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INTRODUCTION

In its full sense, perception rests on an agent's model of how its sensory input comes
about and the inferences it draws based on this model. These inferences are necessarily
uncertain. Here, we illustrate how the Hierarchical Gaussian Filter (HGF) offers a principled
and generic way to deal with the several forms that uncertainty in perception takes.
The HGF is a recent derivation of one-step update equations from Bayesian principles
that rests on a hierarchical generative model of the environment and its (in)stability. It
is computationally highly efficient, allows for online estimates of hidden states, and has
found numerous applications to experimental data from human subjects. In this paper, we
generalize previous descriptions of the HGF and its account of perceptual uncertainty.
First, we explicitly formulate the extension of the HGF's hierarchy to any number
of levels; second, we discuss how various forms of uncertainty are accommodated
by the minimization of variational free energy as encoded in the update equations;
third, we combine the HGF with decision models and demonstrate the inversion of
this combination; finally, we report a simulation study that compared four optimization
methods for inverting the HGF/decision model combination at different noise levels.
These four methods (Nelde—Mead simplex algorithm, Gaussian process-based global
optimization, variational Bayes and Markov chain Monte Carlo sampling) all performed
well even under considerable noise, with variational Bayes offering the best combination
of efficiency and informativeness of inference. Our results demonstrate that the HGF
provides a principled, flexible, and efficient—but at the same time intuitive—framework
for the resolution of perceptual uncertainty in behaving agents.

Keywords: uncertainty, volatility, Bayesian inference, hierarchical modeling, filtering, free energy, learning,
decision-making

is the possibility that states change with time, i.e., environmental

Perception has long been proposed to take place in the con-
text of prediction (Helmholtz, 1860). This entails that agents
have a model of the environment which generates their sen-
sory input. Probability theory formally prescribes how agents
should learn about their environment from sensory informa-
tion, given a model. This rests on sequential updating of beliefs
according to Bayes’ theorem, where beliefs represent inferences
about hidden states of the environment in the form of poste-
rior probability distributions. It is this process that we refer to
as perception. Beliefs about hidden states are inherently uncer-
tain. This uncertainty has two sources. First, even when states
are constant, the amount of sensory information will in gen-
eral be too little to infer them exactly. This has been referred to
as informational uncertainty or estimation uncertainty (Payzan-
LeNestour and Bossaerts, 2011). The second source of uncertainty

uncertainty.

Various models have suggested how an agent may deal with
an environment fraught with both kinds of uncertainty (e.g., Yu
and Dayan, 2003, 2005; Nassar et al., 2010; Payzan-LeNestour
and Bossaerts, 2011; Wilson et al., 2013). Here, we discuss an
alternative approach that derives closed form update equations
for the hidden states, and crucially, for the uncertainty about
them, by variational inversion of a generic hierarchical generative
model that reflects the time-varying structure of the environ-
ment in its higher levels. This derivation has the advantage that
the resulting updates optimize a clearly defined objective func-
tion, namely variational free energy. Since this quantity is an
approximation to surprise (i.e., to the negative log-probability of
sensory input), the updates are optimal in the sense that they min-
imize surprise, given an agent’s individual model. Furthermore,
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the updates explicitly reflect informational and environmental
uncertainty.

Our approach makes use of a framework which assumes that
agents have an internal generative model of their sensory input.
This model is generative in the sense that it describes how sensory
inputs are generated by the external world. It does this by assign-
ing a probability (the likelihood) to each sensory input given
states (which vary with time) and parameters (which are constant
in time) and by completing this with a prior probability distribu-
tion for states and parameters. While the purpose of the model is
to predict input emanating from the external world, it is internal
in the sense that it reflects the agent’s beliefs about how sensory
inputs are generated by the external world.

While Bayesian belief updating is optimal from the perspective
of probability theory, it requires computing complicated integrals
which are not tractable analytically and difficult to evaluate in
real time. Although some attempts to design a Bayesian model
of how biological agents learn in a changing environment were
remarkably successful in explaining empirical behavior (Behrens
et al., 2007, 2008), they were restricted by the computational
burden imposed by these models and the assumption that the
learning process was identical across subjects. Recently, how-
ever, theoretical advances have enabled computationally efficient
approximations to exact Bayesian inference during learning (e.g.,
Friston, 2009; Daunizeau et al., 2010a,b) and have furnished a
basis for biologically plausible mechanisms that might underlie
belief updating in the brain. These approaches rest on varia-
tional Bayesian techniques which optimize a free-energy bound
on the surprise about sensory inputs, given a model of the envi-
ronment, and represent a special case of the general “Bayesian
brain” hypothesis (Dayan et al., 1995; Knill and Pouget, 2004;
Kording and Wolpert, 2006; Friston, 2009; Doya et al., 2011).
This hypothesis has been highly influential in recent years, shap-
ing concepts of brain function and inspiring the design of many
specific computational models (see Friston and Dolan, 2010, for
review). However, for practical applications to empirical data, a
general purpose modeling framework has been lacking that would
allow for straightforward “off the shelf” implementations of mod-
els explaining trial-wise empirical data (e.g., behavioral responses,
eye movements, evoked response amplitude in EEG etc.) from
the Bayesian brain perspective. This is in contrast to reinforce-
ment learning (RL) models which, due to their simplicity and
computational efficiency, have found widespread application in
experimental neuroscience, for example, in the analysis of func-
tional magnetic resonance imaging (fMRI) and behavioral data
(for reviews, see Daw and Doya, 2006; O’Doherty et al., 2007).

To fill this gap and provide a generic, robust and flexible
framework for analysis of trial-wise data from the Bayesian brain
perspective, we recently introduced the Hierarchical Gaussian
Filter (HGF), a hierarchical Bayesian model Mathys et al. (2011)
in which states evolve as coupled Gaussian random walks, such
that each state determines the step size of the evolution of the next
lower state (for examples of applications, cf. Iglesias et al., 2013;
Joffily and Coricelli, 2013; Vossel et al., 2013). Based on a mean
field approximation to the full Bayesian solution, we derived ana-
lytic update equations whose form resembles RL updates, with
dynamic learning rates and precision-weighted prediction errors.

These highly efficient update equations made our approach well
suited for filtering purposes, i.e., predicting the value of (and,
crucially, the uncertainty about) a hidden and moving quantity
based on all information acquired up to a certain point. Our orig-
inal formulation (Mathys et al., 2011) only contained three levels;
here, we extend the HGF explicitly to any number of levels and
show that the update equations maintain the same form across all
levels because they are derived on the basis of the same coupling.
Furthermore, the derivation of the variational energies involved
in the inversion is given in much more detail than in Mathys et al.
(2011). It is important to note that “perceptual uncertainty” has
a broader meaning here than in Mathys et al. (2011), where it was
used more narrowly for that part of the informational uncertainty
that relates to sensory input.

Furthermore, in this paper we describe how the HGF is
applied in the “observing the observer” framework developed in
(Daunizeau et al., 2010a,b). This framework is based on a clear
separation of two model components: First, the agent’s perception
of (inference about) its environment, i.e., the posterior estimates
provided by the agent’s model of how its sensory input is gen-
erated. Second, the agent’s observed actions (i.e., decisions or
responses) which are (probabilistic) consequences of the agent’s
beliefs about its environment. We call the first model perceptual,
while the second is the decision or response model.

The “observing the observer” framework is meta-Bayesian in
that it enables Bayesian inference (by an observer or experi-
menter) on Bayesian inference (by a subject). It requires four
elements: (1) a generative model of sensory inputs (i.e., a percep-
tual model), (2) a computationally efficient and robust method
for model inversion, (3) a loss function for actions depending
on the inferred state, and (4) a decision model. A specific sug-
gestion for the first two elements is contained in Mathys et al.
(2011). In what follows, we extend and generalize this descrip-
tion, discussing specifically the nature of the coupling between
levels, choice of coordinates at higher levels, and how to deal with
sensory inputs that arrive at irregular time intervals.

In the following section of this paper, we set out our theoreti-
cal framework. We first define the HGF model formally. We then
proceed with its variational inversion, which gives us closed one-
step update equations. Next, we show how the HGF can serve as
a perceptual model for any decision model that provides a map-
ping from the HGF’s representations of the environment to the
probability of an observed decision. We then derive an objec-
tive function whose optimization leads to maximum-a-posterior
(MAP) estimates for the parameters of the HGF and the deci-
sion model, followed by a short discussion of how the choice of
decision model affects which HGF parameters can be estimated.

In the next section, we turn to examples and simulations.
We first deal with categorical outcomes and sensory uncertainty.
To complement this, we introduce a decision model for binary
choices and use it to give an example of model inversion and
comparison based on two different but closely related decision
models. We do this by estimating model parameters from empiri-
cal data in a single subject, juxtaposing the two different response
models (which do and do not take into account the uncertainty of
beliefs) and the ensuing differences in inferred state trajectories.
Next, we introduce a decision model for a one-armed bandit. As
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in the preceding examples of decision models, we base the deci-
sion rule on the agent’s expected loss under a given loss function.
In the last part of this section, we report the results of a simulation
study which demonstrates the feasibility of accurate model inver-
sion, i.e., inferring known HGF parameter values from observed
decisions. This test of model inversion was performed under
different levels of noise and using four different optimization
methods (Markov chain Monte Carlo, the Nelder—Mead sim-
plex algorithm, Gaussian process-based global optimization, and
variational Bayes.

Together, the theoretical derivations and simulation results
provided in this paper generalize the framework of the HGF
and demonstrate its utility for estimating individual approxima-
tions to Bayes-optimality from observed decision-making under
uncertainty.

