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INTRODUCTION

All reasonings concerning matter of fact seem to
be founded on the relation of Cause and Effect.
David Hume (1748/1988)

In An Enemy of the People, the protagonist, Dr. Stockmann, dis-
covers that waste runoff from the town tanneries is contaminating
the water supply at the public baths, a municipal project that he
himself has led with his brother, the mayor. He exclaims:

“The whole Bath establishment is a whited, poisoned sepulcher,
I tell you—the gravest possible danger to the public health! All
the nastiness up at Molledal, all that stinking filth, is infecting the
water in the conduit-pipes leading to the reservoir; and the same
cursed, filthy poison oozes out on the shore too... ” (Act I, An
Enemy of the People)

Dr. Stockmann acts on his conviction by alerting the mayor to the
threat of contamination—and suffers as a result. His actions are
based on his causal beliefs:

e The waste from the tanneries causes contamination in the
baths.

e The townspeople are going to allow tourists at the baths to be
at risk.

This paper outlines the model-based theory of causal reasoning. It postulates that the
core meanings of causal assertions are deterministic and refer to temporally-ordered sets
of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B
to occur means that given A, it is possible for B to occur. The paper shows how mental
models represent such assertions, and how these models underlie deductive, inductive,
and abductive reasoning yielding explanations. It reviews evidence both to corroborate the
theory and to account for phenomena sometimes taken to be incompatible with it. Finally,
it reviews neuroscience evidence indicating that mental models for causal inference are
implemented within lateral prefrontal cortex.

Keywords: causal reasoning, mental models, explanations, enabling conditions, lateral prefrontal cortex

e It is necessary to try to prevent further contamination.

Ibsen’s play examines how these beliefs and Stockmann’s conse-
quent actions lead him to become a pariah—an enemy of the
people—much as Ibsen perceived himself to be, as a result of his
revealing depictions of Norwegian society.

Our research is more prosaic: it examines how individuals
interpret and represent causal relations, how they reason from
them and use them in explanations, and how these mechanisms
are implemented in the brain. This paper brings together these
various parts in order to present a unified theory of causal rea-
soning in which mental models play a central role. The theory
of mental models—the “model theory,” for short—ranges over
various sorts of reasoning—deductive, inductive, and abductive,
and it applies to causal reasoning and to the creation of causal
explanations.

The organization of the paper is straightforward. It begins
with a defense of a deterministic theory of the meaning of causal
assertions. It explains how mental models represent the meanings
of causal assertions. It shows how the model theory provides a
framework for an account of causal reasoning at three levels of
analysis (Marr, 1982): what the mind computes, how it carries
out these computations, and how the relevant mechanisms are
realized in the brain, that is, the functional neuroanatomy of the
brain mechanisms underlying causal reasoning.
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THE MEANING OF CAUSAL RELATIONS

One billiard ball strikes another, which moves off at speed. If the
timing is right, we see a causal relation even when the billiard balls
are mere simulacra (Michotte, 1946/1963). Many causal relations,
however, cannot be perceived, and so the nature of causation
is puzzling. Indo-European languages, such as English, contain
many verbs that embody causation. They are highly prevalent
because, as Miller and Johnson-Laird (1976) argued, causation is
an operator that, like time, space, and intention, occurs in verbs
across all semantic domains. Each of the verbs in the following
sentences, for example, embodies the notion of cause and effect:

The wind pushed the fence down (caused it to fall down).

His memory of his behavior embarrassed him (caused him to feel
embarrassed).

She showed the ring to her friends (caused it to be visible to them).

Scholars in many disciplines have studied causation, but they dis-
agree about its philosophical foundations, about its meaning, and
about causal reasoning. For Hume (1748/1988), causation was an
observed regularity between the occurrence of the cause and the
occurrence of the effect. As he wrote (p. 115): “We may define
a cause to be an object followed by another, and where all the
objects, similar to the first, are followed by objects similar to the
second.” For Kant (1781/1934), however, a necessary connection
held between cause and effect, and he took this component to be a
part of an innate conception of causality. What is common to both
views is that causal relations are, not probabilistic, but determinis-
tic, and the same claim is echoed in Mill (1874). Our chief concern
rests not in philosophical controversies, but rather the everyday
psychological understanding of causal assertions, and reasoning
from them. The psychological literature is divided on whether the
meanings of causal assertions are deterministic or probabilistic.
Our aim is to decide between the two accounts.

DO CAUSES CONCERN POSSIBILITIES OR PROBABILITIES?

For many proponents of a deterministic psychological concep-
tion of causality, causal claims concern what is possible, and what
is impossible (Goldvarg and Johnson-Laird, 2001; Frosch and
Johnson-Laird, 2011). The assertion:

Runoff causes contamination to occur.
means that runoff suffices for contamination to occur, though it
may occur for other reasons; and the relation is false in case there
is runoff without contamination. Hence, the claim can be para-
phrased in a conditional assertion that would be false in case its
antecedent is true and its consequent is false:

If runoff occurs then contamination occurs.
A categorical assertion such as:

Runoff caused contamination to occur.

can also be paraphrased in a conditional, but one that is counter-
factual:

If runoff hadn’t occurred then contamination wouldn’t have
occurred.

The conditional refers to the case in which neither the cause nor
its effect occurred. At one time this state was a future possibil-
ity, but after the fact it is a possibility that did not occur—it
is counterfactual possibility (Johnson-Laird and Byrne, 2002;
Byrne, 2005). A more plausible and weaker claim is expressed
in a counterfactual conditional allowing that the contamination
might have occurred for other reasons:

If runoff hadn’t occurred then there mightn’'t have been
contamination.

Not all conditionals express causal relations, so we can ask what
else is at stake. One prerequisite is that causes precede their effects,
or at least do not occur after them. The two states might be
simultaneous in the case of a billiard ball causing a dent in the
cushion that it rests on. But, physical contact is not part of the core
meaning of a causal relation (cf. Michotte, 1946/1963; Geminiani
et al., 1996), because causal assertions can violate it, as in: The
moon causes tides. Claims about action at a distance may be
false, but their falsity is not merely because they are inconsistent
with the meaning of A causes B. Likewise, contiguity seems irrele-
vant to causal assertions about psychological matters, such as: His
memory of his behavior embarrassed him.

Many factors—the existence of known mechanisms, causal
powers, forces, structures—can be important in inferring a cause
(e.g., White, 1995; Ahn and Bailenson, 1996; Koslowski, 1996),
and they can be incorporated into the interpretation of a causal
assertion or its conditional paraphrase (see Johnson-Laird and
Byrne, 1991, for an account of this process, which they refer to as
modulation). None of them, however, is part of the core meaning
of A causes B. Consider mechanistic accounts of causal systems,
e.g., how sewing machines work (Miyake, 1986). Experts who
use sewing machines can explain their underlying components.
However, there comes a point in any such explanation, when
everyone must make an assertion equivalent to:

A causes B, and that’s that.

