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Geometrical illusions are known through a small core of classical illusions that were
discovered in the second half of the nineteenth century. Most experimental studies and
most theoretical discussions revolve around this core of illusions, as though all other
illusions were obvious variants of these. Yet, many illusions, mostly described by German
authors at the same time or at the beginning of the twentieth century have been forgotten
and are awaiting their rehabilitation. Recently, several new illusions were discovered,
mainly by Italian authors, and they do not seem to take place into any current classification.
Among the principles that are invoked to explain the illusions, there are principles relating
to the metric aspects (contrast, assimilation, shrinkage, expansion, attraction of parallels)
principles relating to orientations (regression to right angles, orthogonal expansion) or,
more recently, to gestalt effects. Here, metric effects are discussed within a measurement
framework, in which the geometric illusions are the outcome of a measurement process.
There would be a main “convexity” bias in the measures: the measured value m(x) of an
extant x would grow more than proportionally with x. This convexity principle, completed
by a principle of compromise for conflicting measures can replace, for a large number
of patterns, both the assimilation and the contrast effects. We know from evolutionary
theory that the most pertinent classification criteria may not be the most salient ones
(e.g., a dolphin is not a fish). In order to obtain an objective classification of illusions, I
initiated with Kevin O’Regan systematic work on “orientation profiles” (describing how
the strength of an illusion varies with its orientation in the plane). We showed first that the
Zöllner illusion already exists at the level of single stacks, and that it does not amount to
a rotation of the stacks. Later work suggested that it is best described by an “orthogonal
expansion”—an expansion of the stacks applied orthogonally to the oblique segments
of the stacks, generating an apparent rotation effect. We showed that the Poggendorff
illusion was mainly a misangulation effect. We explained the hierarchy of the illusion
magnitudes found among variants of the Poggendorff illusion by the existence of control
devices that counteract the loss of parallelism or the loss of collinearity produced by the
biased measurements. I then studied the trapezium illusion. The oblique sides, but not the
bases, were essential to the trapezium illusion, suggesting the existence of a common
component between the trapezium and the Zöllner illusion. Unexpectedly, the trapeziums
sometimes appeared as twisted surfaces in 3d. It also appeared impossible, using a nulling
procedure, to make all corresponding sides of two trapeziums simultaneously equal.
The square-diamond illusion is usually presented with one apex of the diamond pointing
toward the square. I found that when the figures were displayed more symmetrically,
the illusion was significantly reduced. Furthermore, it is surpassed, for all subjects, by an
illusion that goes in the opposite direction, in which the diagonal of a small diamond is
underestimated with respect to the side of a larger square. In general, the experimental
work generated many unexpected results. Each illusory stimulus was compared to a
number of control variants, and often, I measured larger distortions in a variant than in
the standard stimulus. In the Discussion, I will stress what I think are the main ordering
principle in the metric and the orientation domains for illusory patterns. The convexity
bias principle and the orthogonal expansion principles help to establish unsuspected links
between apparently unrelated stimuli, and reduce their apparently extreme heterogeneity.
However, a number of illusions (e.g., those of the twisted cord family, or the Poggendorff
illusions) remain unpredicted by the above principles. Finally, I will develop the idea that the
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Ninio Classification of geometrical illusions

brain is constructing several representations, and the one that is commonly used for the
purpose of shape perception generates distortions inasmuch as it must satisfy a number
of conflicting constraints, such as the constraint of producing a stable shape despite the
changing perspectives produced by eye movements.

Keywords: geometrical illusions, classification, measurement theories, convexity, orthogonal expansion

INTRODUCTION
The field of geometrical illusions is in a kind of unhealthy Babel
tower situation. Year after year, both expert authors, and new-
comers in the field propose all-embracing theories of geometric
illusions (for instance: Bulatov et al., 1997; Prinzmetal and Beck,
2001; Purves et al., 2001; Changizi and Widders, 2002; Fermuller
and Malm, 2004; Nemati, 2009; Day, 2010). And there are count-
less theoretical articles on particular illusions, the favorite ones
being the Müller-Lyer and the Poggendorff illusions. Large col-
lections of illusory figures can be found in various web sites
(e.g., Akiyoshi Kitaoka’s “Colloquium of visual illusions” and
Michael Bach’s site on “Optical illusions & visual phenomena”)
and in specialized books (e.g., Luckiesh, 1922; Tolanski, 1964;
Robinson, 1972; Coren and Girgus, 1978; Wade, 1982; Da Pos and
Zambianchi, 1996; Vicario, 2011). The last two books are partic-
ularly precise about historical sources for the illusions, and many
of the references in this review are borrowed from these books.