THEORETICAL FRAMEWORK

THE HIERARCHICAL GAUSSIAN FILTER (HGF)

The goal of the model introduced in Mathys et al. (2011) is simple
and general: to describe how an agent learns about a continu-
ous uncertain quantity (i.e., random variable) x that moves. One
generic way of describing this motion is a Gaussian random walk:

) NN<x<k71>yg),k: 1,2,... (1)

where k is a time index, and x*~" and ¥ are the mean and
variance (not standard deviation) of a Gaussian distribution,
respectively. In this formulation, the volatility in x is governed by
the positive constant ¢ (in this paper, we define volatility as the
variance of a time series per unit of time); however, there is in
principle no reason to assume that volatility is constant. To allow
for changes in volatility, we replace ¥ by a positive function f of a
second random variable, x,, while x becomes x;:

xﬁk) ~N (xgkf D,f(xz)) ) (2)

We may now further assume that x, performs a Gaussian random
walk of its own, with a constant variance %, so that the model
for x; is the same as the one for x in Equation 1. This adding of
levels of Gaussian random walks coupled by their variances can
now continue up to any number n of levels in the hierarchy, as
illustrated in Figure 1. At each level i, the coupling to the next
highest level i + 1 is given by a positive function f;(x;y1) which
represents the variance or step size of the random walk:

xgk)~N<x£k_1),fi(xi+1)),i=1,...,11—1. (3)
At the top level, instead of f,,;, we have ¥:
xﬁ,k) ~N (xﬁ,k_l), 19) , 0 > 0. (4)

To complete our model, we still need to define the f; in Equation 3.
A flexible and straightforward approach to this is to allow any
positive analytic f;, but to expand it in powers to first order to give
it a simple functional form. However, since f; has to be positive,
we cannot approximate it by expanding it directly. Instead, drop-
ping indices for clarity, we expand its logarithm (for details, see
Appendix A), which motivates our definition of coupling between
levels:

def
fitxiz1) = exp (Kixip1 + ;) (5)

As we will see below, this form of coupling has the additional
advantage of enabling the derivation of simple one-step update
equations under a mean-field approximation.

p (<)

xi(k—l)

()
()

x;k—l)

xik—l)

FIGURE 1 | Overview of the Hierarchical Gaussian Filter (HGF). The model represents a hierarchy of coupled Gaussian random walks. The levels of the
hierarchy relate to each other by determining the step size (volatility or variance) of a random walk. The topmost step size is a constant parameter 9.

2000 (70, )

x0~av (270, £6x))

(£9)

x,gk) ~N (xflk_l),ﬁ)

ng_l)

k =
xi( )~N (xl(k 1),fi(xi+1))

Frontiers in Human Neuroscience

www.frontiersin.org

November 2014 | Volume 8 | Article 825 | 3


http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

Mathys et al.

Perceptual uncertainty and the HGF

By further assuming that inputs (observations) u¥) are gen-
erated by means of a Gaussian emission distribution of the
form.

W9~ N (P, 7, (6)

where 7, denotes the precision of the emission distribution, the
model defined by Equations 3 and 5 can be used for online pre-

diction of xik), i.e., filtering. Considering that the model consists
of a hierarchy of Gaussian random walks, this motivates why we
refer to it as the HGF.

To illustrate this, we might imagine a time series of financial
data. u® could be the observed returns of a particular secu-
rity. xgk) then is the underlying quantity (the true return after
observation noise 7, 1 has been filtered out). w; is the tonic (i.e.,
time-invariant) part of the (log-)volatility of x;, while xx; is the
phasic (i.e., time-varying) part. Accounting for the scaling by «,
X, is now the scaled phasic log-volatility of x;. This pattern then
repeats until the top of the hierarchy is reached. One of the advan-
tages of the HGF is that volatility is captured hierarchically: not
only returns are volatile, but also their volatility, and the volatility
of the volatility, etc.

APPROXIMATE INVERSION FOR SENSORY INPUT AT IRREGULAR
INTERVALS
Sensing takes place at the bottom of the hierarchy: u is the agent’s
sensory input. To allow for input that comes at irregular intervals,
we can multiply the variance of the random walks at all levels
by the time t*) that elapses between the arrival of inputs 4~V
and u(®):
k)~N<x§k_1),t(k)ﬁ(xi+1)),1—1, ..,n—1. (7)
This proportionality of the variance to time reflects the fact that
the mean squared distance of a quantity performing a Gaussian
random walk from its origin is proportional to time (cf. the con-
nection between Gaussian random walks, Brownian motion, and
the heat equation; Evans, 2010). For inputs at regular intervals,
we may simply set 1) = 1 for all k, effectively removing ¢* from
the model.

We can now derive update equations using the variational
inversion method introduced in Mathys et al. (2011). This
approximate inversion assumes Gaussian posteriors at all levels
with means p; and precisions (inverse variances) ;:

k o\ !
ou® oy ~./\/(,ul( ), (711-( )) ) (8)

{K1,w1,...,

xgk)lu(l)

where X = Kn—1, wp—1, U }. This is an approxi-

mation because the true posterior distribution p (xgk) | u®,

L u®, X) will deviate somewhat from a Gaussian shape. A

discussion of the variational nature and the implications of this
approximation can be found in Mathys et al. (2011). The suffi-
cient statistics i; and 7; are the quantities that are updated after
each new input u according to the following equations (cf. the

Discussion, where we give a natural interpretation of them in
terms of learning rate and prediction error):

v A &
ph =l Kz—lv()l 1(7()15,(,)1 9)
T

i

1 i—17"1—1

2 =70 4 2<K PO )

1 (k)
(1 + (1 - (k_1)> 87, (10)
Vic1Tioa
with
o exp (Ki,lt,(l:ll) +a)i) ,i=1,...,n—1
yo) & (11)
t0y,  i=n
~(k) def (k-1
By (12)
(k) def 1
S I = VN (3 (13)
o TV 4
k) (k) A(k
+ —
(k) d ( Hi Hi )
S S R (14)
01 + v
Variances (i.e., inverse precisions) are denoted by ai(k) =1/ ni(k)

Note that irregular intervals between inputs are fully accounted
for by the factor ¥ in Equation 11. While the updates of
Equations 9 and 10 apply to all but the first level, they are different
at the first level:

k

n? ;80 (15)
1
O =zP 17, (16)
with
def ~(k

st =) _ :“(1 ) (17)
where /'ng) and ﬁl(k) are defined by Equations 12 and 13. The dif-

ferent form of the updates at the first level arises because, at the
first level, the direction of inference is from u to x;, which appears
in the mean of the Gaussian in Equation 6, while at all higher lev-
els, the direction of inference is from x; to x;y1, which appears
in the variance of the Gaussian in Equation 3. This results in the
updates being driven by different kinds of prediction errors: value
prediction errors (VAPEs) at the first level, volatility (i.e., vari-
ance) prediction errors (VOPEs) at all higher levels. We elaborate
this distinction in the Discussion below.
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The details of this inversion are given in Appendix B. The nota-
tion chosen here emphasizes the role of precisions in the updating
process more than that used in (Mathys et al., 2011); they are,
however, equivalent.

MAXIMUM-A-POSTERIORI (MAP) PARAMETER ESTIMATION

Given the above update equations, initial representations A(?) def
[,u(lo), 711(0), o, M;O), n,i‘”] (i.e., the means u; and precisions
7; of the states x; at time k = 0), and priors on the perceptual
parameters x, we could invert the model (i.e., estimate the values
of x that lead to least aggregate surprise about sensory inputs)
from sensory inputs alone; this would provide us with state
trajectories and parameters which represent an ideal Bayesian
agent, where “ideal” means experiencing the least surprise about
sensory inputs. However, our goal is usually different; it is to
estimate subject-specific parameters (which encode the individ-
ual’s approximation to Bayes-optimality) from his/her observed
behavior, as formalized in the “observing the observer” frame-
work (Daunizeau et al., 2010a,b). To achieve this goal, we will now
bring the HGF into this framework. This requires the introduc-
tion of a response model which links the agent’s current estimates

A6 def [ u® 5 ® ) K

1500 o gy, Op ] of states to expressed deci-

sions ¥ and which also contains subject-specific parameters

e d:ef{;“l, &2, ... }. For example, a useful response model (e.g.,

Iglesias et al., 2013), which we also use in our simulation study
below, is the unit-square sigmoid, which maps the predictive
probability m® that the next outcome will be 1 onto the prob-
abilities p (y®) = 1) and p (¥ = 0) that the agent will choose
response 1 or 0, respectively:

mb 4 (1 —m? i
plyim, ;):(m“r(l_m);) '<mf +(1—m>f) 0

where, for clarity, we have omitted time indices on y and m. For
this to serve as a response model for the inversion of the HGF,
the predictive probability m = m(A) has to be a function of the
quantities A the HGF keeps track of. This model is explained
and discussed in detail below. Figure 4 is a graphical represen-
tation of it. For our present purposes, the only important point is
that it contains a parameter ¢ that captures how deterministically
y is associated with m. The higher ¢, the more likely the agent
is to choose the option that is more likely according to its cur-
rent belief. Since m is a deterministic function of A, we can write
pyim)=p(ylrc).

In general, the joint distribution for observations (i.e., deci-
sions) and parameters of an HGF-based decision model takes the
form

p(% XJ(O)»CW) =p(x,k<°),;“)

K
(k) | 5 (k) (0)
kZHIP()’ | A (x,k ,u),;)(lg)

where u def {u(l), - u(K)} and y def {y(l), ... ,y(K)} are the
inputs and responses at time points k =1 to k = K, respec-

tively, and A8 (X,)\(O), u) are the sufficient statistics A(X) def
{Mgk), cr](k), e Mﬁ[‘), a,gk)] of the hidden states of the HGF at

time k. The inputs u are given because the agent and its observer
both know them and the agent uses them to invert its HGF model,
resulting in the trajectories A(X). This makes it clear that the deci-
sion model is not a generative model of sensory input, while the
HGEF is. Strictly speaking, the decision model does not use the
perceptual model directly. Instead, the decision model uses the
perceptual model indirectly via its inversion, where input is given.
It is also noteworthy that the sets of inputs u and observations y
are finite here (k =1, ..., K), while the HGF is open-ended (cf.
k=1,2,... in Equation 1).

