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During human walking, there exists a functional neural coupling between arms and legs,
and between cervical and lumbosacral pattern generators. Here, we present a novel
approach for associating the electromyographic (EMG) activity from upper limb muscles
with leg kinematics. Our methodology takes advantage of the high involvement of shoulder
muscles in most locomotor-related movements and of the natural co-ordination between
arms and legs. Nine healthy subjects were asked to walk at different constant and variable
speeds (3–5 km/h), while EMG activity of shoulder (deltoid) muscles and the kinematics
of walking were recorded. To ensure a high level of EMG activity in deltoid, the subjects
performed slightly larger arm swinging than they usually do. The temporal structure of the
burst-like EMG activity was used to predict the spatiotemporal kinematic pattern of the
forthcoming step. A comparison of actual and predicted stride leg kinematics showed a
high degree of correspondence (r > 0.9).This algorithm has been also implemented in pilot
experiments for controlling avatar walking in a virtual reality setup and an exoskeleton dur-
ing over-ground stepping. The proposed approach may have important implications for the
design of human–machine interfaces and neuroprosthetic technologies such as those of
assistive lower limb exoskeletons.

Keywords: arm–leg co-ordination, quadrupedal locomotion, EMG patterns, gait kinematics, neuroprosthetic
technology

INTRODUCTION
Neuroprosthetic devices based on brain–machine interface (BMI)
technology have the potential to restore mobility to both upper
and lower extremities and to enable walking (Millán et al.,
2010; Lebedev et al., 2011; Cheron et al., 2012; Wolpaw, 2013).
Exoskeleton robotic devices are extensively developed in recent
years to provide new possibilities for severely paralyzed patients
to walk (Sale et al., 2012; Malcolm et al., 2013; Wang et al.,
2013; Sylos-Labini et al., 2014b). The development of practi-
cal applications for gait assistance may involve a wide range of
potential control implementations, from using trunk movements
(Wang et al., 2013) or myoelectric signals (del-Ama et al., 2012;
Alcaide-Aguirre et al., 2013; Gordon et al., 2013) to implement-
ing BMI-based technology (Fitzsimmons et al., 2009; Gwin et al.,
2011). To develop effective neuroprosthetic devices for human
beings, BMI research has to address a number of issues related
to improving the quality of neuronal recordings, and extend-
ing the BMI approach to a broad range of motor and sensory
functions (Lebedev et al., 2011). In human beings, non-invasive
electroencephalogram-based brain–machine interfacing for pro-
viding a reliable control of walking in the exoskeleton is still
very limited (Gwin et al., 2011; Cheron et al., 2012; Wagner
et al., 2012), and alternative or supplementary control strategies

should be considered in parallel. The current study investigates
a novel approach for associating the upper limb electromyo-
graphic (EMG) activity with leg kinematics. This approach holds
promise for applications in the field of assistive lower limb
exoskeletons.

The co-ordination of limb and body segments in locomo-
tion arises from stereotyped coupling of cervical and lumbosacral
spinal segment outputs (Ballesteros et al., 1965; Murray et al., 1967;
Hogue, 1969; Wannier et al., 2001; Zehr and Duysens, 2004; Iva-
nenko et al., 2006; De Sèze et al., 2008; Barthelemy and Nielsen,
2010; Meyns et al., 2013; Sylos-Labini et al., 2014a). The co-
ordination between arms and legs during human locomotion
shares many features with that in quadrupeds (Falgairolle et al.,
2006; Patrick et al., 2009; Juvin et al., 2012; MacLellan et al., 2012).
Due to the natural arm–leg co-ordination in human walking, the
leg movement control can be derived from or reflected in the EMGs
of arm muscles. In particular, a group of the upper arm muscles
was shown to be active during many locomotion tasks in human
beings (Ivanenko et al., 2006; Kuhtz-Buschbeck and Jing, 2012).
Taking into account, the high involvement of the deltoid muscle
in most locomotor-related movements in human beings, we took
advantage of the natural arm–leg co-ordination for investigating
the control of stepping using the upper limb EMG activity. Here,
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La Scaleia et al. Arm EMG-based assisted gait

we tested the hypothesis that the temporal structure of EMG activ-
ity of shoulder muscles can be used to predict the spatiotemporal
kinematic pattern of the forthcoming step during actual gait at 3–
5 km/h (and we investigated the accuracy of this prediction) and to
control avatar walking in a virtual reality setup or an exoskeleton
during over-ground stepping.