As stated by Ninio and Pinna (2006), “illusions, even when
they are given different names, often seem to have strong family
ties and form a continuum.” Various authors attempt to put some
order, and regroup the illusions into classes, for instance metric
vs. orientation illusions, illusions of contrast vs. assimilation, of
shrinkage vs. expansion, illusions due to eye-movements, spatial
filtering, depth processing, or local vs. gestalt effects.

Authors of philosophical books, or of popular science books
on visual paradoxes do not hesitate to offer their own expla-
nations of illusions, without any guilty conscience about their
ignorance of experimental results, and without an awareness of
the already published refutations of their proposals. For instance,
the vertical-horizontal illusion (a vertical segment appears longer
than a horizontal segment of the same length) is often illus-
trated with an inverted letter T, of which the vertical branch
seems longer than the horizontal one. Yet, it has been known
for quite long that the apparently shorter size of the horizontal
branch in the letter T is due to its being bisected by the vertical
branch (Künnapas, 1955). There are also cases in which a certain
effect is described, and I see just the opposite effect. This is not
a drama for science, it merely implies that people may have dif-
ferent sensitivities to different effects, and when the illusion in
a visual pattern has several components that work in different
directions, the resulting overall effect may go in one direction for
some people, and the opposite direction for others.

Respected scientists are often victims of their too narrow
selection of stimuli. For instance Moulden and Renshaw (1979)
discussed a visual effect in which the steps of a black staircase
seem to form acute instead of right angles. They interpreted the
effect as due to irradiation—the white background would nib-
ble the black stair. However, Kitaoka (1998) ruined the theory by
pointing out that the effect is maintained when black and white
are interchanged. I can cite a number of articles on illusions that

are immediately refutable by a counter-example, and a number
of mathematical treatments in other fields that contain obvious
mathematical mistakes in the derivations of the equations.

An external observer would find it extremely difficult to deter-
mine what has really been established experimentally over the last
50 years, on what issues there is a theoretical consensus, what are
the unsettled issues, and what kind of data are sorely needed,
etc. Controversies are respectable facets of scientific activities.
Unfortunately, in the field of geometrical illusions, many theo-
retical articles pay little attention to the experimental results, or
to the extreme diversity of known illusions or their variants.

In this review, I will first present the corpus of some known
and some less-known but equally legitimate illusions. I will then
examine the proposition according to which the perceived shape
of a figure may be related to the original figure through a kind of
cartographic transformation: measurements would be taken on
the figure to be perceived, then combined and adjusted, and a rep-
resentation would be produced. The representation may disagree,
in some of its geometrical aspects from what we know of the ini-
tial figure, and we may then state that there is an illusion. I will
present several principles that may be invoked in a cartographic
frameworks, in particular a “convexity rule” for metric measure-
ments, and an “orthogonal expansion rule” for orientation biases
related to the Zöllner illusion. I will show that representation the-
ories can solve apparent contradictions between some illusions
and their apparent counter-illusions. On the other hand, I will
show that there are some inescapable problems in shape percep-
tion that make it sometimes difficult to state whether a figure
contains an illusion, or merely illustrates a legitimate paradox of
shape perception.

After discussing measurement theories, I discuss the possibility
of an objective classification of illusions, and present “orienta-
tion profiles” as a way to investigate objectively the relationships
between illusions. I present published results on orientation pro-
files, and in particular published orientation profiles from Ninio
and O’Regan (1999), in Poggendorf illusions and related pat-
terns. Finally, I present in the Discussion some of my current best
guesses on the geometric principles underlying various geometric
illusions.