The goal now is to find an expression for the maximum-a-

posteriori (MAP) estimate for the parameters & def { X A0 e }
The MAP estimate £* of & is defined as

x def
£* = argmax p(€ | y, u), (20)
§
We unpack this in Appendix E to make it tractable:
&* = arg max ( Inp (y® 120 (x, 29, u), ¢
o (i (49140 1502) .
+ lnp(é)> 21

The objective function Z (£) that needs to be maximized is there-
fore the log-joint probability density of the parameters & and
responses y given inputs u:

Z(Eluy) Einp(6.y1u)
= Inp (YO 12F (5,29 u), ) +Inp&) (22)
S inp (14 (1.2.1) )

While the response model gives p (y(k) |28 ¢ ), the per-
ceptual model (i.e., the HGF) provides the representations
A® (x,29 ) by way of its update equations. The last
missing part in Equation 22 is the prior distribution p(&).
This will be discussed below. There are many alternative
optimization procedures to implement the maximization in
Equation 21. We have compared four in the simulations discussed
below.

Finally, one important point in relation to model inversion is
model identifiability which we discuss in detail in Appendix F. In
brief, when the posterior mean of the state at level i (i.e., u;) is
included in the response model and thus affects measured behav-
ior, all quantities at that level Mgo)’ k;, and w; can be estimated.
If w; is not included in the response model, it is advisable to fix
two of the three parameters MEO), k;, and w;, reflecting a particular
choice of origin and scale on x;. This avoids an overparameterized
model.
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PRIORS AND TRANSFORMED PARAMETER SPACES

A crucial part of Bayesian inference is the specification of a prior
distribution, in our case p (§). There is no principled reason why
the priors on the different elements of & should not be indepen-
dent; therefore, we may assume the following factorization:

p&) = p) [T ptep@ip (") p (o) [Tr (5)- 23
i i

p (g“j) depends on the response model chosen and will have to be
dealt with on a case-by-case basis (see below), but the remaining
marginal priors are generic and will be discussed in what follows.

The most straightforward case are the priors on w;. Since w;
can take values on the whole real line, it can be estimated in its
native space with a (possibly wide) Gaussian prior:

01~ N (000

(0)

i

(24)

The same applies to

MI(O) ~N (Mul@, GMEO)) . (25)

0 . L. .
crl-( ) has a natural lower bound at zero since it is a variance. We can

avoid non-positive values by estimating ai(o) in log-space. That is,
we use a log-Gaussian prior:

In cri(o) ~N (erm_(m , Glna.(o)) . (26)

Just like ai(o) , U is a variance and has a lower bound at zero. In
addition to the lower bound, it is desirable to have an upper bound
on ¥ because, for a ¥ too large, the assumptions underlying the
derivation of the update equations of the HGF no longer hold.
Specifically, for large values of ¥ it is possible to get updates that
push the precision m,, at the top level below zero, indicating that
the agent knows “less than nothing” about x,,. In less extreme cases,
a large ¥ may allow p, to jump to very high levels, giving rise to
improbable inference trajectories (cf. Equations 9 and 11). This is
due to a violation of the assumption that the variational energies
I(x;) are nearly quadratic (see Mathys et al., 2011, for details).

To avoid such violations, it is sensible to place an upper bound
on ¥ in addition to the lower bound at zero. This can be achieved
by estimating ¥ in “logit-space,” a logistic sigmoid transforma-
tion of native space with a variable upper bound a > 0:

logit,, (x) def In < X ) ;
a—x

a

—_— X = 27
1 + exp (—logit, (x)) @7

In that space, the prior on ¢ can then be taken as
logitaﬂ O ~N (/‘Llogitnw9 ) Ulogitaﬁl,> . (28)

While «; can in principle take any real value, flipping the sign of
k; is equivalent to flipping that of x;y; (cf. Equation 5). It is there-
fore useful to adopt the convention that all x; > 0. This leads to

the intuitive relation that a greater x;; means a greater variability
in x;; in other words, this makes f; in Equation 3 a monotoni-
cally increasing function. A second useful constraint on ; is that
it is bounded above, for the same reason as ©. Consequently, we
evaluate «; in logit-space with the following priors:

logitaKi Ki ™~ N (Hlogitak‘ «;» Ologit, fc,-) . (29)
1 1

The exact specification of the above priors can vary, depending
on the experimental context and instructions given to the sub-
ject (e.g., whether or not to expect a volatile environment). In
most cases, a choice of k; and ¥ with upper bounds at or below 2
will be sensible. In cases where there is little movement in x,, (the
topmost x), a choice of ¥ closer to 0 than 1 will be appropriate.
Notably, given that choosing a different prior amounts to having
a different model, the choice between alternative priors can be
evaluated using model comparison (cf. Stephan et al., 2009).

EXAMPLES AND SIMULATIONS
CATEGORICAL OUTCOMES AND SENSORY UNCERTAINTY
In the formulation above, x; performs a Gaussian random walk
on a continuous scale. However, states of an agent’s environment
that generate sensory input are often categorical, in the simplest
case binary (e.g., present/absent). This fact can be accommo-
dated in the perceptual model above by making the base level,
X1, binary (we omit time indices k unless they are needed to avoid
confusion):

x1 €1{0,1}. (30)
The second level, x;, of the model then describes the tendency of
x1 toward state 1:

P (x1 | x2) = s(x2)™ (1 — 5(x2))' ™1 = Bernoulli(xy; s(x2)) (31)

1
1+exp (—x2)
Similarly, when x; represents d > 2 outcomes, the probability of

each can be represented by its own x;, performing (at most) d — 1
independent random walks. p(x; = 0) simply is 1 — p(x; = 1).

In the three-level HGF for binary outcomes (Mathys et al.,
2011) the third level, x3 is at the top, with constant step variance
¥. The only level with a coupling of the form of Equation 5 is
therefore the second level; this allows us to write k; = k and wy =
. We can allow for sensory uncertainty by including an addi-
tional level at the bottom of the hierarchy that predicts sensory
input u from the state x;. In the absence of sensory uncertainty,
knowledge of the state x; enables accurate prediction of input u
and vice versa; we may then simply set u = x; and treat x; as if
it were directly observed. A graphical overview of this model is
given in Figure 2.

For the particular case of the three-level HGF for binary out-
comes, the general update equations in Equations 9-14 (with
) =1 for all k) take the following specific form (as previ-
ously derived in (Mathys et al., 2011), with additional detail in
Appendix D):

def . C . . . .
where s(x;) = is the logistic sigmoid function.
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State of the
Model
world
p(xs®) ~ N(x*,9)
Log-volatilit Gaussian
9 . y random walk with p(x;™)
‘ 3 constant step
of tendency dizey O |
x3(k-1}
p(xa®) ~ N(x,%7), exp(kxz+w))
Tendency Gaussian
X, random walk with p(x,*)
towards step size
category “1” exp(Kxs*w) } >
x,(k-1)
2
. p(x;=1) = s(x;)
Stimulus p(x;=0) = 1-5(xy)
category Sigmoid trans- 3
b & formation of x, plx,=1)
((:011 Or “1 u) ' X,
0
FIGURE 2 | The 3-level HGF for binary outcomes. The lowest level, x1, is They generate u'%, the input at time point &, and depend on their
binary and corresponds, in the absence of sensory noise, to sensory input u. immediately preceding values X‘zk’”, xék’” and on the on parameters «, w, 9.
Left: schematic representation of the generative model as a Bayesian Right: model definition. This figure has been adapted from Figures 1, 2 in
network. ng)’ X;k), xék) are hidden states of the environment at time point k. Mathys et al. (2011).

(k) k-1 , 1 <
My 2 +W51 (32)
2
® _ =~k 1
7'[2 —7T2 +W' (33)
1
with
~ (k) def k—
Al = (uf) (34)
k) def (k ~(k
s LW g (35)
1
7 € (k) ®) (36)
Al (1-aY)
~(k) def 1
T, = (37)

*—
O_z(k—l)+t(k)eK;L(3 Yiw

Details of the derivation of these update equations are given
in Appendix D. The update equations for binary outcomes dif-
fer from those given in Equations 9 and 10 only at the second
level. On all higher levels, they are the generic HGF updates from
Equations 9 and 10. This difference is entirely due to the sigmoid
transformation that links the first and second level, enabling the
filtering of binary outcomes. Note that in the binary case, the sec-
ond level corresponds to the first level of the continuous case in
the sense that they are the lowest levels where a Gaussian random
walk takes place.

To illustrate of how the HGF can deal with the simplest kind
of informational uncertainty, sensory uncertainty, we simulate
two agents, one with high and the other with low sensory uncer-
tainty, who are otherwise equal. Sensory uncertainty is captured
by the following relation between the binary state x; and sensory
input u:

N(m,ﬁ;l) ifx; =1
(38)
N(ﬂo,ﬁ;l) ifx1: 0

This means that the probability of u is Gaussian with precision
7, around a mean of n; for x; = 1 and 5 for x; = 0. In this
case (cf. Mathys et al., 2011, Equation 47), the update equation
for p; is

k
uf

aPexp (—%(u(k)—m)z)

~(k 7, 2 ~(k 7, 2
iVexp (—%“(u(") —m) ) + (1 — )) exp (—%(W) —10) )

(39)

Figure 3 shows our simulation. We first chose a sequence
of true hidden states xik), k=1,...,640. We then drew a
sequence of inputs u® ~ A/ (xgk), 0.1), corresponding to a
setting of n; = 1, no = 0, and 77, = 10 (cf. Equation 38). These
inputs were fed into two three-level HGFs that differed only
in the amount of sensory uncertainty they assumed: 7, ! =
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FIGURE 3 | The consequences of sensory uncertainty. Simulation of
inference on a binary hidden state x; (black dots) using a three-level HGF under
low (7, = 1000, top panel)and high (, = 10, bottom panel) sensory uncertainty.
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Trajectories were simulated using the same input and parameters (except 7,) in
both cases: p,'zo’ = 'u(30) =0, 02(0) = 03(0) =1,xk=1w0=-3 and¥ =0.7.