MATERIALS AND METHODS
PARTICIPANTS AND PROTOCOLS
Two main protocols were implemented. In the first series of exper-
iments performed in Brussels (protocol 1), we investigated the
possibility of extracting lower limb kinematic data from the gait-
related rhythmic EMG activity of arm muscles. To this end, nine
healthy volunteers were enrolled [age range 23–33 years, four
males and five females, leg length 0.85± 0.04 m (mean± SD),
height 1.75± 0.10 m, weight 72± 7 kg]. In the second series of
experiments performed in Rome (protocol 2), we implemented
the on-line control of avatar walking and also over-ground walk-
ing in the exoskeleton. For this protocol, eight healthy volunteers
were enrolled (age range 25–53 years, five males and three females,
leg length 0.83± 0.04 m, height 1.77± 0.09 m, weight 69± 8 kg).
None of the subjects had any known neurological or motor dis-
order. These protocols were approved by the Ethics Committees
of the Université Libre de Bruxelles (Belgium) and Fondazione
Santa Lucia (Rome, Italy), respectively, and all subjects gave their
informed written consent prior to participation.

EXPERIMENTAL SETUP AND DATA ANALYSIS
Protocol 1
In the first protocol, the subjects were asked to walk on a treadmill
(Cosmed Treadmill T150) at different constant speeds (3, 4, and
5 km/h) and at a variable speed (ramp-and-hold velocity profile,
increasing from 3 to 5 km/h at 0.1 km/h/s), four trials total (3 con-
stant speeds+ 1 trial at a variable speed). On average, 10–15 strides
were recorded in each trial during walking at a constant speed (that
corresponds to a walking distance of ~15–20 m) and about 50
strides during walking at a variable speed (distance ~70 m). Dur-
ing normal walking, the amplitude of arm swinging depends on
the walking speed (Webb et al., 1994) and, at slow speeds, the activ-
ity of arm muscles decreases significantly (Ivanenko et al., 2006;
Kuhtz-Buschbeck and Jing, 2012). Therefore, to obtain a higher
level of arm EMG activity, the subjects were asked to perform
slightly larger arm swinging than they usually do. In the prelimi-
nary training sessions (2–3 min of walking), we verified that these
movements evoked consistent EMG activation of shoulder mus-
cles at all walking speeds (3–5 km/h). We recorded kinematic data
bilaterally at 100 Hz by means of the Vicon system (Vicon, Oxford,
UK) with 10 Bonita cameras spaced around the treadmill. Infrared
reflective markers (diameter 15 mm) were attached on each side of
the subjects to the skin (using Vicon BioMind asymmetric model),
in particular, overlying the following landmarks used to calculate
leg kinematics: greater trochanter (GT), lateral femur epicondyle
(LE), lateral malleolus (LM), and fifth metatarsophalangeal joint
(VM). EMG activity of the anterior deltoid (DELTa) and poste-
rior deltoid (DELTp) muscles was recorded bilaterally by means
of surface electrodes. The EMG data were recorded with the wire-
less BTS Freeemg system (BTS Bioengineering, Milano, Italy) and

digitized at 1000 Hz. Sampling of kinematic and EMG data were
synchronized.