This cause has no support. Mechanisms cannot go all the way
down—no more than the turtles supporting the earth in prim-
itive cosmology can go all the way down. Hence, mechanisms and
their cognates, such as forces and powers, cannot be part of the
core meaning of causal assertions.

Granted that causal assertions and their corresponding condi-
tionals concern possibilities, their meaning is deterministic rather
than probabilistic. However, some twentieth century theorists,
from Russell (1912-1913) to Salsburg (2001, p. 185-6), denied
the existence of a coherent notion of causation. Russell was influ-
enced by quantum mechanics, and argued that causation should
be replaced by probabilistic considerations. One reason for such
skepticism is a failure to divorce beliefs from meanings. Beliefs
about causation are often incoherent. For example, some people
believe that it is possible to initiate a causal chain, and that every
event has a cause. Both beliefs can’t be right, because if every event
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has a cause, an action to initiate a causal chain has itself a cause,
and so it doesn’t really initiate the chain. Such beliefs, however,
should not be confused with the core meaning of causes, which
does not legislate about them: we understand both the preced-
ing assertions that yield the inconsistency. Neither of them seems
internally inconsistent.

Other theorists, also inspired by quantum mechanics,
have maintained causation but rejected determinism (e.g.,
Reichenbach, 1956; Suppes, 1970; Salmon, 1980). A cause and its
effect are related probabilistically. Reichenbach (1956) argued that
a causal assertion, such as:

Runoff causes contamination to occur

means that contamination is more probable given that runoff
occurs than given that it does not occur. Hence, a causal claim
holds provided that the following relation holds between the two
conditional probabilities:

P(contamination | runoff) > P(contamination | no runoff)

The philosophical controversy between determinism and prob-
abilism has spilled over into psychology. Some psychological
theories are probabilistic both for causation (e.g., Cheng, 1997,
2000) and for conditionals (Oaksford and Chater, 2007). The
case for probabilistic meanings rests in part on causal assertions
such as:

Cars cause accidents.

Such assertions tolerate exceptions, which do not refute them, and
which therefore imply a probabilistic relation. But, it is the form
of the generalization rather than its causal content that enables it
to tolerate exceptions. It is a generic assertion akin to:

Cars have radios.

A generic assertion is defined as a generalization with a subject,
such as a noun phrase or a gerund, lacking an explicit quan-
tifier (Leslie, 2008). Certain sorts of generic, e.g., snow storms
close schools, imply a causal connection between their subject,
snow storms, and their predicate, close schools. The mean-
ing of the verb, “close,” is causal, and individuals readily infer
that snow storms cause an agent to act to close schools (see
Prasada et al., 2013). Hence, generics tolerate exceptions. In con-
trast, if the subjects of assertions contain explicit quantifiers
as in:

Some snow storms cause schools to close.
and:
All snow storms cause schools to close.
then the assertions have a deterministic meaning, and the first of

these assertions is true as a matter of fact and the second of them
is false.

EVIDENCE AGAINST PROBABILISTIC ACCOUNTS OF CAUSATION
Several arguments count against probabilistic meanings for every-
day causal assertions. A major historical problem is to explain
why no one proposed such an analysis prior to the formulation of
quantum mechanics. Moreover, a singular claim about causation,
such as:

The runoff caused contamination to occur

is false if the runoff occurred without contamination. This
factual relation is deterministic, and to introduce probabili-
ties into the interpretation of counterfactual conditionals is
problematic.

Individuals, as we show later, recognize the difference in mean-
ing between causes and enabling conditions, such as, The runoff
allowed contamination to occur. But, both increase the condi-
tional probability of an effect given the antecedent, and so the
difference in meanings between causes and enabling conditions is
impossible to make in probabilistic accounts (Cheng and Novick,
1991; pace Cheng, 2000; Wolff, 2007). The same problem arises
in implementing causation in Bayesian networks (Pearl, 2000;
Glymour, 2001; Tenenbaum and Griffiths, 2001; Gopnik et al.,
2004).

Reasoners often infer a causal relation from a single obser-
vation (e.g., Schlottman and Shanks, 1992; White, 1999; Ahn
and Kalish, 2000; Sloman, 2005). But, if causal assertions are
probabilistic, no single observation could suffice to establish
cause and effect, because probabilistic interpretations tolerate
exceptions. Lien and Cheng (2000) proposed instead that single
observations can refer to previously established causal relations.
Repeated observations of billiard balls, for example, establish
causal relations about their collisions, which individuals can then
use to infer a causal relation from a single new observation.
However, as Fair (1979) anticipated, this proposal implies that
individuals could never establish causal relations contrary to their
expectations.

Interventions that initiate a causal chain are a feature of
Bayesian networks (see, e.g., Pearl, 2000; Woodward, 2003), and
evidence corroborates their psychological importance (Sloman,
2005; Sloman and Lagnado, 2005). As an example, suppose that
the following claim is true:

Overeating causes indigestion.

If we then observe that Max doesn’t have indigestion, we can
infer that he hasn’t overeaten. But, Max could have inter-
vened to prevent indigestion: he could have taken an anti-
indigestion pill. In this case, we would no longer make the
inference. No special logic or probabilistic considerations are
needed to handle these cases (pace Sloman, 2005). Our initial
claim is an idealization expressed in a generic, and so it tolerates
exceptions.

In summary, the evidence seems to be decisive: causal relations
in everyday life have deterministic meanings unless they make
explicit reference to probabilities, as in:

Keeping to this diet probably causes you to lose weight.
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Moreover, if causation were intrinsically probabilistic, there
would be no need for the qualification in this example. Its
effect is to weaken the causal claim. Studies of inferences from
causal assertions, which we describe below, further bolster their
deterministic meanings.

MENTAL MODELS OF CAUSAL ASSERTIONS

We now turn to the model theory of mental representations,
which we outline before we consider its application to reason-
ing. The theory goes back to Craik (1943) and has still earlier
antecedents in philosophy. Its more recent development gives a
general account of how individuals understand assertions, how
they represent them, and how they reason from them (see, e.g.,
Johnson-Laird, 1983; Johnson-Laird and Byrne, 1991; Johnson-
Laird and Khemlani, 2013). The theory has been implemented
computationally, its predictions have been corroborated in psy-
chological experiments and in recent neuroimaging results (e.g.,
Kroger et al., 2008). And it is of sufficient maturity that given
the semantics of a domain such as causation, it calls for few
new assumptions in order to account for representation and
reasoning.

The first step in understanding an assertion is to parse it in
order to construct a representation of its meaning. The theory
postulates that the parser’s output (an intensional representa-
tion) is composed out of the meanings of its parts according to
the grammatical relations amongst them. The intensional rep-
resentation is used to construct, to update, to manipulate, or
to interrogate, mental models of the situation under descrip-
tion (an extensional representation). The theory rests on three
fundamental principles:

1. Mental models represent possibilities: each model captures a
distinct set of possibilities to which the current description
refers.