THE CORPUS OF GEOMETRICAL ILLUSIONS
Most theoretical discussions revolve around a very small number
of “core” geometrical illusions, ignoring most of the others. Some
of these illusions are shown in Figure 1 or dispersed in other
figures, as required by the discussed topics. These illusions are
usually named according to their presumptive author (Zöllner,
Poggendorff, Müller-Lyer, Delboeuf, Ebbinghaus, Helmholtz,
Hering)—neglecting the facts that several authors invented a large
number of illusory patterns, and that attribution errors are quite
common in the field (see Da Pos and Zambianchi, 1996; Vicario,
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FIGURE 1 | Core illusions. (a) A Müller-Lyer illusion, in its most popular
form. The two gray segments have equal legths. (b) A variant of the
Müller-Lyer illusion, proposed by Müller-Lyer himself, showing that contrary
to popular belief, the fins are not necessary for the illusion. (c) A variation
on the theme of ingoing and outgoing fins, proposed by Judd (1899). The
dot is bisecting exactly the shaft, but appears displaced toward the ingoing
fins. (d) A variation by Pegrassi (1904) on the previous Judd illusion. (e)

Sander’s parallelogram (1926). The diagonal on the left side seems longer
than the diagonal on the right. It seems that the illusion can already be
demonstrated with two triangles (Figure 5h). (f) Delboeuf illusion with
circles. In the central pair of circles, the internal small circle is equal to the
small external circle, but appears larger, and the surrounding large circle is
equal to the external large circle, but seems smaller. (g) Poggendorff
illusion. The two thick oblique segments are collinear, but appear to be
misaligned. (h) Helmholtz’ square illusion. The squares are equal, but are
perceived as rectangles that are elongated in the direction that is
orthogonal to the dividing segments. (i) Oppel-Kundt illusion: The

subdivided half of the figure appears to be longer than the non-subdivided
half. (j) Ebbinghaus or Titchener’s illusion (Ebbinghaus, 1902). The two
central circles are equal, but the one surrounded by small circles seems to
be larger than the other. The illusory effect does not require circular
geometry. It already works with triples of aligned elements. (k) A variation
on this theme (from Ninio, 1998), designed as a hybrid between (j) and (n)

or Figure 2f. (l) Variation on the bisection illlusion. The small isolated
segments are equal in length to the segments that are associated in
crosses, but appear to be longer (from Ninio, 1998). (m) Zöllner illusion.
The two stacks are parallel, but seem to diverge at their tops (Zöllner,
1862). The “left-handed” and “right-handed” variants of the stacks, are
labeled “L” and “R” according to the convention in Ninio and O’Regan
(1996). (n) The so-called Ponzo illusion. The horizontal bars seem to
increase in length, from bottom to top. (o) Hering illusion. The long line
crossing the bundle is straight, but seems to be curved. (p) Variation on a
theme by Ehrenstein (1925) and Orbison (1939): The black square seems
to be trapezoidal, due to its intersections with the circles.
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FIGURE 2 | Other old illusions. (a) Again, a major Müller-Lyer illusion. The
obtuse and the acute angles have arms of equal lengths, but those of the
obtuse angle seem to be longer. (b) An illusion by Laska (1890). The two
arms of the right angle are equal, but the one on the left, pointing toward
the close dot seems shorter. (c) Dr Fee’s 1888 illusion, reproduced in Ninio
(1998). The bottom bases of the four triangles are equal, but the two
central ones seem to be shorter than the others. (d) A variation by Botti
(1909) on the Zöllner illusion. The axes of the two stacks are collinear, but
seem to be misaligned. (e) An illusion by Bourdon (1902). The bases of
the black or the white triangles are aligned, but the triangles seem to be
slightly folded inward. (f) An illusion by Schumann (1900). The white or the
black blocks seem to diverge at their top. (g) An illusion by Delboeuf
(1865). The three long lines are parallel, but the top one seems to diverge
from the two bottom ones. (h) An illusion by Lipps (1897) The circles have

a common horizontal tangent, but seem to rest on a curved line making
the central circles appear slightly higher than the lateral ones. (i) An
illusion by Judd (1899)—an ancestor of the corner-Poggendorff illusion
(Greene, 1988) shown in Figure 10g? (j) An illusory figure by Titchener
(1901). The external segment seems to be larger than the diameter of the
circle, yet they are equal. (k) The Münsterberg (1897) pattern, possibly the
ancestor of a large number of illusions, including “checkered patterns,” and
“café-wall” illusions. Superficially, the long lines together with the pairs of
squares like AB form Zöllner stacks. However, it seems that the
characteristic effects in the Münsterberg family are due to A–C patterns.
(l) A variant of the twisted cord illusion, which belongs to the family of
Fraser’s illusions (Fraser, 1908). Here, the cords are collinear two by two,
but seem to be misaligned, with the exception of the horizontal pair (from
Ninio and Pinna, 2006).