Data processing
Our approach uses the timing of the burst-like EMG activity of
shoulder muscles (by applying the peak detection algorithm) to
predict the spatiotemporal kinematic pattern of the forthcoming
step. Prior to application of the peak detection algorithm, the EMG
data were pre-processed: high-pass filtered at 30 Hz, rectified, and
finally low-pass filtered (all filters, zero-lag fourth order Butter-
worth). Low-pass filtering was performed at different frequencies
(1÷ 5 Hz) to achieve the best correlation between actual and pre-
dicted leg kinematics. Despite some inter-individual variability,
periods of EMG activity of DELTa and DELTp during normal
walking tend to be alternating and correspond to those of the con-
tralateral upper limb (Ivanenko et al., 2006; Kuhtz-Buschbeck and
Jing, 2012), as well as multi-muscle synergy-based control inter-
face may be more efficient than a single-muscle control (Lunardini
et al., 2014). Therefore, bilateral EMGs of synergistic muscles (Iva-
nenko et al., 2006; Kuhtz-Buschbeck and Jing, 2012) were summed
(Figure 1A):

EMG1 = DELTaright + DELTpleft (1)

EMG2 = DELTaleft + DELTpright (2)

the peaks of EMG1 and EMG2 occur around the beginning of the
swing phase of the right and left legs, respectively (Figure 1A).
Nevertheless, we also compared the performance of our algorithm
using all four muscles (Eqs 1 and 2) and only pairs of contralateral
muscles (DELTaleft and DELTaright; DELTpleft and DELTpright).

The elevation angles of the thigh (GT-LE), shank (LE-LM), and
foot (LM-VM) segments (Lacquaniti et al., 2002; Cheron et al.,
2012) were calculated as the angles between the segment projected
on the sagittal plane and the vertical (positive in the forward direc-
tion, i.e., when the distal marker falls anterior to the proximal
one). We divided the recorded kinematic and EMG data into gait
cycles (maximum shank elevation angle as the beginning of the
gait cycle), then interpolated each stride to 200 time points, and
finally averaged across gait cycles (for each trial). These ensemble-
averaged (thigh, shank, and foot) elevation angles were used as
a reference (template) for predicting leg kinematics from shoul-
der muscle EMGs. The amplitude of arm oscillations was assessed
as the peak-to-peak amplitude of anterior–posterior wrist marker
movements relative to the shoulder averaged across both (left and
right) sides of the body and across all strides of the trial.

Prediction of leg kinematics based on shoulder muscle EMG activity
The algorithm used to predict the kinematics of the following
step from the temporal structure of pre-processed EMG activity
is schematically depicted in Figure 1. In essence, it predicts stride
duration from the temporal distance between EMG peaks, and
the kinematic pattern of a reference template (derived from aver-
ages of the collected data) is then temporally stretched to fit the
predicted duration so as to generate the predicted segment ele-
vation angles. The algorithm started from the second recorded
step and consisted in detecting the timing of the EMG1 or EMG2

peak (exceeding the pre-defined threshold) in the appropriate time
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La Scaleia et al. Arm EMG-based assisted gait

FIGURE 1 | Shoulder muscle EMG-based prediction of stepping
kinematics. (A) Schematic algorithm. Upper traces – actual left and right
shank elevation angles during three consecutive strides. Lower
traces – rectified (gray) and low-pass filtered (2 Hz, black) EMGs of
shoulder muscles. The algorithm consisted in searching the EMG peak (τi)

at the end of each step (ti) during the appropriate time window [(τi−1 +∆,
ti), see insert] that exceeded the pre-defined individually adjusted
threshold (green line). Each step duration (Ti, Ti+1, etc.,) was predicted from
the timing of the shoulder EMG peaks (Ti = τi − τi−1). (B) Predicted
kinematic patterns.

window and associating it with the duration and kinematics of the
following step. In particular, at the end of each predicted step (ti),
the program computed the timing of the latest peak of EMG1 or
EMG2 depending on the associated time lag (τi, Figure 1A) and
determined the duration of the following step:

Ti = τi − τi−1

Ti+1 = τi+1 − τi

. . . (3)

The peak detection threshold was defined individually for each
trial and each EMG as

threshold = k ×mean (EMG) (4)

where mean (EMG) is the mean (EMG1) or mean (EMG2) over
the trial, and k is the coefficient found empirically (k = 0.8) to
provide the best detection of peaks.