2. Mental models are iconic: the structure of a model corresponds
to the structure of what it represents (see Peirce, 1931-1958,
Vol. 4). Hence, kinematic models unfold in time to represent a
temporal sequence of events (Khemlani et al., 2013). However,
models can also include certain abstract symbols, such as one
for negation (Khemlani et al., 2012).

3. The principle of truth: Mental models represent only what is
true, not what is false, in each possibility. They yield rapid
intuitions. In contrast, fully explicit models represent what
is false too, but their construction calls for deliberation and
access to working memory.

The model theory implements the deterministic meanings of
causal relations described in the previous section. An assertion
such as:

Runoff causes contamination to occur

has two mental models, one is an explicit model representing
the case in which the cause and its effect both occur, and the
other is an implicit mental model representing at least one other
possibility in which the cause does not occur:

runof f contamination

The rows in this schematic diagram represent two distinct pos-
sibilities. In fact, mental models do not consist of words and
phrases, which we use for convenience, but of representations
of the objects and events to which the words refer. The ellipsis
denotes the other possibilities in which the cause does not occur.
These possibilities are not immediately accessible, i.e., one has to
work them out. We have omitted from the diagram the temporal
relation between cause and effect: the cause cannot come after the
effect, and by default comes before it.

The model theory draws a distinction in meaning between
causes and enabling conditions (contrary to a tradition going
back to Mill, 1874). An enabling condition makes its effect
possible: it allows it to happen. The assertion:

Runoff allows contamination to occur.

has a core meaning that is a tautology in which all things are pos-
sible provided they are in the correct temporal sequence. Like its
corresponding conditional:

If runoff occurs then contamination may occur.

it is possible for runoff to occur, or not to occur, and in either case,
with or without contamination. Such assertions are nearly vacu-
ous, and so an obvious implication—an implicature from Grice’s
(1975) conversational conventions—is that only runoff allows
contamination to occur. There are then just three possibilities:
with runoff, contamination does or does not occur; but without
it, runoff does not occur. The mental models of an enabling asser-
tion are identical to those of a causal assertion. One mental model
represents the possibility in which both runoff and contamination
occur, and the implicit model represents the other possibilities. A
consequence of this identity is that people have difficulty in grasp-
ing that causal and enabling assertions differ in meaning. This
difficulty has infected the legal systems of both the US and the
UK, which make no distinction between the two sorts of causal
relation (Johnson-Laird, 1999), though people judge those who
cause harmful outcomes as more culpable than those who enable
them (Frosch et al., 2007).

When reasoners have to enumerate the possibilities consistent
with an assertion, they are able to deliberate and to flesh out their
mental models into fully explicit models. The difference between
causing and enabling now becomes evident. The fully explicit
models of the causal assertion, runoff causes contamination to
occur, are:

runoff contamination
— runoff contamination
— runoff — contamination

»

where “=” is a symbol corresponding to a mental token
for negation (Khemlani et al, 2012). What the assertion
rules out is the possibility that runoff occurs without con-
tamination. In contrast, the fully explicit models of the
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enabling assertion, runoff allows contamination to occur, and its
implicature are:

runoff contamination
runof f — contamination
— runoff — contamination

Some causal claims are stronger than the one above: they assert
that the cause is the only way to bring about the effect. The only
way to get cholera, for example, is to be infected by the bacterium
Vibrio cholerae. The corresponding assertion has only two fully
explicit models, one in which the cause and effect both occur—
the bacterium and the infection, and one in which neither of them
occurs. There are also weaker enabling assertions than the one
above, that is, ones in which all appropriately temporally-ordered
possibilities occur, including the possibility that the effect occurs
in the absence of the enabling condition, i.e., the implicature does
not occur.

When individuals have to list what is possible, and what is
impossible, given each of the main sorts of causal relation, their
listings tend to corroborate the model theory (Goldvarg and
Johnson-Laird, 2001). Participants list either the three possibil-
ities for causes or the two for its stronger interpretation. They
are more confused by enables, but list the three possibilities above
more often than chance, and likewise the four possibilities for its
weaker interpretation. They list the three possibilities and the two
possibilities for A prevents B from occurring, which is synonymous
with A causes B not to occur.

One attempt to distinguish between causing and enabling in
a probabilistic framework is to argue that an enabling condition
is constant in the situation, whereas a cause is not (Cheng and
Novick, 1991). This difference does occur, but it is not essential
according to the model theory. A crucial test used scenarios in
which neither the causes nor the enabling conditions were con-
stant (Goldvarg and Johnson-Laird, 2001). Readers may like to
try to identify the cause and the enabler in each of the following
scenarios:

Given that there is good sunlight, if a certain new fertilizer is used
on poor flowers, then they grow remarkably well. However, if there
is not good sunlight, poor flowers do not grow well even if the
fertilizer is used on them.

and:

Given the use of a certain new fertilizer on poor flowers, if there
is good sunlight then the flowers grow remarkably well. However,
if the new fertilizer is not used on poor flowers, they do not grow
well even if there is good sunlight.

In the first scenario, sunlight is the enabling condition, and the
fertilizer is the cause; in the second scenario, the two swap roles.
These roles derive from the possibilities to which the respec-
tive scenarios refer. In the first scenario, the possibilities are as
follows:

fertilizer
— fertilizer

sunlight: growth

growth

—fertilizer —growth

—sunlight: —growth

As they show, sunlight enables the fertilizer to cause the flowers to
grow. Their roles swap in the possibilities for the second scenario.
In an experiment, the participants were told that a cause brings
about an event whereas an enabling condition makes it possible,
and that they had to identify the cause and the enabling condi-
tion in sets of scenarios. The order of mention of the cause and
enabler was counterbalanced over the scenarios, and each par-
ticipant saw only one of the four versions of each content. The
20 participants made correct identifications on 85% of the trials,
and each of them was right more often than not (Goldvarg and
Johnson-Laird, 2001).

These phenomena account against rival accounts of the dif-
ference between causes and enabling conditions. The distinction
between them is neither capricious nor unsystematic (Mill, 1874;
Kuhnmiinch and Beller, 2005). It is contrary to the claim that a
cause violates a norm assumed by default whereas an enabling
condition does not (Einhorn and Hogarth, 1986; Kahneman and
Miller, 1986). And the cause need not be conversationally rele-
vant in explanations (Mackie, 1980; Turnbull and Slugoski, 1988;
Hilton and Erb, 1996). In sum, the difference in meaning between
the two principal sorts of causal assertion is real (see also Wolff
and Song, 2003; Sloman et al., 2009).

