difficult to do and the strategy may become easier to imple-
ment if not all, but only some of the dimensions are considered.
For instance, a participant following a similarity-based strat-
egy could have determined the similarity simply by focusing
on three of the six cues when retrieving the training exem-
plars. In contrast, the mapping strategy requires equal attention
to all cues, because all positive cue values need to be counted.
Thus, to the degree that the areas are involved in the percep-
tual processing of increased attentional demands (Wager and
Smith, 2003; Smith and Grossman, 2008), a higher activation
when using the exemplar strategy can be expected in our compar-
ison. This interpretation is also supported by research showing
that single-dimensional sorting compared to multi-dimensional
sorting (i.e., categorization without feedback) induced higher
activation in the parietal and temporal lobe (Milton et al.,
2009).
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RULE-BASED JUDGMENTS: MAPPING STRATEGY
The mapping strategy is an explicit, rule-based strategy involving
the classification of an object to a category based on the number
of positive cue values and the selection of a judgment response
depending on the classification. These cognitive processes draw
upon cognitive control functions. This, in turn, suggests the
involvement of the lateral prefrontal cortex (e.g., Wagner et al.,
2001; Wager and Smith, 2003). When the mapping strategy was
employed we consistently found higher activations relative to the
exemplar strategy in the left dlPFC and the right vlPFC. Both areas
are often involved in cognitive tasks that require control resources
and have been related to the processing demands involved in the
explicit application of rules (Reber et al., 1998; Elliott et al., 1999;
Patalano et al., 2001; Savage et al., 2001; Wallis and Miller, 2003;
Filoteo et al., 2005; Zysset et al., 2006; Smith and Grossman,
2008). In addition, the dlPFC has been implicated in multi-
attributive decision-making (Zysset et al., 2006; Li et al., 2007;
Khader et al., 2011). The results also resonate with differences in
dlPFC activity found in the comparison between semantic rule-
based categorization and similarity-based categorization (e.g.,
Grossman et al., 2002). Thus, our finding of activation in the
dlPFC for both rule-based and similarity-based strategies could
suggest that depending on the type of strategy used different
regions of the dlPFC are involved. Possibly, memory-based strate-
gies such as the exemplar model could involve the ventral dlPFC
close to the vlPFC, whereas rule-based strategies recruit areas in
the mid dlPFC.

In contrast to rule-based strategies in research on categoriza-
tion, the mapping strategy requires integrating information by
grouping relatively unrelated information into a common cate-
gory. For instance, in the cue sum category with three positive
values, items that do not have a single cue value in common are
grouped together. Consistent with this assumption and contrary
to studies comparing rule-based to similarity-based strategies in
categorization (e.g., Grossman et al., 2002), we found higher
activation in the mapping task than in the exemplar task in
the temporal-parietal cortex. This area has been implicated in
intuitive judgment processes (Ilg et al., 2007), and seems to
be involved in holistic processing and the integration of dis-
tantly related semantic information into a coherent representa-
tion (Beauchamp et al., 2004; Jung-Beeman et al., 2004). This
suggests that differences to the categorization literature are caused
by the differences in the type of rule-based strategies considered
in these areas of research, specifically the number of dimensions
that need to be integrated.

In addition, we found relatively higher activations in pri-
mary and supplementary motor areas, which could result from
activation related to planning motor action, but have also been
connected to decision making and rule use (e.g., Wallis and
Miller, 2003; Cisek, 2006; Klaes et al., 2011).

One limitation of this study is that we focused on the execution
of instructed strategies. This approach was necessary to ensure
that participants rely on the suggested strategies but good evi-
dence exists that these strategies are used when making decisions
spontaneously in similar tasks (Karlsson et al., 2008; Hoffmann
et al., 2013). Furthermore, our study involved extensive train-
ing, suggesting that participants did not have to intentionally

recall which strategy to use. Nevertheless, strategies such as the
exemplar strategy that rely on associative and implicit processes
may involve different patterns when spontaneously and uninten-
tionally used. Future research is necessary to investigate whether
similar pattern of activations are found when participants spon-
taneously employ different judgment strategies. Furthermore, it
would be interesting to investigate whether similar brain areas
are involved when different type of rule-based strategies are
instructed or spontaneously employed.

In addition, it should be noted that our results are based on
artificial laboratory tasks. This was necessary to enable partici-
pants to learn the judgment task and to control for prior knowl-
edge. However, cognitive processes as well as brain areas involved
in laboratory tasks could differ from real-world judgment tasks.

CONCLUSION
We investigated the neural patterns underlying human judgment.
We illustrate that the identical problem can be solved with quite
different strategies. The results show that the two judgment strate-
gies we examined—strategies that have frequently been reported
as successful models predicting human judgment—involve dif-
ferent neural correlates. Thus, the study illustrates that the two
judgment strategies have specific cognitive demands that are
reflected in the pattern of neural activations. The findings high-
light how neuroimaging can be used to better understand the
cognitive mechanisms involved in judgment and decision mak-
ing. Furthermore, the findings emphasize the importance of
taking different strategies into account when interpreting neural
activation in cognitive tasks, as the same task can involve different
neural correlates depending on the strategy employed.
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