The searching window started with a fixed delay ∆= 200 ms
from the last EMG peak (Figure 1A) in order not to capture
extra peaks (from the previous step). The kinematic pattern of the
forthcoming step was calculated by scaling (stretching) the kine-
matic reference template (see above) according to the predicted
Ti. The flexibility in the timing of the EMG peak due to accel-
erating/decelerating arm movements allowed gradual changes in
the predicted cycle duration. On the other hand, in the case of the
absence of the detected EMG peak at the time ti, the algorithm did
not produce further steps and was terminated (in such case the
trial was not considered to be successful for the prediction of leg
kinematics).

Protocol 2
In the second protocol, we implemented the on-line control of
leg kinematics based on rhythmic activity of shoulder muscles in
the virtual reality setup (eight subjects) and during walking in
the exoskeleton (one subject). EMG activity of DELTa and DELTp
muscles on each side was registered at 500 Hz by means of surface
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electrodes with the wireless Delsys Trigno EMG system (Delsys
Inc., Boston, MA, USA), bandwidth of 20–450 Hz, and overall gain
of 1000. LabView software was used to collect and process the EMG
data and to predict leg kinematics in real time. The predicted kine-
matic signals (thigh, shank, and foot elevation angles) were sent at
100 Hz using the UDP protocol to the virtual environment (using
XVR software of VRMedia S.r.l.) to animate walking avatar (third
person viewpoint). The algorithm was similar (Figure 1, the low-
pass filter was performed at 2 Hz, based on the results of the first
protocol, see Results) although, in addition to the on-line step-by-
step control of walking kinematics, it also included gait initiation
and gait termination steps. The threshold for EMG peak detection
(Eq. 4) was adjusted individually for each subject, computing the
mean EMG activity during alternating arm movements at a self-
selected rhythm in the preliminary trial. The subjects (in standing
position) were instructed to swing their arms at approximately
the same amplitude at self-selected, slow, and fast frequency, as
well as at a variable frequency. We instructed the subjects to vary
the frequency approximately in the range between the slow and
fast frequencies performed in the previous trials. The duration of
each trial was 1 min and three trials were performed at each arm
frequency.

In a pilot experiment, one subject was also trained to control
an exoskeleton during over-ground stepping along an 8-m walk-
way. The detailed description of the exoskeleton (called MIND-
WALKER, https://www.mindwalker-project.eu) is provided else-
where (Wang et al., 2013). Briefly, knee and hip exoskeleton joints
(powered by series elastic actuators) followed pre-defined joint
angles (based on the walking patterns of the same subject walking
in the MINDWALKER exoskeleton without assistance) provided
with variable joint impedances (Wang et al., 2013). The algorithm
was similar to that used in the first protocol and detected the tim-
ing of EMG peaks. The output of the LabView software triggered
and determined the initiation and the duration of the swing phase
of each leg.

STATISTICS
Descriptive statistics included means± SD of the mean. The effi-
ciency and accuracy of the predicting algorithm during walking at
a constant speed (3, 4 and 5 km/h) were assessed using two para-
meters: the number of successful trials (if 10 consecutive strides
were successfully predicted) and correlation between predicted
and actual segment elevation angles. The efficiency of the method
during walking at a variable speed (3–5 km/h) was assessed using
the correlation between predicted and actual segment elevation
angles, and the correlation between predicted and actual stride
durations. In protocol 2, since the actual leg kinematics was not
performed, the efficiency of the on-line algorithm using a virtual
reality setup was assessed by the percentage of successful trials (if
the algorithm produced alternating uninterrupted steps during the
1-min trial) during slow, self-selected, and fast arm movements.
Statistics on Pearson’s correlation coefficients was performed on
the normally distributed, Z -transformed values.

A repeated measure (RM) ANOVA was used to evaluate pre-
diction (correlation coefficients between predicted and actual limb
segment elevation angles), and post hoc Tukey’s HSD test was used
to determine statistical significance. In one subject, the algorithm

failed to predict limb kinematics (presumably due to low-EMG
activity, see Results) and his data were not included. In another
subject, it failed at a high speed (5 km/h) and the missing data for
this condition for the ANOVA were replaced by the unweighted
mean value estimated from all other subjects. Reported results are
considered significant for p < 0.05.