MODELS AND CAUSAL DEDUCTIONS

How do naive individuals make causal deductions? One answer is
that they rely on the laws of thought, that is, on formal rules of
inference akin to those of logic. Indeed, Rips (1994, p. 336) has
proposed that formal rules could be extended to deal with causal
reasoning. Pure logic makes no reference to specific contents, and
so its application to causation depends on the introduction of
axioms (or “meaning postulates”), such as:

If A causes B, and B prevents C, then A prevents C

where A, B, and C, are variables that take states or events
as their values (von Wright, 1973). Logic, however, has sev-
eral critical problems in coping with everyday reasoning. One
is that infinitely many conclusions follow in logic from any set
of premises, and most of them are trivial or silly, such as con-
junction of a premise with itself. Another problem is that logic
means never having to withdraw the conclusion of a valid infer-
ence, even if its conclusion turns out to be false. In jargon,
logic is monotonic—as you accrue more premises, so you are
able to draw more conclusions and never have a warrant for
withdrawing any of them. In contrast, everyday reasoning is non-
monotonic. You withdraw a conclusion if the facts show it to be
wrong.

Another theory is that causal inferences depend on pragmatic
reasoning schemas (e.g., Cheng et al., 1986). In other words, the
axiom above is framed instead as a rule of inference:

A causes B.
B prevents C.
Therefore, A prevents C.
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This idea goes back to Kelley’s (1973) theory of causal attribu-
tion, which postulates such schemas for checking causal relations.
Similarly, Morris and Nisbett (1993) proposed a schema including
the following two rules:

If cause C is present then effect E occurs.
Cause C is present.
Therefore, Effect E occurs.

and:

If cause C is present then effect E occurs.
Effect E does not occur.
Therefore, Cause C is not present.

In contrast, the model theory makes no use of formal rules of
inference, and no use of axioms, meaning postulates, or schemas
concerning causation. It simply applies its general principles of
reasoning to mental models of causal assertions.

Theorists distinguish among three main sorts of reasoning:
deduction, induction, and abduction, which creates hypotheses
or explanations. We shall do so too, but with the caveat that
human reasoners make inferences without normally concerning
themselves about such niceties. To make deductions, individuals
draw conclusions that hold in all their models of the premises. To
make inductions, they use their knowledge to build models going
beyond the information given in the premises, and then infer cor-
responding conclusions, such as generalizations (Johnson-Laird,
2006). To make abductions, they use their knowledge to incor-
porate new concepts—those not in the premises—in order to
yield causal explanations of everyday events (Johnson-Laird et al.,
2004). We will describe the model theory for each of these three
sorts of reasoning, starting with deduction here, and we will
show that the evidence corroborates its account rather than the
alternatives.

At the computational level, the model theory postulates three
constraints on everyday reasoning (Johnson-Laird and Byrne,
1991, Ch. 2). First, inferences do not throw away semantic infor-
mation (see Bar-Hillel and Carnap, 1953). That is, people do not
spontaneously make inferences, such as:

Runoff causes contamination.
Therefore, runoff causes contamination or inoculations prevent
disease, or both.

The inference is valid, because its conclusion must be true if its
premise is true. But, its conclusion is less informative (e.g., by
a measure of semantic information) than its premise, because
the former is compatible with more possibilities than the latter.
In contrast, induction and abduction increase semantic informa-
tion. Second, inferences are parsimonious. For example, a conclu-
sion does not merely consist of a conjunction of all the premises,
even though such a conclusion is valid and maintains seman-
tic information. Third, a conclusion should assert something
new, and not repeat what is explicit in the premises. If no con-
clusion meets these three constraints, then individuals respond
that nothing follows from the premises—a response that violates

logic, but that is perfectly rational. Consider this inference, for
instance:

Runoff causes contamination to occur.
Three is a prime number.
What follows?

Alogician should respond: infinitely many conclusions, including
a conjunction of the first premise with itself 101 times. A more
sensible response is: nothing. In short, human reasoners aim
not to lose information, to simplify where possible, and to infer
something new whether they are making deductive, inductive, or
abductive inferences.

The model theory copes with the main sorts of non-
monotonicity. It allows for information to be assumed by default,
and to be overruled by subsequent information, as when indi-
viduals infer that a dog has four legs only to discover that a
particular pet is three-legged. It also allows for deductions to
be made in an experimental mode ignorant of the facts of the
matter, so that when a conclusion turns out to be false, it can
be withdrawn without cost. We illustrate such cases in the sec-
tion below on explanations. It also diverges slightly from logic
in its basic assumption about validity. In logic, a valid deduc-
tion is one that holds in every case in which the premises hold
(Jeffrey, 1981, p. 1). Hence, any conclusion whatsoever follows
from inconsistent premises, because there is no case in which the
premises hold. The model theory adds a rider for everyday rea-
soning: there is at least one non-null model in which the premises
hold. This proviso blocks valid inferences from inconsistent
premises.

At the algorithmic level, the theory postulates that individu-
als build mental models of premises—they simulate the world
under description. They use the information in the premises, their
general knowledge, and their knowledge of the context. The sys-
tem searches for a conclusion that holds in the models and that
doesn’t merely echo an explicit premise—a principle that holds
for conversation in general (Grice, 1975). But, the system can
also evaluate given conclusions. A conclusion that holds in all the
models of the premises follows of necessity, but if there is a model
of the premises in which it does not hold—a counterexample—
it does not follow of necessity. Yet, if it holds in most models,
it is probable. And if it holds in at least one model, it is possi-
ble. Because inferences are based on models of the premises, the
resulting conclusions cannot throw semantic information away by
adding disjunctive alternatives, or consist of a premise conjoined
with itself,

Mental models can be three-dimensional in order to repre-
sent spatial relations, and they can be kinematic, unfolding in
time to represent a temporal sequence of events (Johnson-Laird,
1983). Evidence supports these hypotheses in the use of mental
simulations to deduce the consequences of informal algorithms
(Khemlani et al., 2013). Temporal order, however, can also be
represented by an axis in a static model.

The “force dynamics” theory of causal reasoning (Barbey and
Wolff, 2007; Wolft, 2007) makes analogous claims. It assumes
that individuals envisage interacting entities in iconic mod-
els in which vectors represent the directions and magnitudes
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of forces. The theory explains the interpretations of such
assertions as:

Pressure will cause the water to remain below 0°C.
Small ridges cause water to stand on the concrete.
The pole will prevent the tent from collapsing.