Decisions were simulated using a unit-square sigmoid model with ¢ = 8.

0.001 (low) and 7, ! = 0.1 (high). Clearly, higher input pre-
cision leads to greater responsiveness to fluctuations in input,
as reflected in the trajectory of belief on tendency x; and in
a higher volatility estimate (belief on x3). In the case of low
input precision, the volatility estimate keeps declining because
most of the variation in input is attributed to noise instead of
fluctuations in the underlying tendency toward one outcome
category x; or the other. Decisions (purple dots) were sim-
ulated using a unit-square sigmoid response model with ¢ =
8 in both cases (cf. Equation 18). The consequences of high
sensory uncertainty for decision-making in this scenario are
apparent: the agent with higher sensory uncertainty is less con-
sistent in favoring one option over the other at any given time.
This accords well with recent accounts of psychopathological
symptoms as a failure of sensory attenuation (Adams et al,
2013).

We now turn to the third and fourth elements defining our
Bayesian agent: decision models based on loss functions.

DECISION MODEL FOR A SIMPLE BINARY LOSS FUNCTION
One of the simplest decision situations for an agent is having to
choose between two options, only one of which will be rewarded,
but both of which offer the same gain (i.e., negative loss), if
rewarded. In the three-level version of the HGF from Figure 2,
we may code one such binary outcome as x; = 1 and the other as
x1 = 0. This allows us to define a quadratic loss function £ where
making the wrong choice y € {0, 1} leads to a loss of 1 while the
right choice leads to a loss of 0:

Ux1,y) = (x1—y)° (40)
The expected loss Q of decision y, given the agent’s representa-

tions A, is then the expectation of £ under the distributions g
described by A:

Q(}’, )\):(K(xlsy)>q(xl;k): Z e(xl,)’)"I(xU)») (41)

x1 €{0,1}
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To evaluate this, we must remember that the agent has to rely
on its beliefs deriving from time k — 1 to make decision y®
at time k. In the above equation, elements of A therefore have
time index k — 1, while x; and y have time index k. Specifically,

the belief on the outcome probability at the first level is ﬁ(lk) =

(V). With ) = (e (L= )™ (Mathys et al,

2011, Equation 12), we then have

Q=00 =ni; Q=11 =1- (42)

The optimal decision y* is the one that minimizes expected

loss Q:

lifﬁl >
{0, 1} if 7ty =

y* def arg min Q (y; k) =
4 0 lfﬁl <

Sl SIS

~¢

{00 ny + (1—= ,ul){

This simply means that to minimize its losses, the agent should
choose the option it believes more likely to be rewarded. It may
seem superfluous to go to such lengths to derive such an obvious
result, but the purpose of the above is also to give an illustration
of the principled way a decision rule can be derived by combining
the HGF with a loss function.

It is, however, unreasonable to assume that human agents will
always choose the option that minimizes their expected loss in
the current trial, for two reasons. First, if there is more than one
trial and the probabilities of the different options are indepen-
dent, there is an exploration/exploitation tradeoff that makes it
worth the agent’s while (in the long run) sometimes to choose an
option that is not expected to minimize loss in the current trial
(Macready and Wolpert, 1998; Daw et al., 2006). Second, biologi-
cal agents exhibit decision noise (Faisal et al., 2008), e.g., owing to
implementation constraints at the molecular, synaptic or circuit
level. To allow for exploration and noise, we use a decision model
that corresponds to the right-hand side of Equation 43, without
taking the limit, instead leaving ¢ as a parameter to be estimated
from the data (cf. Equation 18):

~L y ~\C 1=y
1 (-
Pl ¢) == — ] |z P (44)
i 5) (u§+(1—m){> <M§+(1—M1){>

Figure 4 contains a graph of this function for p(y = 1) where ¢
plays the role of the noise (or exploration) parameter. This deci-
sion model was the basis for the simulations we conducted to
assess the accuracy of parameter estimations (results below).

INVERSION EXAMPLE

To illustrate how real datasets can be inverted and different
response models compared, we take the data of one subject from
Iglesias et al. (2013). This consists of 320 inputs u and responses .
Our perceptual model is the three-level HGF for binary outcomes
without sensory noise, and a first choice of decision model is
the unit-square sigmoid of Equation 44. Using the HGF Toolbox

| (
0.8
Probability of __06
decision “1”, T
=
(i.e., of betting 204
on “1”)
—(=0.5
0.2 — =1
— (=6
=
00 0.2 0.4 0.6 0.8 1

I
Prediction that next stimulus is “1”
FIGURE 4 | The unit square sigmoid (cf. Equations 43, 44). The

parameter ¢ can be interpreted as inverse response noise because the
sigmoid approaches a step function as ¢ approaches infinity.

(http://www.translationalneuromodeling.com/tapas), we specify
the following priors (mean, variance) in appropriately trans-
formed spaces: /L(O)z : (0,1), 02:(0,1), /,Lgo) : (1, 0), 03(0) :
(0,1),k :(0,2) w:(—4,0),9 :(0,2),and ¢ : (48, 1). The vari-
ance of 0 on Mgo) and o fixes these parameters to 1 and —4,

respectively. The spaces for ai(o) and ¢ were log-transformed while
k was estimated in a logit-transformed space with upper bound
6, and ¥ was estimated in logit-transformed space with upper
bound 0.005.

We now modify our response model so that it no longer has
a constant free parameter (¢) as its inverse decision temperature,
but the inverse volatility estimate exp ( — u3):

~exp(—u3) y
1
P13 =\ —5c = '
MTXP( “3) +(1_M1)exp(—u3)

(1 — 1) P(#3) =
45
ﬁelzxp(*ll«a) +(1— ﬁl)exp(—ug) (45)

This means that the agent will behave the less deterministically
the more volatile it believes its environment to be. Since this is
now a decision model that contains w3, it permits us to estimate

all parameters including ugo) and w. Accordingly, we increase the
variance of their priors to 4. The result of this inversion is shown
in Figure 5. This figure illustrates how the HGF deals with per-
ceptual uncertainty by updating beliefs throughout its hierarchy
on the basis of precision-weighted prediction errors. The learning
rates v; (definitions see figure caption) are adjusted continu-
ally at each level separately, which provides the flexibility needed
to adapt to changes in outcome tendency and volatility (i.e., to
perceptual uncertainty).

Under the Laplace assumption (Friston et al., 2007), the
negative variational free energy, an approximation to the log-
model evidence, is —196.19 for the first response model
and —188.84 for the second. This corresponds to a Bayes factor
of exp (—188.84 — (—196.19)) = 1556, giving the second model
a decisive advantage despite the fact that it contains an additional
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FIGURE 5 | Model inversion. Maximum-a-posteriori parameter estimates
are 1) =0.87, 0% =1.20, ¥ = —0.65, 0¥ = 0.88, x =1.32,
w=—0.71, and ¥ = 0.0023. These parameter values correspond to the
following trajectories: (A) Posterior expectation ug of log-volatility xz. (B)
Precision weight y3 def %2 which modulates the impact of prediction error
87 on log-volatility updates. (C) Volatility prediction error 8. (D) Posterior
expectation uy of tendency uy. (E) Precision weight v def n2’1 (in green)
which modulates the impact of input prediction error §1 on wp. Since uz

is in logit space, the function of o, as a dynamic learning rate is more
easily visible after transformation to xj-space. This results in the red line
labeled g (¥2) def o (u2)¥w_2 ). (F) Prediction error 87 about input u. (In
lglesias et al., 2013, Figures S1 and S2, §; is defined as an outcome
prediction error, which corresponds to the absolute value of §; as defined
here). (G) Black: true probability of input 1. Red: posterior expectation of
input u=1, 71; this corresponds to a sigmoid transformation of uy in
(E). Green: sensory input. Orange: subject’s observed decisions.

free parameter. In this example, including a measure of higher-
level uncertainty has clearly improved our model of a subject’s
learning and decision-making.

Another possible choice for the inverse decision temperature
is 75 (cf. Paliwal et al., 2014). This choice is interesting because it
is similar to the hypothesis (Friston et al., 2013; Schwartenbeck
et al., 2013) that precision serves as the inverse decision tem-
perature in active inference. With a negative variational free
energy of —189.63, this model performs similarly to the one with
exp ( — u3) as the inverse decision temperature. This similarity
in performance is not surprising since 7, is (inversely) driven to
a large extent by 3 (cf. Equations 11 and 13).

DECISION MODEL FOR A ONE-ARMED BANDIT

As an additional example, we discuss a more complex binary deci-
sion task that we used to collect data from human subjects (Cole
etal., in preparation). In this variant of a one-armed bandit exper-
iment, subjects were asked to play a series of gambles with the
goal of maximizing their overall score (Figure 6). On each trial,
subjects chose between two options represented by the same two

fractals, which had different and time-varying reward probabil-
ities. At any point in time, these probabilities summed to unity,
implying that exactly one of the two options would be rewarded.
Although subjects knew that probabilities varied throughout the
course of the experiment, they were not told the schedule that
governed these changes. The schedule included both a period of
low volatility and a period of high volatility (Figure 6), similar to
the task used by Behrens et al. (2007).

In order to encourage subjects to switch options above and
beyond normal exploration behavior (Macready and Wolpert,
1998), the two cards were associated with varying reward mag-
nitudes. On each trial, magnitudes were drawn from a discrete
uniform distribution 4/(1,9) (i.e., rewards would take values
from the range {1, 2,..., 9} with equal probability).