RESULTS
SHOULDER MUSCLE ACTIVITY DURING WALKING
The shoulder muscles we monitored (bilateral anterior and poste-
rior deltoid) showed rhythmical EMG signals during walking in all
subjects (on average, the amplitude of the main rectified EMG peak
was 7.0± 1.7 µV, all muscles and all speed being pooled together),
although in a few cases their activity was small (<3 µV). Since the
subjects were asked to perform approximately the same amplitude
of reciprocal arm swinging [forward arm swing reverses to back-
ward arm swing in the middle of the gait cycle (Kuhtz-Buschbeck
and Jing, 2012)], EMG activity did not decrease with decreas-
ing walking speed, as it normally occurs during walking (Ivanenko
et al., 2006). On average, the anterior–posterior arm (wrist marker)
oscillations were 50± 12 cm at 3 km/h, 45± 9 cm at 4 km/h, and
41± 10 cm at 5 km/h (for instance, during normal walking at 4–
5 km/h, arm oscillations are ~35–40 cm, Murray et al., 1967; Webb
et al., 1994; Ford et al., 2007), and the mean amplitude of deltoid
muscle EMGs was 7.6± 1.7 µV at 3 km/h, 7.0± 1.7 µV at 4 km/h,
and 6.1± 1.3 µV at 5 km/h.

Figure 2A illustrates an example of shoulder muscle EMG
signals during walking at 4 km/h. Typically, the deltoid mus-
cle demonstrated alternating activity during walking: alternation
occurred both between left and right sides of the body and between
anterior and posterior bellies of the deltoid (DELTa and DELTp).
However, there could be an additional smaller second burst of
activity over the gait cycle, as well as some inter-individual variabil-
ity in the timing of the main EMG bursts [see also Ballesteros et al.
(1965), Hogue (1969), Ivanenko et al. (2006), Kuhtz-Buschbeck
and Jing (2012)]. Nevertheless, in most cases, there were promi-
nent peaks of EMG1 and EMG2 around the beginning of the swing
phase of the right and left legs, respectively (Figures 1A and 2A),
which allowed us to associate this phasic alternating pattern of the
upper limb EMG activity during arm–leg co-ordination with the
spatiotemporal pattern of gait kinematics.

PREDICTING LEG KINEMATICS FROM SHOULDER MUSCLE EMGs
DURING WALKING
We used the rectified and filtered EMG data to detect the timing
of shoulder muscle EMG peaks in the concomitant and previous
steps (see Materials and Methods) to predict the limb kinemat-
ics in the forthcoming step. On the whole, the best correlation
between actual and predicted kinematics was observed at 1–2 Hz
low-pass filtering (r > 0.95, Figure 2B), with slightly lower per-
centage of successful trials at 1 Hz low-pass at faster walking speeds
(Figure 2C, presumably because the cut-off frequency was close
to the step cycle frequency and the algorithm failed to detect EMG
peak in time and was terminated), so that in the following we will
present the results obtained at 2 Hz low-pass.

The percentage of subjects with a successful prediction of con-
secutive strides (2 Hz low-pass) from shoulder EMGs activity is
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La Scaleia et al. Arm EMG-based assisted gait

FIGURE 2 | Performance of leg kinematics prediction algorithm
using shoulder muscle EMGs during walking at constant speeds.
(A) An example of muscle activity and kinematic patterns of one subject
during walking at 4 km/h. Note, a fairly good correspondence between
predicted (solid lines) and actual (dotted lines) thigh, shank, and foot
elevation angles. (B) Correlation coefficients (averaged across all steps
and subjects) between predicted and real shank segment elevation

angles using different cut-off frequencies of low-pass filter. (C) Pie charts
showing the percentage of subjects with a successful 10 consecutive
strides prediction from shoulder EMGs activity (both 1 and 2 Hz low-pass
filter for each speed). (D) Correlation (+SD) between actual and
predicted kinematic patterns of individual subjects (2 Hz low-pass) using
two and four shoulder muscle EMGs. Note, better predictions when
using four EMGs.

shown in Figure 2C (lower plots). In one subject, EMG activity
was rather low and the algorithm failed to predict gait kinematics.
Some variability in EMG amplitude is to be expected due to indi-
vidual differences in skin impedance and/or individual differences
in the upper limb muscle EMG patterns during walking (Kuhtz-
Buschbeck and Jing, 2012). Nevertheless, in most subjects (eight
out of nine), it was successful at all speeds of walking.