Each assertion refers to a configuration of forces. The third asser-
tion, for instance, refers to a configuration in which the pole acts
against the tendency of the tent to collapse. These tendencies are
represented in a vector model. We simplify the diagrams illus-
trating these models: arrows denote vectors corresponding to the
direction and magnitude of forces, and the box denotes the point
of stasis, which is the origin of all vectors. The tendency of the
tent to collapse is diagramed here, where the two overlaid vectors
represent the tent (one vector) heading toward collapse (another
vector):

0--->----> collapse
tent

The pole provides a countervailing force, and so its vector is in the
opposite direction:

Because the magnitude of the pole’s vector is larger than the mag-
nitude of the tent’s vector, the combination of the two yields a
small magnitude in the direction away from collapse:

<----00
pole+tent

So, the diagram representing all the interacting vectors is as
follows:

pole+tent
Lemmmm <---0--->----> collapse
pole tent

Such diagrams represent a relation in which A prevents B. Hence,
the force theory, like the model theory, postulates that reasoners
build up a mental model of causal relations, which can then be
scanned to yield inferences. The model theory has not hitherto
been formulated to represent forces or the interactions amongst
them, and so the force theory contributes an important and hith-
erto missing component. The resulting models can also underlie
kinematic mental simulations of sequences of events.

The model theory can represent probabilities. It uses propor-
tions of models to draw conclusions about most entities or few of
them. These proportions are used to make inferences about prob-
abilities. Individual models can also be tagged with numerals to
represent their relative frequencies or probabilities. This algorith-
mic account unifies deductive and probabilistic reasoning, and it
is implemented in an computer program, mReasoner, which we
continue to develop, and its source code is available at: http://
mentalmodels.princeton.edu/models/mreasoner/.

In broad terms, three strands of evidence corroborate the
model theory of causal deductions. The first strand of evidence
bears out the difference in the possibilities referred to in assertions
about causes and assertions about enabling conditions. Readers
might like to consider what response they would make to this
problem:

Eating protein will cause her to gain weight.
She will eat protein.

Will she gain weight?

Yes, No, and Perhaps yes, perhaps no.

Most participants in an experiment (Goldvarg and Johnson-
Laird, 2001) responded: yes. But, when the first premise was
instead:

Eating protein will allow her to gain weight

as its fully explicit models predict, the majority rejected the “yes”
response. The opposite pattern of results occurred when the
second assertion and question were changed to:

She will not gain weight.
Will she not eat protein?

The results therefore bear out the difference in meaning between
causing and enabling.

The second strand of evidence supports the deterministic
interpretation of causal assertions embodied in the model theory.
It rests on the fact that reasoners grasp the force of a counterexam-
ple. When they evaluate given inferences, they tend to justify their
rejection of an invalid inference by citing a counterexample to its
conclusion (Johnson-Laird and Hasson, 2003). Likewise, consider
an assertion, such as:

Following this diet causes a person with this sort of metabolism to
lose weight.

Participants in experiments were asked about what evidence
would refute such claims and similar ones about enabling condi-
tions (Frosch and Johnson-Laird, 2011). In several experiments,
every single participant chose a single observation to refute the
assertions more often than not, but as the model theory predicts
they were more likely to do so for causal assertions than enabling
assertions. For both sorts of relation, they chose refutations of the
form A and not-B, e.g.:

A person with this sort of metabolism followed this diet and yet
did not lose weight.

But, as the theory predicts, they chose refutations of the form not-
Aand B, e.g.:

A person with this sort of metabolism did not follow this diet and
yet lost weight

more often to refute enabling assertions than causes.
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The third strand of evidence concerns the principle of truth
and the difference between mental models and fully explicit mod-
els. Most of us usually rely on our intuitions, and they are based
on a single mental model, which represents only what is true in
the corresponding possibility. The following problem illustrates
one consequence of this bias:

One of these assertions is true and one of them is false:
Marrying Evelyn will cause Vivien to relax.
Not marrying Evelyn will cause Vivien to relax.

The following assertion is definitely true:
Vivien will marry Evelyn.

Will Vivien relax? Yes/No/It’s impossible to know.

The initial rubric is equivalent to an exclusive disjunction between
the two causal assertions. It yields the following two mental
models:

relaxes
relaxes

Vivien: marries Evelyn

—marries Evelyn

The final categorical assertion eliminates the second possibility,
and so most reasoners infer that Vivien will relax. It seems plau-
sible, but the intuition is wrong. The fully explicit models of the
disjunction of the two assertions yield only two possibilities, one
in which the first assertion is true and the second assertion is false,
and one in which the first assertion is false and the second asser-
tion is true. But, in the first case, the second assertion is false,
and so Vivien doesn’t marry Evelyn and doesn’t relax; and, in
the second case, the first assertion is false and so Vivien marries
Evelyn but doesn’t relax. So, the fully explicit and correct models
are respectively:

—relaxes
—relaxes

Vivien: - marries Evelyn

marries Evelyn

The final categorical assertion eliminates the first of them, and it
follows that Vivien will not relax. None of the participants in an
experiment drew this correct conclusion. The majority inferred
that Vivien will relax, and the remainder inferred that it was
impossible to know (Goldvarg and Johnson-Laird, 2001).

The model theory makes predictions about causal reasoning
that have yet to be tested, though they have been corroborated in
other domains. The most important of these predictions are that
the more models that have to be taken into account, the more dif-
ficult an inference should be, and that a common source of error
should be to overlook the model of a possibility. Yet, the evidence
we have described here illustrates the case for the model theory,
and the alternative theories that we reviewed at the start of this
section offer no account of it.

THE INDUCTION OF CAUSAL RELATIONS

The vessel, The Herald of Free Enterprise, was a roll-on roll-off car
ferry. Its bow doors were opened in the harbor to allow cars to
drive into the ship, and at its destination, the cars drove off the
ship the same way. When it sailed from Zeebrugge in Belgium on
March 6th, 1987, the master made the plausible induction about

a causal relation, namely, that the assistant bosun had closed the
bow doors. The chief officer made the same inference, and so
did the bosun. But, the assistant bosun hadn’t closed the bow
doors: he was asleep in his bunk. Shortly after the ferry left the
calm waters of the harbor, the sea poured in through its open
doors, and it capsized with the loss of nearly 200 lives. Inductions
are risky. There is no guarantee that they yield the truth, and,
as this example also illustrates they can concern an individual
event, not just generalizations of the sort in textbook definitions
of induction.

The risk of inductions arises in part because they go beyond
the information in the premises, such as that no-one has reported
that the bow doors are open. As a result, they can eliminate possi-
bilities that the premises imply, and they can add relations, such as
atemporal order of events within a model of a situation (Johnson-
Laird, 1988). In all these cases, the inductive operation depends
on knowledge or beliefs. And beliefs are sometimes wrong.