Subjects began the experiment with an initial score of 0
points. Once a card had been chosen, if that card was rewarded,
the associated reward would be added to the current score.
The final score at the end of the experiment was translated
into monetary reimbursement. The experiment consisted of 160
trials.
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FIGURE 6 | One-armed bandit task. Participants were engaged in a simple
decision-making task. Each trial consisted of four phases. (i) Cue phase. Two
cards and their costs were displayed. (i) Decision phase. Once the subject
had made a decision, the chosen card was highlighted. (iii) Outcome phase.
The outcome of a decision was displayed, and added to the score bar only if

cue decision outcome inter-trial interval
P(option A is correct)
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Trial

the chosen card was rewarded. (iv) Intertrial interval (ITl). The screen only
showed the score bar, until the beginning of the next trial. Our experimental
paradigm consisted of a number of phases with different reward structures.
Different phase lengths induced both a phase of low volatility (trials 1 through
90) and a phase of high volatility (trials 91 through 160).

Calling the two fractals A and B, we parameterize the agent’s
response by

0 for choice A
= 4
{ 1 for choice B (46)
Correspondingly, the state x; is
0 if A rewarded
= 4
X { 1 if B rewarded (47)

Taking r4 and rp to be the rewards for A and B, respectively, we
introduce the quadratic loss function

L(x,y) = —(1 —xl)(y—l—xl — 1)2 - TA —xl(y+x1 - 1)2'1’8

=—(y+x — 1)2( (rg —ra) x1 + 1) (48)
This corresponds to the following loss table:
X1
2k
y 1| 0 |—rp

Following the same procedure as above, we get:

QUin)= D Llxy) q@i:)

x1 €{0,1}
~ 2 ~
= —y’rpi — (1—y)ra@ =1
—rpp fory =1,
= (50)
—ra (1 — 7)) fory =0.

With the expected loss from each option on a continuous scale,
a simple but powerful decision model is the softmax rule (Sutton
and Barto, 1998; Daw et al., 2006)

exp (¢ - Qyis 1))

ilA L) = ,
POIA ) = e Q)

(51)

where y; is one particular option and the sum runs over
all options. This means that the decision probabilities are
Boltzmann-distributed according to their expected rewards (i.e.,
their expected negative losses) with the parameter ¢ serving as the
analogon of inverse temperature. In our binary case, this evaluates
to

plr=11%7) =S<—§(r3ﬁ1—fA(1 —ﬁl))>,
p(r=01%¢) =s(+ (i —na(—a)). (2

This is a logistic sigmoid function of the difference rg 11 —
ra (1 — 1) of expected reward for choice B minus expected
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reward for choice A. If the expected reward of choice B exceeds
that of choice A, the likelihood of choice B is greater than half and
vice versa.

SIMULATION STUDY

Given the nontrivial nature of our model, it is important to verify
the robustness of the inversion scheme. This, in turn, may depend
on the numerical optimization method employed. To assess our
ability to estimate the parameters under different optimization
schemes, we conducted a systematic simulation study based on
the 3-level HGF for binary outcomes. This model is shown graph-
ically in Figure 2 and was the basis for the studies of Vossel et al.
(2013) and Iglesias et al. (2013). k was chosen as the perceptual
parameter to vary because of the interesting effects it has on the
nature of the inferential process (cf. Mathys et al.,, 2011). The
response parameter ¢ was chosen as the second parameter to vary
because it represents inverse response noise (cf. Equation 20),
i.e., for lower values of ¢ the mapping from beliefs to responses
becomes less deterministic, which renders it more difficult to
estimate the perceptual parameters.

Simulations took place in four steps:

1. We chose a particular sequence of 320 binary input u =
uD w320 }; this was the input sequence in a recent study
using the HGF (Iglesias et al., 2013).

2. We chose a particular set of values for the parameters &.

3. We generated 320 binary responses y = {y(l), . ’y(320)} by
drawing from the response distribution given by Equation 44
below.

4. We estimated £* according to Equation 21.

Step 1 was only performed once, so that u was the same in all
simulations. The values of £ in step 2 were constant for all param-
eters except ¥ and ¢. The values of k¥ and ¢ were taken from
a two-dimensional grid in which the « dimension took the val-
ues {0.5, 1, 1.5,..., 3.5} while the ¢ dimension took the values
{0.5, 1, 6, 24}. Steps 3 and 4 were then repeated 1°000 times for
each value pair on the {«, ¢} grid (for MCMC, owing to its com-
putational burden, only 100 estimations were performed). The ¢
values on the grid were chosen such that they covered the whole
range from very low ({ = 24) to very high response noise (¢ =
0.5, cf. Figure 4). The « values were chosen to cover the range
observed in an empirical behavioral study using the same inputs u
(Iglesias et al., 2013). The remaining model parameters were held
constant (w = —4, ¥ = 0.0025). In total, six parameters were
estimated. These were (with the space they were estimated in and
prior mean and variance in that space in brackets): /,Lgo) (native,
0, 1), 02(0) (log, 0, 1), 03(0) (log, 0, 1), k (logit with upper bound
at 6,0, 9), ¥ (logit with upper bound at 0.005, 0, 9), and ¢ (log,
48, 1). The prior mean of the response variable ¢ was chosen rel-
atively high to provide shrinkage on the estimation of decision
noise.

This procedure was repeated for four different optimization
methods which are commonly used but possess different prop-
erties with regard to computational efficiency and robustness to
getting trapped in local extrema:

1. Nelder-Mead simplex algorithm (NMSA),

2. Gaussian process-based global optimization (GPGO),
3. Variational Bayes (VB),

4. Markov Chain Monte Carlo estimation (MCMC).

In brief, NMSA (Nelder and Mead, 1965) is a popular local opti-
mization algorithm which is implemented, for example, in the
fminsearch function of Matlab. VB also optimizes locally (by gra-
dient descent); for details see Bishop (2006, p. 461ff). For our sim-
ulation study, we used VB as implemented in the DAVB toolbox,
available at http://goo.gl/As8p7 (Daunizeau et al., 2009, 2014).
In contrast, GPGO (Rasmussen and Williams, 2006; Lomakina
et al., 2012) provides a global optimum of the objective function
and is thus potentially more robust than NMSA and VB albeit
computationally more expensive. The final method was MCMC
(Gelman et al., 2003, p. 283ff) which served as a “gold standard”
against which we compared the other methods. Specifically, we
used Gibbs sampling with a one-dimensional Metropolis step for
each of the parameters (cf. Gelman et al., 2003, p. 292). For each
of the 100 simulation runs (at each point on our parameter grid)
we used one chain with a length of 500’000 samples and a burn-in
period of 25’000 samples. In summary, our simulations thus con-
sider two algorithms (NMSA and VB) which are computationally
very efficient but provide a local optimum only, in comparison
to another two algorithms (GPGO and MCMC) which are com-
putationally more expensive but are capable of finding global
optima.

All optimization methods could reliably distinguish different
values of k at low or moderate decision noise (Figure 7). At higher
noise levels, estimates became less reliable. With GP, VB, and
MCMC, they then exhibited a tendency to underestimate «, while
NMSA tended to mid-range values. Nonetheless, substantial dif-
ferences in « within the range tested could be detected by all four
methods even at high levels of noise.

The noise level itself could also be determined by all four meth-
ods (Figure 8). The methods did not differ appreciably in their
performance. They all tended to underestimate the noise level
owing to a mild shrinkage due to the prior on ¢. Errors are smaller
for moderate noise levels, increasing for both high and low noise
(cf. Figure 9A2).

Figures 9A1,A2 shows the root mean squared error in « and
log(¢), jointly for all values of x. The results show that the noise
level could best be estimated at moderate levels, where in fact
most estimates of experimental data are found. Again, the meth-
ods perform comparably well, with NMSA best at high noise.
Figures 9B,B2 contrasts the performance of VB and MCMC
and displays the accuracy of the confidence with which VB and
MCMC make their estimates. To this end, it uses the fact that VB
and MCMC estimate the whole posterior distribution. Parameter
estimates can therefore not only be summarized as point esti-
mates, but also as posterior central intervals (PCIs; the 95%
PCI is the interval that excludes 2.5% of the posterior probabil-
ity mass on either side). If an estimation method were neither
over- nor underconfident, 95 of 95% PCIs would contain the true
parameter value. If the proportion is less than 0.95, this indi-
cates overconfidence; if it is greater than 0.95, underconfidence.
Both methods were realistically confident about their inference
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FIGURE 7 | Estimation of coupling « by four methods at different noise
levels ¢. A range of ¥ from 0.5 to 3.5 was chosen based on the range of
estimates observed in the analysis of experimental data. Decision noise
levels were chosen in a range from very high (0.5) to very low (24). The
remaining model parameters were held constant (w = —4, ¥ = 0.0025). For
each point of the resulting two-dimensional grid, 1000 task runs with 320
decisions each were simulated. Given the fixed sequence of inputs and
simulated sequence of decisions, we then attempted to recover the model
parameters, including « and ¢, by four estimation methods: (1) the function
Nelder-Mead simplex algorithm (NMSA), (2) Bayesian global optimization
based on Gaussian processes (GPGO), (4) variational Bayes (VB), and
Markov chain Monte Carlo sampling (MCMC). The figure shows boxplots of
the distributions of the maximum-a-posteriori (MAP) point estimates for the
four methods at each grid point. Boxplots consist of boxes spanning the
range from the 25th to the 75th percentile, circles at the median, and
whiskers spanning the rest of the estimate range. Horizontal shifts within ¢
levels are for readability. Black bars indicate ground truth.

on k across noise levels, with a slight tendency toward overcon-
fidence with higher noise. This tendency was more pronounced
with estimates of ¢.