In addition to the high rate of prediction (Figure 2C), the cor-
relation between predicted and actual leg kinematics in successful
trials was also high (Figure 2D). Figure 2A (lower curves) illus-
trates an example of actual (dotted lines) and predicted (solid
lines) leg segment elevation angles during walking at 4 km/h.
Despite some discrepancies (small phase shifts in the kinematic
patterns of individual steps), there was a fairly good correspon-
dence to actual lower limb kinematics, and a 1:1 ratio between fre-
quencies of predicted and actual steps (absence of step “doubling”

and absence of missing steps). The high-correlation coefficients
between actual and predicted limb segment elevation angles
(r > 0.9, Figure 2D) suggest stability of phasic alternating pattern
of the upper limb EMG activity across consecutive strides.

We compared the performance of our algorithm using all
four muscles (Eqs 1 and 2) and only two contralateral muscles
(DELTaleft and DELTaright; DELTpleft and DELTpright). In the latter
case, correlation coefficients of two pairs of muscles were aver-
aged, since in ~30% of trials only one pair of contralateral muscles
could predict leg kinematics while another pair failed to do it due
to the relatively low/variable activity. The RM ANOVA (2 number
of muscles× 3 speeds× 3 segments) resulted in a significant effect
for muscle [F(1,7)= 9.686, p= 0.017], segment [F(2,14)= 34.18,
p < 0.00001] and muscle× segment interaction [F(2,14)= 9.888,
p= 0.002]. Post hoc tests revealed that correlations were higher
when using four EMGs and they were also higher for the foot
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elevation angle relative to the shank and thigh elevation angles
(Figure 2D). Thus, both the percentage of successful trials and
the correlation coefficients were higher when using four shoulder
muscles for prediction compared with only two muscles.

We also investigated the performance of the proposed leg kine-
matics prediction algorithm during walking at a variable speed
(3–5 km/h). Figure 3B shows an example of cycle durations of
all individual strides in one subject (left panel) and all successful
(n= 8) subjects (right panel). The actual stride duration varied
between 0.85 and 1.43 s, while the predicted stride duration also
varied in a similar though slightly larger range (between 0.7 and
1.55 s, Figure 3B). The correlation between the reference template
and individual cycles used for computing the template was high
(on average 0.98± 0.01, the data for all segments were pooled
together) consistent with a relatively low inter-stride variability
of the segment elevation angles (Borghese et al., 1996; Bianchi
et al., 1998). Therefore, inter-stride variability in the predicted
stride durations and leg kinematics is likely related (at least in
part) to inter-stride variability in the EMG patterns that has been
documented for both leg and arm muscle activity during human

walking (Kang and Dingwell, 2009; Kuhtz-Buschbeck and Jing,
2012; Zelik et al., 2014). On the whole, the relationship between
predicted and actual stride duration was linear (Figure 3B) and
correlation between predicted and actual leg kinematics was
high (r > 0.95, Figure 3C). RM ANOVA resulted in a significant
effect for segment [F(2,14)= 7.789, p= 0.0053] and post hoc tests
revealed higher correlations for the foot elevation angle relative to
the shank segment (p= 0.0045).

CONTROLLING VIRTUAL AVATAR AND EXOSKELETON
The suggested algorithm has also been implemented in the
pilot experiments to trigger steps and control avatar walking
(Figure 4A) and an exoskeleton during over-ground stepping
(Figure 4B). Each trial consisted of the three locomotor-related
phases controlled by the timing of EMG peaks: gait initiation,
walking at a variable speed, and gait termination. In the absence
of the EMG peak, the virtual avatar or exoskeleton did not produce
further steps and gait termination was performed. The exoskeleton
was tested only in one trained subject since typically the wearer has
to use crutches to guarantee lateral stability (Wang et al., 2013).