Students of induction from Polya (1973) onwards have pos-
tulated formal rules of inference to underlie it—to parallel the
formal rules of inference used in logic. These systems have grown
ever more sophisticated in programs for machine learning (e.g.,
Michalski and Wojtusiak, 2007). The model theory, however,
assumes that knowledge and beliefs can themselves be represented
in models, and so the essential inductive operation is to conjoin
two sets of models: one set represents the possibilities derived
from the premises, which may be direct observations, and the
other set is part of long-term knowledge and beliefs. A simple
but common example occurs when knowledge modulates the core
interpretation of causality, just as it can do in the interpreta-
tion of conditionals (Johnson-Laird and Byrne, 2002). The core
meaning of A causes B, as we argued earlier, is consistent with
three possibilities. Hence, an assertion such as:

A deficiency of some sort causes rickets

refers to three possibilities in which there is a temporal order from
cause to effect:

deficiency rickets
—deficiency rickets
—~deficiency —rickets

Many people know, however, that rickets has a unique cause —a
deficiency in vitamin D, and this knowledge blocks the construc-
tion of the second model above in which rickets arise in a person
with no deficiency. Modulation in the interpretation of assertions
is a bridge from deduction to induction. The resulting models
allow one to infer that if a patient has no dietary deficiency, then
the patient doesn’t have rickets. Logicians can argue that the infer-
ence is an enthymeme, that is, it is a valid deduction granted the
provision of the missing premise that no other cause for rickets
exists. But, one could just as well argue that the inference is an
induction, since the conclusion rests on more information than
the premises provide. The reasoning system is not concerned with
the correct analysis. It relies on whatever relevant knowledge is
available to it.
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Observations of contingencies can lead to inductive infer-
ences in daily life and in science. Hence, many theories concern
inductions from the frequencies of contingencies ( e.g., Shanks,
1995; De Houwer and Beckers, 2002; Hattori and Oaksford, 2007;
Perales and Shanks, 2007). The analogy with classical condition-
ing is close. The analyses of frequencies can also yield inductions
about causation at one level that feed into those at a higher
or more abstract level in a hierarchical Bayesian network (e.g.,
Gopnik et al., 2004; Griffiths and Tenenbaum, 2005; Lu et al,,
2008). Once its structure is established, it can assign values to con-
ditional probabilities that interrelate components in the network,
e.g., it can yield the conditional probability of lung cancer given
that coughing occurs, and the conditional probability of smoking
given lung cancer (see Tenenbaum et al., 2006, for a review).

In contrast, observations can lead to inductions without prob-
abilities. For instance, Kepler analyzed Tycho Brahe’s astronom-
ical observations, and used them to induce his three laws of
planetary motion, of which the best known is his first law: a
planet moves in an elliptical orbit around the sun with the sun
at one focus. But, the mind prepared with knowledge can also
make an induction from a single observation—a claim supported
by considerable evidence (see, e.g., White, 2014). One source of
such inferences is knowledge of a potential mechanism, and this
knowledge may take the form of a model.

Adults induce new concepts throughout their life. Some are
learned from knowledge by acquaintance, others from knowl-
edge by description. You cannot acquire the full concept of a
color, a wine, or a sculpture without a direct acquaintance with
them, but you can learn about quarks, genes, and the uncon-
scious, from descriptions of them. Likewise, the induction of a
generalization is equivalent to the induction of a concept or of
a change to a concept, as in Kepler’s change to the concept of a
planetary orbit. Novel concepts can be put together out of existing
concepts. Hence, causal inductions are part of the acquisition of
concepts. Causes are more important than effects in the features
of a concept. This difference explains why the constituents of nat-
ural kinds are important, whereas the functions of artifacts are
important (Ahn, 1998). A genetic code is accordingly more crit-
ical to being a goat than that it gives milk, whereas that a mirror
reflects an image is more important to a mirror than that it is
made of glass.

Knowledge of a category’s causal structure is important in
categorization. Objects are classified as members of a category
depending on how well their features fit our intuitive theory, or
model, of the causal relations amongst the category’s features
(see, e.g., Waldmann et al., 1995). Reasoners judge an exemplar
as a better instance of a category when its features fit the causal
structure of the category (Rehder, 2003). Figure 1 illustrates two
contrasting causal structures. In the common-cause structure,
one feature is a common cause of three effects, such as the symp-
toms of a disease, whereas in the common-effect structure, one
feature is a common effect of each of three causes, such as a disease
that has three independent etiologies. In Rehder’s experimen-
tal study, which used sensible everyday features, the participants
rated category-membership depending on an instance’s features,
pairs of its features, and high-order relations among its features.
The results showed that the participants were indeed sensitive

Common-Cause
Causal Schema

Common-Effect
Causal Schema

FIGURE 1 | The common-cause and common-effect causal schemas.
Reproduced with permission from Rehder (2003).

to the difference between the two sorts of causal structure in
Figure 1.

At the center of the model theory is the hypothesis that the
process of understanding yields a model. In deduction, if a men-
tal model yields a conclusion, its validity can be tested in a search
for alternative models. In induction, however, the construction of
models increases semantic information. In the case of inductions
about specific events in everyday life, this process is part of the
normal effort to make sense of the world. Human reasoning relies,
wherever possible, on general knowledge. Hence, when the starter
won’t turn over your car’s engine, your immediate inference is
that the battery is dead. Another role that knowledge plays is to
provide interstitial causal relations that make sense of assertions
hitherto lacking them—a process that is case of what Clark (1975)
refers to as “bridging” inferences. We demonstrated the potency
of such inferences in a series of unpublished studies. One study
included a condition in which the participants were presented
with sets of assertions for which in theory they could infer a causal
chain, such as:

David put a book on the shelf.
The shelf collapsed.
The vase broke.

In another condition, the participants were presented with sets of
assertions for which they could not infer a causal chain, such as:

Robert heard a creak in the hall closet.
The faucet dripped.
The lawn sprinklers started.

The theory predicts that individuals should infer the causal rela-
tions, and the experiment corroborated this hypothesis. When a
further assertion contradicted the first assertion in a set, the con-
sequences were quite different between the two conditions. In the
first condition, the contradictory assertion:

David didn’t put a book on the shelf
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led to a decline in the participants’ belief in all the subsequent
assertions, and so only 30% of them believed that the vase broke.
In the second case, the contradictory assertion:

Robert did not hear a creak in the hall closet

had no effect in the participants’ belief in the subsequent asser-
tions. All of them continued to believe that the lawn sprinklers
started. This difference in the propagation of doubt is attributable
to the causal interpretation of the first sort of scenario, and the
impossibility of such an interpretation for the second scenario.
This example is close, if not identical, to an abduction, because
the attribution of causes explains the sequence of events in the
causal scenarios. It leads us to consider abduction in general.