DISCUSSION

In this paper, we have shown that the hierarchical Bayesian model
of Mathys et al. (2011) can be extended in several ways, resulting
in a general framework referred to as the HGFE. Furthermore, we
have demonstrated how the HGF can be combined with decision
models to allow for parameter estimation from empirical data. We
start by discussing the nature of the HGF updates in the context
of Bayesian inference.

A crucial feature of the HGF’s update equations is emphasized
by the notation used in Equation 9: the updates of the means are
precision-weighted prediction errors. For a full understanding of
their role, we will first discuss Bayesian updates in the simplest
possible case, where they can be calculated exactly. In this simplest
case, there is only one hidden state x € R that is the target of our
inference, and there is a Gaussian prior on x:

2~ N (e ) (53)
where 1y is the mean and 7, the precision. The likelihood of x
(i.e., the probability of observing the datum u € R given x) is also
Gaussian, with precision (inverse observation noise) 7,,:

u~N(x, 7). (54)
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FIGURE 8 | Estimation of noise level ¢ at different levels of coupling «.
¢ is estimated and displayed here at the logarithmic scale because it has a
natural lower bound at 0. See Figure 7 for key to legend. The figure shows
boxplots of the distributions of the maximum-a-posteriori (MAP) point
estimates for the four methods at each point of the simulation grid.
Horizontal shifts within « levels are for readability. Black bars indicate
ground truth.

According to Bayes’ theorem, the posterior is now also Gaussian:

x|lu~N (,ux\u, JT);;) . (55)

The posterior precision 7y, and mean {1y, can be written as the
following analytical and exact one-step updates:

Ty

Mxjy = Mx + — (U — x) (56)
TCx|u

Tixju = Tx + Ty (57)

The update in the mean is a precision-weighted prediction error.
The prediction error u — p, is weighted proportionally to the
observation precision 7y, reflecting the fact that the more obser-
vation noise there is, the less weight should be assigned to the
prediction error. On the other hand, prediction error is weighted
inversely proportionally to the posterior precision my),; that is,
with higher certainty about x, the impact of any new information
on its estimate becomes smaller.

The same precision-weighting of prediction errors appears in
the update of the means w; of the states x; in the inversion of the
general HGF (Figure 10, Equation 9):

® _~k _ 1 *®) ) )
PN 1—1
e EKi—l‘V,‘,1 ) 8,‘,13 (58)
7T
or, in more compact notation,
i
Api x 1713,'_1. (59)
=

1

Owing to the hierarchical nature of the HGEF, the place of the
likelihood precision 7, in Equation 56 is here taken by the
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FIGURE 9 | Quantitative assessment of parameter estimation. (A) Root
mean squared error of MAP estimates by noise level ¢ for all four estimation
methods (see Figure 7 for key to legends). (A1) Estimates for « improve with
decreasing noise and do not exhibit substantially significant differences
between methods although NMSA is somewhat better at very high noise.
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(A2) As in Figure 8, estimates for ¢ were assessed at the logarithmic scale.
(B) Confidence of VB and MCMC. (B1) Both methods are realistically
confident about their inference on « across noise levels, with a slight
tendency toward overconfidence with higher noise. (B2) This tendency is
more pronounced with estimates of ¢.

precision of the prediction on the level below, 77;_1, while the
posterior precision 7; in the HGF corresponds exactly to the
posterior precision 7y, in Equation 56. The precision ratio in
these updates is the learning rate with which the prediction error
is weighted. Prediction errors weighted by a learning rate are a
defining feature of many reinforcement learning models (e.g.,
Rescorla and Wagner, 1972). The HGF furnishes a Bayesian foun-
dation for these heuristically derived models in that it provides
learning rates that are optimal given a particular agent’s parame-
ter setting. The numerator of the precision ratio in Equation 59
contains the precision of the prediction onto the level below.
This relation make sense because the higher this precision, the
more meaning a given prediction error has. The denominator
of the ratio contains the precision of the belief about the level
being updated. Again, it makes sense that the update should be
antiproportional to this since the more certain the agent is that
it knows the true value of x;, the less inclined it should be to
change it. What sets the HGF apart from other models with
adaptive learning rates (e.g., Sutton, 1992; Nassar et al., 2010;
Payzan-LeNestour and Bossaerts, 2011; Wilson et al., 2013) is
that its update equations are derived to optimize a clearly defined
objective function, variational free energy, thereby minimizing
surprise. Furthermore, while the Kalman filter (Kalman, 1960) is

optimal for data generated by linear dynamical systems, the HGF
has the advantage that it can deal with nonlinear systems because
it adapts its volatility estimate as the data come in. This adaptive
adjustment of learning rates corresponds to an optimal “for-
getting” algorithm that prevents learning rates from becoming
too low.

Notably, the prediction error §;—; is a volatility prediction
error (VOPE) in the HGF while the prediction errors in the single-
level Gaussian updates Equation 56, like the first-level updates in
the HGF Equation 15, refer to value prediction errors (VAPEs).
While a VAPE captures the error about the magnitude of a hid-
den state, a VOPE captures the error about the amount of change
in a hidden state. The crucial point here is that the levels of
the HGF are linked via the variance (or, equivalently, preci-
sion) of the prediction of the next lower level. Consequently,
the inversion proceeds by updating the higher level based on the
variance (or volatility) of the lower level. This becomes appar-
ent in Equation 14. The denominator of the fraction contains
predicted uncertainty about the level below, while the numer-
ator contains observed uncertainty. These can again be broken
down into informational and environmental uncertainty (see
below). Whenever observed uncertainty exceeds predicted, the
fraction is greater than one and the VOPE is positive. Conversely,
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FIGURE 10 | Posterior mean update equation. Updates are precision-weighted prediction errors. This general feature of Bayesian updating is concretized by

the HGF for volatility predictions in a hierarchical setting.

when observed uncertainty is less than predicted, the VOPE is
negative.

The two sources of uncertainty, informational and environ-
mental, are clearly visible in the precision of the predictions
Equation 13 and in the VOPEs Equation 14. In Equations 13
and 14, a(k Y is the informational posterior uncertainty about x;,

) = tWexp (/c,u(

tainty, the magnitude of Wthh 1s determlned by a combination of

while v; 1 + a)l) is the environmental uncer-

i )) and tonic (w;). The less we
(k—1)

know about x;, the greater the informational uncertainty Gi ;

by contrast, the more volatile the environment is, the greater the
(k)

two kinds of volatility: phasic (pL

environmental uncertainty V

The relation between uncertainty (informational and envi-
ronmental, expected and unexpected) and volatility (phasic and
tonic) can be summarized as follows: informational uncertainty
could be seen as a form of expected uncertainty which, how-
ever, differs from Yu and Dayan (2005) in that it is defined
in terms of posterior variance instead of estimated deviation
from certainty. By constrast, environmental uncertainty can be
linked to “unexpected” uncertainty and is the result of phasic
and tonic volatility. We use the term “environmental” instead
of “unexpected” because, in the context of the HGFE, unexpected
uncertainty is incorporated into the precision of predictions (cf.
Equation 13), i.e., there is always some degree of belief that the
environment might be changing.

In a review of the literature on different kinds of uncertainty
in human decision-making, Bland and Schaefer (2012) argue that
unexpected uncertainty and volatility are often not sufficiently
differentiated while Payzan-LeNestour and Bossaerts (2011) make
a further subdistinction of unexpected uncertainty: they differ-
entiate between stochastic volatility and a narrower concept of
unexpected uncertainty. This distinction maps exactly onto the
difference between tonic and phasic volatility in the HGE. While
the Kalman Filter deals optimally with tonic/stochastic volatility,
the HGF can also accommodate sudden environmental changes
via phasic volatility. An illustration of this ability can be found

in Mathys et al. (2011), where the U.S. Dollar to Swiss Franc
exchange rate time series from the first half of the year 2010 is
filtered using the HGF (their Figure 11). In addition to tonic
volatility, this time series also reflects a clear change point, i.e.,
the markets’ realization that Greece was insolvent. The latter is
captured by the HGF in phasic volatility shooting up almost
vertically.

Environmental uncertainty is updated by adjusting p;11, the
estimate of the next higher level. This is done in the VOPE by
comparing predicted total uncertainty (informational plus envi-
(S ¥

ronmental, o; ) to observed total uncertainty (Ui(k)

(Ml(.k) uw: k)) ). In this way, environmental uncertainty estimates

are dynamically adapted to changes in the environment, lead-
ing to changes in learning rates that reflect an optimal (with
respect to avoiding surprise) balance between informational and
environmental uncertainty estimates.

At first glance, the precision-weighting of prediction errors
may seem different in the “classical” 3-level HGF (Figure 2) with
categorical outcomes, where the update for ;5 (Equation 32) is:

(k) (k=1)

(k) ¢ (k)
uo = (6

'+o 0, (60)
At first, this simply looks like an uncertainty-weighted (not
precision-weighted) update. However, if we unpack o, according
to Equation 33 and do a Taylor expansion in powers of 7T}, we see
that it is again proportional to the precision of the prediction on
the level below:

~(K)
(k) T, ~0) =0 (20, (20 (20>
2 = e, 1 T (”1 )+<”2 ) (”1 )

y 7T +1

+ O0(4) (61)

We have further shown a principled way how to define decision
models based on perceptual HGF inferences, namely by deriv-
ing them from a loss function. Based on such decision models,

Frontiers in Human Neuroscience

www.frontiersin.org

November 2014 | Volume 8 | Article 825 | 15


http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

Mathys et al.