FIGURE 3 | Performance of leg kinematics prediction algorithm using
shoulder muscle EMGs at variable walking speed (3–5 km/h). (A) An
example of muscle activity and kinematic patterns of one subject during
walking at a variable speed (ramp velocity profile, seven cycles in the middle
of the trial are shown). (B) Relationship between predicted and actual stride

duration for one representative subject (left) and all subjects (right). Each point
corresponds to individual stride and data from each subject were displayed
with different colors. Changes of predicted stride duration are fitted by a linear
function. (C) Correlation (+SD, n=8 subjects) between actual and predicted
leg kinematics.
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A B

FIGURE 4 | On-line shoulder muscle EMG control of leg movements.
(A) Controlling of walking avatar in a virtual reality setup (third person
viewpoint). To control the timing and duration of individual steps, the subject
produced alternating arm swinging movements in standing position (upper
panel). Lower panel – pie charts showing the percentage of trials with a
successful 1-min test for producing stepping (if the algorithm predicted
consecutive uninterrupted steps during the 1-min trial) using alternating arm

swinging at different frequencies (n=8 subjects, 24 trials total for each
condition). (B) Arm EMG-based control of stepping in the exoskeleton by the
healthy subject. Upper traces – rectified (gray) and low-pass filtered (black)
EMGs of shoulder muscles. Each step duration and initiation were calculated
and triggered based on the timing of the shoulder EMG peaks. Bottom
traces – knee and hip joint angle kinematic patterns of eight consecutive
steps along a 9-m walkway.

Nevertheless, this subject succeeded to use alternating EMG bursts
of shoulder muscles to trigger 7–10 consecutive strides along a 8-m
walkway (Figure 4B). Again, the percentage of successful trials for
controlling virtual avatar at slow, self-selected, and fast frequency
of arm movements was high (Figure 4A, lower panel) and simi-
lar to that found in the first experiment (Figure 2C) even though
different subjects participated in the two protocols.

DISCUSSION
ARM SWINGING DURING LOCOMOTION
Arm swing during human walking is not an entirely passive move-
ment, as also shown by the observation that upper limb muscles
show rhythmic activity contributing to arm swing (Ballesteros
et al., 1965; Hogue, 1969; Ivanenko et al., 2006). Interestingly,
rhythmic muscle activity continues to some extent even when the
arm is immobilized (Kuhtz-Buschbeck and Jing, 2012). During
walking, the EMG activity associated with arm swing is feeble com-
pared with the EMG activity during maximum voluntary contrac-
tions. For instance, the mean amplitude values depend on speed
and are lower at 4 km/h than at 6 km/h (Kuhtz-Buschbeck and Jing,
2012). However, even during fast walking (6 km/h), they remain
well below 5% of maximum voluntary contraction, and yet, EMG
patterns show prominent peaks around specific phases of the gait

cycle. During running (7–12 km/h), the activity of shoulder mus-
cles increases ~2–3 times relative to walking at 5 km/h (Cappellini
et al., 2006) and also demonstrates a strong coupling between cer-
vical and lumbosacral spinal motoneuron output (Ivanenko et al.,
2008).

Previous studies describe this behavior both as a biomechani-
cal advantage (Ortega et al., 2008; Park, 2008; Collins et al., 2009;
Meyns et al., 2013) and a neural/evolutionary mechanism based
on propriospinal pathways connecting distinct spinal segments,
as seen in invertebrates and quadrupedal mammals (Falgairolle
et al., 2006). Moreover, many features of quadrupedal arm–leg
co-ordination are conserved across different locomotor tasks in
human beings (Balter and Zehr, 2007; Patrick et al., 2012), includ-
ing a reciprocal pattern of influences between the co-ordination
of reaching and walking (Chiovetto and Giese, 2013), balance cor-
rective responses (Forero and Misiaszek, 2014), or quadrupedal
limb co-ordination during obstacle avoidance (Dietz and Michel,
2009).