ABDUCTION OF CAUSAL EXPLANATIONS

A fundamental aspect of human rationality is the ability to create
explanations. Explanations, in turn, depend on understanding:
if you don’t understanding something, you can’t explain it. It is
easier to state criteria for what counts as understanding than to
define it. If you know what causes something, what results from
it, how to intervene to initiate it, how to guide or to govern it,
how to predict its occurrence and the course of its events, how it
relates to other phenomena, what internal structure is has, how
to fix it if it malfunctions, then to some degree you understand
it. According to the model theory, “if you understand inflation,
a mathematical proof, the way a computer works, DNA or a
divorce, then you have a mental representation that serves as a
model of an entity in much the same way as, say, a clock func-
tions as a model of the earth’s rotation” (Johnson-Laird, 1983,
p- 2). And you can use your model to formulate an explana-
tion. Such explanations can help others to understand—to make
sense of past events and to anticipate future events. Many psy-
chological investigations have focused on explanatory reasoning
in the context of specific, applied domains, such as fault diagnosis
(e.g., Besnard and Bastien-Toniazzo, 1999) and medical decision-
making (e.g., Ramoni et al., 1992). But, as Hume (1748/1988)
remarks in the epigraph to this paper, most reasoning about fac-
tual matters is founded on cause and effect. To illustrate the role
of models in causal abductions, consider this problem:

If someone pulled the trigger, then the gun fired.
Someone pulled the trigger, but the gun did not fire.
Why not?

Most people presented with the problem offered a causal expla-
nation, such as:

Someone unloaded the gun and so there were no bullets in it.

They even rated such an explanation as more probable than
either the cause alone or the effect alone (Johnson-Laird et al.,
2004). In daily life, explanations tend to explain only what needs
to be explained (Khemlani et al., 2011), but, as the case above
illustrates, causal relations take priority over parsimony (pace
Lombrozo, 2007). In science, Occam’s razor calls for parsimo-
nious explanations.

When the preceding problem is couched in these terms:

If someone pulled the trigger, then the gun fired.
The gun did not fire.
Why not?

many individuals preferred a causal explanation to a simple
deductive one:

No one pulled the trigger.

The bias does not appear to reflect cultural background, and it is
much the same for Westerners and East Asians (Lee and Johnson-
Laird, 2006), but it is sensitive to personality. Individuals who are,
or who feel, open to experience and not so conscientious tend to
make the causal explanation, whereas their polar opposites tend
to make the deductive explanation (Fumero et al., 2010).

The nonmonotonic retraction of a conclusion and modifica-
tion of beliefs is a side effect of explanation. When individuals
explain what’s going on in a scenario, they then find it harder
to detect an inconsistency it contains than when they have
not formulated an explanation (Khemlani and Johnson-Laird,
2012). Conversely, they are faster to revise assertions to make
them consistent when they have explained the inconsistency first
(Khemlani and Johnson-Laird, 2013). And they rate explana-
tions as more plausible and probable than modifications to the
premises that remove the inconsistency—a pattern of judgments
that occurs both in adults (Khemlani and Johnson-Laird, 2011)
and in children (Legare, 2012). In short, the priority in coping
with inconsistencies is to find a causal explanation that resolves
them. Explanations first, nonmonotonic modifications after.

THE LATERAL PREFRONTAL CORTEX AND MENTAL MODELS
FOR CAUSAL INFERENCE

A critical brain region underlying mental models for causal infer-
ence is the lateral prefrontal cortex, which is known to encode
causal representations and to embody the three foundational
assumptions of the model theory (see the earlier account of the
theory): mental models represent possibilities; their structure
can be iconic, mimicking the structure of what they represent;
and they represent what is true at the expense of what is false.
We now turn to a review of the neuroscience evidence linking
each assumption of these principles to core functions of lateral
prefrontal cortex.

MENTAL MODELS REPRESENT POSSIBILITIES

The lateral prefrontal cortex is known to play a central role
in the representation of behavior-guiding principles that sup-
port goal-directed thought and action (Miller and Cohen, 2001).
Such top-down representations convey information about possi-
ble states of the world, representing what goals are available in
the current environment and what actions can be performed to
achieve them.

The lateral prefrontal cortex represents causal relations in the
form of learned task contingencies (causal relations, which neu-
roscientists refer to as if-then rules). Asaad and colleagues trained
monkeys to associate each of two cue objects (A and B) with a
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saccade to the right or a saccade to the left (Asaad et al., 1998).
The authors found relatively few lateral prefrontal cortex neu-
rons whose activity simply reflected a cue (e.g., A) or response
(e.g., a saccade to the right). Instead, the modal group of neu-
rons (44% of the population) showed activity that reflected the
current association between a visual cue and the directional sac-
cade it instructed. For example, a given cell might be strongly
activated only when object A instructed “saccade left” and not
when object B instructed the same saccade or when object A
instructed another saccade. Likewise, lateral prefrontal cortex
neurons acquire selectivity for features to which they are ini-
tially insensitive but that are behaviorally important. For example,
Watanabe trained monkeys to recognize that certain visual and
auditory stimuli signaled whether or not a reward, a drop of
juice, would be delivered (Watanabe, 1990, 1992). He found that
neurons in the lateral prefrontal cortex came to reflect specific
cue-reward dependencies. For example, a given neuron could
show strong activation to one of the two auditory (and none of
the visual) cues, but only when it signaled reward.

Studies of monkeys and humans with lateral prefrontal cortex
damage also suggest that this region is critical for represent-
ing causal principles (if-then rules) that underlie goal-directed
thought and adaptive behavior. Early studies of the effects of
prefrontal cortex damage in humans suggested its role in goal-
directed behavior (e.g., Ferrier, 1876) and since then broad con-
sensus in the literature implicates this region in the ability to
control lower-level sensory, memory, and motor operations in
the service of a common goal (Shallice, 1982; Duncan, 1986;
Passingham, 1993; Grafman, 1994; Wise, 1996). Contemporary
lesion mapping studies in large populations of patients with
focal brain damage further indicate that selective damage to
the lateral prefrontal cortex produces impairments in the abil-
ity to acquire and use behavior-guiding rules (causal relations)
that are central to higher cognitive functions, including gen-
eral intelligence (Barbey et al., 2012b), fluid intelligence (Barbey
et al., 2012a, 2014a), cognitive flexibility (Barbey et al., 2013),
working memory (Barbey et al., 2011), and discourse comprehen-
sion (Barbey et al., 2014b). In monkeys, damage to ventrolateral
prefrontal cortex also impairs the ability to learn causal rela-
tions in tasks (Petrides, 1982, 1985; Halsband and Passingham,
1985; Murray et al., 2000). Most, if not all, tasks that are dis-
rupted following prefrontal cortex damage rely on mental models
that capture the causal structure of experience (cf. Passingham,
1993).

Further evidence implicating the lateral prefrontal cortex in
causal inference is provided by the fMRI literature (for reviews,
see Barbey and Patterson, 2011; Patterson and Barbey, 2012). An
important study by Satpute and colleagues demonstrates activ-
ity within the dorsolateral prefrontal cortex for the processing
of causal vs. associative relations (Satpute et al., 2005). Selective
activity within the dorsolateral prefrontal cortex for causal (rather
than associative) inference provides evidence against association-
ist accounts of causal representation and instead supports the
mental models framework.