Perceptual uncertainty and the HGF

it is possible to infer on model parameters and state trajecto-
ries from observed decisions. In the simulation study we have
reported here, we could show that even with considerable decision
noise, we can reliably infer model parameters based on a few hun-
dred data points for binary decisions. Several recent studies have
done this in practice, estimating subject-specific HGF param-
eters from behavioral data. For example, (Vossel et al., 2013)
used the HGF to model learning in human subjects performing
a Posner task with varying outcome contingencies. This study
sought to compare different possible explanations for measured
eye movements (saccadic reaction speeds), using a factorial model
space comprising three alternative perceptual and three differ-
ent response models. Model comparison showed that the 3-level
HGF had greater model evidence than simpler versions of itself
and Rescorla—Wagner learning (Rescorla and Wagner, 1972). This
indicates that humans are capable of hierarchically structured
learning, exploiting volatility estimates to adapt their learning
rate dynamically. The same conclusion emerged from the study of
Iglesias et al. (2013) who used the HGF to analyze human learn-
ing of auditory-visual associations which varied unpredictably
in time. This study subsequently used the trial-wise estimates
of precision-weighted prediction errors (i.e., ”7‘;1 8i_1) in fMRI
analyses, demonstrating activation of the dopaminergic midbrain
with first-level (i.e., sensory outcome) precision-weighted pre-
diction errors, and activation of the cholinergic basal forebrain
with second-level (i.e., probability) precision-weighted predic-
tion errors. These findings resonate with recent proposals that an
important aspect of neuromodulatory function is the encoding of
precision (Friston, 2009).

The HGF can, in principle, accommodate any form of loss
function in the decision model. This choice will depend on the
particular question addressed and the assumptions of the appli-
cation domain (e.g., rationality assumptions). In the examples
shown in this paper, we employ loss functions that are quadratic.
This reflects the fact that squared losses imply a Gaussian dis-
tribution of errors, which is the appropriate choice where little
is known about the true distribution because the Gaussian has
maximum entropy (i.e., the least arbitrary assumptions) for a
given mean and variance. This means that using a quadratic loss
function is the most conservative choice in the absence of addi-
tional prior knowledge about the error distribution, where the
term error refers to the agent’s failure to make the choice that
minimizes its expected loss.

Since all four methods of inverting the decision model per-
formed well in our simulation study, we may focus on secondary
criteria in choosing a method for practical applications. The
most important of these criteria are the computational burden
imposed and the amount of information contained in the esti-
mate. The best performer in these respects is currently variational
Bayes because it is efficient and provides an estimate of the whole
posterior distribution for all parameters in addition to an approx-
imation to the free energy bound on the log-model evidence,
enabling model comparison. MCMC offers the same in princi-
ple, but at a considerably higher computational cost. GPGO is
computationally more expensive than VB but may be a strong
contender for future cases with multimodal posterior distribu-
tions. The weakest contender is NMSA because it is not much

more efficient than VB but only offers a point estimate of the
MAP parameter values.

In summary, the HGF provides a general and powerful frame-
work for inferring on belief updating processes and learning styles
of individual subjects in a volatile environment. This makes it
a generic tool for studying perception in a Helmholtzian sense.
The simple nature of the HGF updates in the form of precision-
weighted prediction errors do not only enhance their biological
interpretability and plausibility (cf. Friston, 2009) but are also
crucial for practical applications. The ability of the HGF to infer
learning styles of individual subjects from behavioral data and its
support of Bayesian model comparison offer interesting oppor-
tunities for studying individual differences and particularly for
clinical studies on psychopathology. To facilitate such practi-
cal applications, we have developed a software toolbox based
on Matlab that is freely available for downloading as part of
the TAPAS collection at http://www.translationalneuromodeling.
org/tapas/. The HGF toolbox is specifically tailored to the imple-
mentations of discrete time filtering models, as opposed to the
DAVB toolbox, which is mostly aimed at inverting dynamic mod-
els in continuous time. The HGF toolbox implements most of the
models described in this article, plus some additional ones, and
will be the focus of a forthcoming article.
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APPENDICES
(A) COUPLING BETWEEN LEVELS
Since f (x) is a positive function, there must be a function g (x) whose exponential it is.

fx)>0Vx = EIg:f(x):exp(g(x)) v x (A1)
Expanding g(x) then amounts to expanding the logarithm of f(x).

g =g@+g¢ (@ (x—a)+02) =logf (x) =

—togf @+ L2 v -0+ 02) =
f(a)
_f@. ) _
= @ x+logf (a) —a @ +0Q) = (A2)
—_
=kx+w+0(Q2)
= f(x) = expkx+ w) (A3)

Given f(x), k and w are only unique with respect to the choice of a particular expansion point g, except when f(x) is the exponential of
a first-order polynomial, in which case the above approximation is exact. The greater the weight of higher-order terms in g(x), the less
accurate the approximation will be far from the expansion point a. In ignoring second and higher order terms, we effectively restrict
the HGF to first-order coupling functions (i.e., to coupling functions that are the exponentials of first-order polynomials). However,
as this derivation shows, locally (i.e., within small variations of x), this restriction does not matter.

(B) VARIATIONAL INVERSION OF THE HGF

Variational inversion provides closed-form one-step update equations for the sufficient statistics that describe the agent’s belief about
the state of its environment. These update equations are derived in two steps. First, for a particular level i, 1 < i < n, of the hierarchy,
a mean field approximation is introduced, where the distributions g(x;) for all the other levels j # i are assumed to be known and

Gaussian, fully described by the known sufficient statistics {1, o }j 4
q(x)) = N (x5 1> 9j) - (B1)
In the absence of sensory noise, x; is directly observed; this means that u(lk) = xgk) and crl(k) = 0 for all k. The approximate posterior

A

q (xgk)> for level 7 at time k, given sensory input u(ll"'k) = {M(ll), M(lz), R ,u(lk) }, is then

q (x?k)> = ﬁ exp (I <x§k))> . (B2)

with variational energy I,

k k k k 1..k k
) o8 o 4 )
k
a(«}) =TTa). (B3)
i
X\i = {xj}j;éi’

x = {ki, 0i, W} 1<icy -
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We further unpack this to get

(k) (1. k (k n (k) (k=1), (1..k=1) (k—1)
p (59 2, i /]_[ A0 p (1Y) axd
N
N (x

k k—1 k
p (DI 1 )

p(kl)l (1k1)

Performing this last integral, we obtain

( (k) (k b t (k) exp (K] ](+)1 —l—a)])) (B4)

k1) (kl)
%j

k) 1...k) k—1) k—1)
p(xl( , \l,xlu( ) l_[J\/( ,M]( ,aj( + 1 exp(:g ]H—i—a)]))

exp (K,,xg:)_l + a)n> =9 (B5)

This constitutes the “prediction step” of the update. Specifically, we let the random walk do its work by integrating out all states from
the previous time point, thus ensuring that the mean field approximation only applies to current values of states. This is akin to the
prediction step in the Kalman filter since it gives us the predictive densities for xfk) given inputs up to time k — 1.

This now enables us to solve the integral in Equation B3, yielding (see Appendix C)

1 _
I(xgk)) _ Eln (Gi(fl D 4 4B exp (K: 1x(>+wi_1>)

o® (k) (k—1)
1 1+(I’L1 1 /’Ll 1 )

1
5 (B6)
2 ( —i—tk)exp(/c, 1x —i—a)l 1)
1 ! (s — )
268 w0 exp (el i)
Following the procedure of Mathys et al. (2011), we can now calculate the mean and precision of the Gaussian posterior for xgk):
k ~(k
= 1" (7). (87)
=l + —I’ (7). (B8)
l
where a double and single prime denote second and first derivative, respectively. This gives us Equations 9 and 10.
(C) CALCULATION OF THE VARIATIONAL ENERGY
By substituting Equation B5 into Equation B3, we get
k k (I..k k
I(x; )) = /q <x£i)) Inp (xi \1 , X|H1 )) dxil)
n
(k) (k). (k=1) (k 1) (k) (k)
:/q(x\i)ln l_[./\/(x] s + exp (K] ]_H—i—a)])) dx\i
j=1
= Z/ ln./\f( (k b (k D —I—exp (K] Xiy1 —l—a)])) dxilf)
= / ( )lnN( z(k)1’ fkll), ai(_kl_l) + exp (Ki_lxgk) + wi_1)> dxi’f) (C1)
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+/ ( k)) ln/\/( (k b Ui(kfl) + exp (K,-ngl + w,)) dxg;) + const.
:/ ( S 1)ln/\/'( M lkll),ol( +exp (KI 1x )+ wi 1)) dxgﬁ)l +
+[ ( 1+1) lnN( . 1), oi(kfl) + exp (Kixl(i)l + a)i>) dle + const.
We now have to solve these last two integrals. The first one can be solved analytically:
/ ( >ln./\/'(1 M fkll,az(k b +exp</<l 1x )+ wi 1))dx£f)l

(k) (k) (k—1))?
o1+ ('ui—l M )

ai(_kl_l) + exp (Ki_lxgk) + a)i_l)

1 _ 1
= _E In (Gi(—kl b + exp (Ki_lxl(k) + wi_l)) - 3 (C2)

To solve the second integral, we take

/q< B ) 0 (59 10 05 e (i), + 1) ) dxl?,
1
2

1
) ( (ky _ Mfk D ) + const. (C3)

~
~ —

k—1 k—1
i( = exp (K"'u“1(+1 '+ ;i

The sum of Equations C2 and C3 then is the variational energy of Equation B6, up to a constant term that can be absorbed into the
normalization constant Z; (cf. Equation B2).