GAIT ASSISTED BY EMG ACTIVITY IN UPPER LIMB MUSCLES
Our study investigated the possibility of extracting spatiotempo-
ral kinematic data from the gait-related rhythmic activity of arm
muscles in order to provide a reliable control of walking. The
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results showed that, even with relatively low intensity of upper
limb muscle activation, the temporal structure of EMG activity
is sufficiently reliable to reproduce the spatiotemporal kinematic
pattern of leg movements during walking at constant and variable
speed (Figures 2 and 3). A comparison of actual and predicted
stride leg kinematics showed a high degree of correspondence
(r > 0.9). The suggested algorithm has been also implemented
in pilot experiments for controlling avatar walking in a virtual
reality environment and walking in the exoskeleton (Figure 4).
Subjects were able to generate walking kinematics of the avatar for
at least 1 min.

Myoelectric signals represent one of the measurable outputs
of central nervous system activity. Thus, our study showed that
this type of brain–computer interface can be used to link shoul-
der muscle EMG activity to leg movements (Figures 2 and
3) and to control ambulation within a virtual reality environ-
ment (Figure 4A), suggesting that a myoelectric-controlled lower
extremity prosthesis for ambulation may be feasible. While the
example in Figure 4A involves only four shoulder muscles and
the example in Figure 4B involves two muscles, the implemented
on-line algorithm can include the sum of bilateral EMGs of syner-
gistic muscles (trapezius, latissimus dorsi, posterior and anterior
portions of deltoid muscle, etc., individually adjusted for each
patient to provide maximum comfort/efficiency) that are normally
active during walking (Ivanenko et al., 2006; Kuhtz-Buschbeck and
Jing, 2012). In fact, multi-muscle synergy-based control interface
may be more efficient than a single-muscle control (Lunardini
et al., 2014), as it also tended to be the case in our experiments
when comparing predictions from two EMGs vs. four EMGs
(Figure 2D), although further investigations are needed to com-
pare different approaches, especially in neurological injuries with
impaired inter-limb co-ordination.

Currently, many research projects are trying to apply novel,
physiologically inspired control methods to provide an intuitive
way for a patient to command an exoskeleton. Despite its deceiv-
ing simplicity, it is worth stressing that the implemented algorithm
(Figure 1) takes into account a natural coupling of leg and arm
movements during normal walking. Automaticity of arm swing-
ing may be beneficial for the control of rhythmic leg movements,
as opposed to a step-by-step voluntary control of muscles that are
typically not involved in locomotion (e.g., when using push but-
tons or finger tapping for triggering stepping of a leg assistive robot
that requires continuous cognitive resources, Lisi et al., 2014).

Finally, in addition to gait assistive aspects of exoskeleton
robotic devices in severely paralyzed individuals, the proposed
approach may also be beneficial for gait rehabilitation in less
severe paresis of the lower limbs. Rhythmic upper limb muscle
activation has an excitatory effect on lower limb muscle acti-
vation during locomotor-like tasks (Ferris et al., 2006; Massaad
et al., 2014; Sylos-Labini et al., 2014a). To ensure a high level of
EMG activity in deltoid (especially at a lower walking speed), the
subjects performed slightly larger arm swinging than they usu-
ally do, which may require some additional voluntary control.
Nevertheless, a special neural coupling occurs between arms and
legs when arms move in alternation (Massaad et al., 2014), as
well as active engagement of supraspinal motor areas reinforces
CPG circuitry functioning (van den Brand et al., 2012; Solopova

et al., 2014). This suggests that locomotor rehabilitation therapy
after neurological injury should incorporate simultaneous arm
and leg rhythmic exercise to take advantage of neural coupling.
Such investigations stimulate new developments of neuropros-
thetic technology and provide further insights into how we can
integrate biological principles of control with an electromechan-
ical exoskeleton that augments human performance for both gait
assistive and rehabilitation technology.
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