In sum, the reviewed findings indicate that the lateral pre-
frontal cortex represents causal relations that establish mappings
between possible states of the world, providing the links that

bind situations, actions and consequences necessary for goal-
directed behavior. These mappings are believed to bias compe-
tition in other parts of the brain responsible for task performance
(Miller and Cohen, 2001). Thus, signals in the lateral prefrontal
cortex guide activity along pathways that connect task-relevant
sensory inputs, memories, and motor outputs, which can be
naturally represented in the form of mental models of causal
relations.

MENTAL MODELS ARE ICONIC

The information processing architecture of the lateral prefrontal
cortex supports the iconic nature of mental models: the structure
of a model corresponds to the structure of what it represents in
the visual, spatial, auditory, motor and kinematic domains. The
cytoarchitectonic areas that comprise lateral prefrontal cortex are
often grouped into three regional subdivisions that emphasize
processing of particular information based on their interconnec-
tions with specific cortical sites. Ventrolateral prefrontal cortex
is heavily interconnected with cortical regions for processing
information about visual form and stimulus identity (inferior
temporal cortex), supporting the categorization of environmen-
tal stimuli in the service of goal-directed behavior. Dorsolateral
prefrontal cortex is interconnected with cortical areas for pro-
cessing auditory, visuospatial, and motor information (parietal
cortex), enabling the regulation and control of responses to
environmental stimuli. Finally, anterolateral prefrontal cortex is
indirectly connected (via the ventromedial prefrontal cortex) with
limbic structures that process internal information, such as emo-
tion, memory and reward (Goldman-Rakic, 1995; Fuster, 2008;
Petrides et al., 2012). The lateral prefrontal cortex is therefore con-
nected with virtually all sensory neocortical and motor systems
and a wide range of subcortical structures, supporting the iconic
nature of mental models in the visual, spatial, auditory, motor,
and kinematic domains. The lateral prefrontal cortex integrates
information across this broadly distributed set of systems and is
known to support higher-order symbolic representations, such
as negation (Tettamanti et al., 2008), that go beyond modality-
specific knowledge (Ramnani and Owen, 2004).

MENTAL MODELS REPRESENT ONLY WHAT IS TRUE

A third property of lateral prefrontal cortex function is that it
represents directly experienced (i.e., “true”) events and actively
maintains these representations over time in a highly accessi-
ble form (i.e., storage of information via sustained neuronal
activity patterns). The capacity to support sustained activity in
the face of interference is a distinguishing feature of the lat-
eral prefrontal cortex. Sustained neural activity within the lateral
prefrontal cortex was first reported by Fuster (1973), who demon-
strated that neurons within the lateral prefrontal cortex remain
active during the delay between a presented cue and the later
execution of a contingent response. Such sustained neural activ-
ity often represents a particular type of information, such as
the experienced location or identity of a stimulus (Fuster and
Alexander, 1971; Kubota and Niki, 1971; Fuster, 1973; Funahashi
et al., 1989; di Pellegrino and Wise, 1991) or a particular relation
between a stimulus and its corresponding response (Asaad et al.,
1998).
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SUMMARY

In summary, mental models for causal inference critically depend
on the lateral prefrontal cortex, and neuroscience evidence indi-
cates that this region extracts goal-relevant features of experience
(causal relations or if-then rules), it can construct iconic repre-
sentations, and they represent only what is true.

GENERAL DISCUSSION

In Ibsen’s play, Dr. Stockmann sought to prevent further con-
tamination of the public bath facility by alerting the town to the
problem. To prevent an outcome is to cause it not to occur, and
so he acted in the hope that his causes would have consequences.
The meaning of a causal relation according to the model theory
concerns possibilities: a cause suffices to bring about the effect,
which does not precede the cause; an enabling condition makes
such an effect possible; and a preventative action causes the effect
not to occur. We have argued that reasoners interpret causal asser-
tions by simulating the situation, i.e., by building a mental model,
to which the assertions refer, and then they inspect that model to
draw conclusions from it. Their initial mental models reflect intu-
itive interpretations of causal relations, e.g., their initial model of
runoff causes contamination to occur is identical to that of runoff
enables contamination to occur, i.e.:

runoff contamination

The first row of the diagram represents a possibility in which
runoff occurs concurrently with contamination, and the second
row of the diagram represents that other possibilities are con-
sistent with the assertion. The theory therefore explains why
reasoners often conflate causes and enabling conditions, i.e., the
mental models of the assertions are the same. When prompted
to deliberate about alternative possibilities, however, reasoners
are able to flesh out the models and can distinguish causes from
enabling conditions (Goldvarg and Johnson-Laird, 2001).

The model theory is deterministic. It posits that causal asser-
tions are used to build discrete models of possibilities. The
construction of these discrete models excludes continuous prob-
abilistic information. Three overarching phenomena support a
deterministic interpretation of causality:

e reasoners can infer causal relations from single observations;
o they distinguish causes from enabling conditions
o they refute causal assertions with single instances.

None of these effects is consistent with a probabilistic interpreta-
tion of causality.

Reasoners make deductions, inductions, and abductions from
causal premises. They base their causal deductions on mental
models of the premises; they infer conclusions from the pos-
sibilities corresponding to those of the premises. Models can
include information about the dynamics of forces. The evidence
corroborating the model theory shows that individuals succumb
to fallacies—illusory inferences—because mental models do not
represent what is false in a possibility (Goldvarg and Johnson-
Laird, 2001). Causal induction depends on the use of background

knowledge to build models that go beyond the information
in the premises. And causal abduction is a complex process
in which knowledge is used to introduce new causal relations,
which are not part of the premises, in order to provide explana-
tions. Explanation takes priority over the nonmonotonic retrac-
tion of conclusions and the editing of propositions to eliminate
inconsistencies.

The evidence from neuroscience strongly implicates lateral
prefrontal cortex as the site of causal processing, and corrobo-
rates the principal assumptions of the theory. Just as there are
untested behavioral claims of the theory, so too many aspects
of causal processing in the brain have yet to be investigated.
Inferences from causal assertions, for example, should yield a time
course reflecting the successive activation of linguistic areas and
then prefrontal activation—a time course that has been observed
in studies of deduction in other domains (Kroger et al., 2008).
Similarly, materials that elicit visual imagery as opposed to spatial
representations impede reasoning, because they elicit irrelevant
activity in visual cortex (Knauff et al., 2003). Analogous effects
may also occur in causal reasoning. Likewise, recent evidence to
support the hierarchical organization of lateral prefrontal cortex
function may reflect the complexity of causal representations for
goal-directed thought and behavior (for reviews, see Ramnani
and Owen, 2004; Badre, 2008).

In sum, the model theory provides a comprehensive account
of causal reasoning: what causal assertions mean, how they are
interpreted to build models, how these models underlie deduc-
tive conclusions; how they incorporate background information
in inductive inferences and abductive explanations.
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