(D) VARIATIONAL ENERGIES FOR CATEGORICAL OUTCOMES
Using the notation

(), < f 9 (%) f0dx (D1)

for the expectation of f(x) under q(xj) together with the definition of the model described graphically Figure 2, we can rewrite
Equation B3 as a sum of expectations
()= s (140
qDi

<
(ln ( P k))>q\; + <lnp (xgld |x£k))>q\i (D2)

" (1n »(x ( INC ‘”)>q\; ¥ <ln » (xgk) |0)>q\i

The term In p (u(k) IxEk)) is included here to cover also models with sensory uncertainty as discussed in Mathys et al. (2011). In cases

without such uncertainty (sc. x; = u), the term vanishes. p ( x ( (k) | (k)) can be taken directly from Equation 5, while

(0 .0) = [ o (0140, 0., 0)p (79)
/p (k 1 x;),K w)q(xgkfl)) dxgkfl)
/./\/ x2 ,xzk b t(k) exp (Kxgk)+w>)/\/(x§k71); (k= 1) )d (k=1)

_N( (k 1) 702(16—1) +t (k exp (KX3 +0))> (D3)
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and

P(x;k)lﬂ) = /p(x;k”xg , ) (xk 1)) dx(k 1
g/p(x;kqxg : ) ( )dx(k D
/N : g D 4k ) (x(k 1, (k=1) k 1)) dx(k D

_N( s 1),03(k_1)+t(k)19) (D4)

This is the “prediction step” (cf. Appendix B).

We only need to determine the I (xl(k)) up to a constant because any constant term can always be absorbed into Z; when forming

q (xgk)> according to Equation B2. For the three levels of our example model, this means

I (xgk)) = <lnp (u(k) |x§k))>q + <1np (xgk) |x§k)>>q + const. (D5)
\1 \1
I (xgk)) = <1n p (x(lk)lx;k)»q + (1 p (x(zk)lx;k) , K, a)) >q + const. (D6)
\2 \2
I (x(sk)) = <lnp (xgk)lx(k), K,® >q + <lnp <x§k) |z9)>q + const. (D7)
\3 \3

With two exceptions, all integrals on the right-hand sides above can be solved analytically in all cases considered here, including
sensory uncertainty and inference on continuous-valued states.

The two exceptions are the following: first, to solve <ln p (x(lk)lxgk)» , we expand In's (xgk)> to second order around the prior
ANl

expectation ugkfl) of x(zk):

() <o) 1) (408
1 2 _ N2
s (S (Mék 1>) _S<M§k 1))) (xgzo _ 1)) D3

Second, to solve <ln p (xz Ix3 3 w)> , we take

q\2
1 1
< = (k) > ATET RS kD (D9)
0, +tWexplk-x3" + o 0, +t exp +a)
N2
The result of doing the integrals in Equations D5-D7 is:
I (xgk)) = xl 'Ins (p,(zk_l)) + (1 — xik)) In (1 —s (p,(zk_l))) (D10)
k k(K 1 k k—
I(xg )> = 1ns< ) —l—x( ) ( o _ 1) - D =y (xg) Mg 1)> (D11)
2 (o 4 e T40)
1 oy 1o (Y
_ ®
I (xgk)> =3l <Oz(k Ve +w) - ®
2 2 Gz(k—l) ek to
1 k k-1))2
T (6D (xg s 1)) ~ (D12)
2 <03 + 19)
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At the first level, g can be calculated directly. By inserting Equation D10 into Equation B2 and noting that, at the first level, g = g since
q already conforms to the distributional assumptions (Bernoulli) that g is subject to, we find

(k) _ (k)
(k)) _J1 for x;” = u'Y, D13
1 (xl { 0 otherwise. ( )

This result is due to the fact that, in the absence of sensory uncertainty, I (x;) is only defined for x; = u while taking on a value of
“minus infinity” otherwise (cf. Equation D5).

At the second level, applying Equations B7 and B8 to Equation D11 yields Equations 32 and 33. At the third level, we recover the
standard HGF variational energy for the top level given in Equation B6, yielding the standard HGF updates of Equations 9 and 10.

(E) DERIVATION OF &*
&* can be unpacked in the following way:

p (& ylu)

£* = argmax p (£|y, u) = arg max
8! P (Ely. u) gmax—

= arg max p (“g‘, y|u) = arg maxInp (S, ylu)
& 3
= arg;naxln (p (yl&, u)p (fE))

= arg max (Inp (yl§, u) +1Inp &) (E1)
= arg max (Z Inp (y(k)lé, u) +1Inp (é))

§ k
= arg max Inp y(k)|k(k) X, k(o), u),¢)+1Inp (§)>

(Dt (47 (1:40.0)-)

k

(F) COORDINATE CHOICE ON HIGHER LEVELS
This appendix deals with the consequences of choosing a particular scale and origin for x; on higher levels (i.e., where i is greater than 1
for x; continuous and greater than 2 for x; discrete). These consequences are important for parameter identifiability. Whenever, there
is an ambiguity between parameter values and a coordinate transformation (i.e., shifting and rescaling) of x;, one or several parameters
will not be indentifiable. An example will show what we mean by this.

In a three-level HGF with binary x;, the state x3 at the third level of the model represents the log-volatility of x,. We now make use
of the fact that any change in the initial value ’ugo) of 3 can be neutralized by corresponding changes in « and w. This means that

by adjusting Mgo) appropriately, we can set k = 1, thereby making it seemingly disappear from the model. As an example, here are

parameter estimates from a behavioral study where estimation was performed with ’ugo) set to 1:

Kk = 2.49
ol¥ = 0.988 (F1)
9 = 0.000592

We can now make « disappear by setting it to 1. This change should be neutral to the model’s predictions of input, which can only be
achieved by the following compensatory substitutions:

Mgo) =1- Mgo) =2.49

0¥ =0.988 - o\ = 0.988 - 2.49? (F2)

¥ = 0.000592 — ¥ = 0.000592 - 2.49°

Frontiers in Human Neuroscience www.frontiersin.org November 2014 | Volume 8 | Article 825 | 22


http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

Mathys et al. Perceptual uncertainty and the HGF

At the first two levels, nothing has changed (the trajectory of 1, and therefore the input predictions 1] are the same); however, at the
third level x3 has been rescaled by the inverse of the factor with which « has been rescaled (i.e., 1/2.49). This means that the term

0 960 ey (K pE 4 w) (F3)

is invariant under the above transformation for all time points k, leading to the same trajectory in u, and o, according to Equations 37
and 38 as before.

Effectively, because of the transformation to a fixed ¥ = 1, our estimate of k has been reinterpreted as an estimate of /,Lgo). Thisis a
consequence of our freedom to choose coordinates on x3. To take an analogy from geometry, the distance between Zurich and London
is an objective geometric quantity that does not change whether it is measured in miles or kilometers; we may even introduce new
units where this distance is 1. Likewise, we may always rescale x3 individually for each agent (and estimation) such that the coupling «
between the second and third level has value 1. Note, however, that this does not prevent the coupling from differing between agents,
just as the actual geometric lengths of a mile and a kilometer are different even though they both have value 1 in a mile-based and
kilometer-based coordinate system, respectively.

Whenever the representations of x3 (i.e., ;3 and o3) are part of the observation model, this gives us a direct handle on x3 and
measures of its representations can immediately be compared between agents, provided we use always the same coordinates (which
we would automatically do without even thinking about it; individually rescaling « to 1 would then obviously be unwise). However, in
cases where we have no measure of x3 through the observation model, there is a fundamental ambiguity between individual differences

in coupling (i.e., k) and individual differences in priors for x3 (i.e., /,Lgo)).

Nonetheless, we have to make some choice of coordinates. In setting [Lgo) = 1, we choose to take the belief on environmental

volatility that an agent begins inference with as the benchmark. Observed differences in learning are then attributed to, inter alia,
differences in coupling. This is one way to obtain comparable measures of belief on x3 (and consequently, ?) between agents, since one
may be able to influence their priors while there is usually no way to equalize their coupling levels.

Just as it is possible to set « to an arbitrary non-zero value while keeping v invariant by compensatory substitutions, one can set
o to an arbitrary value with invariant v using another set of compensatory substitutions. In particular, @ can be set to zero, thereby
making it seemingly disappear from the model, just as k seems to disappear when set to 1.

We have seen that any change of scale in x3 is expressed in a corresponding change of . However, there is an additional degree of
freedom in choosing coordinates on x3: the choice of origin. Changes in this are expressed in a corresponding change of w:

x5 def x3+a (F4)

then
exp (kx3 + w) = exp (k (x; — a) + ») = exp (kx; + @) (F5)

with
o a + w (F6)

In our example, we have reinterpreted the estimate of « as one of Mgo)‘ We may now go on to reinterpret it another time, this time as

)

an estimate of w (up to now fixed to —4) by shifting the origin on x3 such that /Lgo is again fixed to 1:

W =249 - 1V =1

wo=—4—->w=—k(1-249) 4+ (—4) =-2.51 (F7)

Again, the trajectories at the first two levels have not changed. It is now apparent that by rescaling x3 and shifting its origin, we can
choose arbitrary values for two out of the three parameters /Lgo), Kk, and w. However, we repeat that this is only possible as long as we
do not measure x3 on any objective scale by including its representations in the response model.

Equivalence classes (with equivalence defined as leading to invariant v) of parameter values are defined by the following conservation

laws:

K20 = i (F8)
K/ZG;(O) — K2c73(0)
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Using these equations, we can now make « and w seemingly disappear by setting them to 1 and 0, respectively. Note that this does not
amount to a simplification of the model: it is only a coordinate choice. In our example this means:

w=-251—>w=0

P =15 10 =151 (F9)

This disappearance of k¥ and @ (and in the general case, all x; and w;) from the model may seem convenient. However, a danger here is

to confuse coordinates with the underlying reality they describe. Crucially, it is impossible to discuss the choice of coordinate choice

on higher levels in a model that lacks k; and w;. Yet this choice does not cease to exist only because one makes it implicitly instead of
explicitly.

In summary, in order to avoid on overparameterized model when ; is not included in the response model, it is advisable to be

explicitly arbitrary by fixing two out of Mgo), ki, and w;, reflecting a choice of origin and scale on x;. By contrast, when p; is included

in the response model, all of MEO), ki, and w; can be estimated.
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