2011 for historical details). There is the hidden assumption that
other illusions are obvious variants of the core illusions.

Other illusions (Figure 2), often from German authors of the
nineteenth century, are sometimes shown in books (e.g., Da Pos
and Zambianchi, 1996; Vicario, 2011). Some of them remain as
curiosities for specialists and have not yet acquired the status of
major illusions.

Recently, many illusions have been discovered (e.g., Vicario’s
rarefaction and sloping steps illusions, Gerbino’s hexagon
masked by triangles, Pinna’s angularity illusion, Bressanelli and
Massironi’s adjoining trapezoids—see Figure 3). So, why do most

authors keep brooding over the same invariant small set of core
illusions of Figure 1? Is this core a historical accident, and is it
still legitimate today?

I add here a collection of stimuli that I have produced over
the last 35 years (Figure 4). There is, I feel, something to learn
from each of these stimuli. With two exceptions (Figures 4e,f)
none of them was discovered. They were all designed ratio-
nally in attempts to probe the limits of current explanations,
find counter-examples, or construct examples predicted by my
own theories. However, some readers may judge these stimuli as
obvious variants of stimuli previously known to them.
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FIGURE 3 | Some recently discovered illusions. (a) Shepard’s tables
(simplified). (b) Giovanelli’s illusion (Giovanelli, 1966). The strict alignment of
the black disks is not obvious. (c) Vicario’s sloping steps. The dot triplets are
all horizontal, but they seem to diverge (Vicario, 1978). (d) Vicario’s rarefaction
illusion (Vicario, 1972). The oblique lines have the same spacing in the left and
the right squares, but those in the small square appear to have a wider
separation. (e) The misangulation effect of Pinna (1991). The circle takes on a
polygonal appearance. (f) An illusion by Gerbino (1978). The segments belong
to the sides of a perfect hexagon, but seem to be displaced. (g) The triangle
illusion of Kennedy et al. (2008). The two angles at the top of the triangles are
equal, but the one belonging to the equilateral triangle seems to be larger
than the other. A tentative explanation is provided in the legend to Figure 5g.
(h) The receding arrow illusion (Holding, 1970). The arrow on the right seems

to be shifted downward with respect to the arrow on the left. (i) Morinaga’s
paradox (Morinaga and Ikeda, 1965). The horizontal spacings of the
“arrowheads” are perceived as predicted by the Müller-Lyer illusion of
Figure 1a. On the other hand, the apices of the angles lie on vertical lines,
but they appear shifted laterally in contradiction with the apparent horizontal
spacings. (j) The illusion of Bressanelli and Massironi (2007). The three
quadrangles have equal widths, but their width seems to increase from top
to bottom. (k) Another illusion by Pinna (from Ninio and Pinna, 2006). The
large square is perceived as a trapezium. (l) An illusion by Rausch (1952). The
two diagonals are parallel, but the top one, in the parallelogram, seems to be
closer to the vertical direction. (m) The sine illusion of Day and Stecher
(1991). All the segments composing the pattern have equal lengths. This is a

(Continued)
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FIGURE 3 | Continued

striking variation on a theme by Botti (1906). (n) Another illusion by Day
(2006). The half segments belonging to the cross are equal to the sides of
the diamond, but appear to be longer. (o) Another illusion by Rausch (1952).

The rectangle and the parallelogram have equal long sides, and equal heights,
yet the parallelogram seems to be larger than the rectangle. (p) The “Z”
illusion (Fischer, 1999). The upper or lower short segments do not seem to
hit the lower or upper corners on their apparent prolongation.
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FIGURE 4 | Figures with illusory effects, found or devised by the author.

(a) A figure with four circles having a common vertical tangent. The large
circles seem to be pulled toward the left and right borders of the page. (From
Ninio, 1979). Constructed as a variation on the illusion with circles of Lipps
(1897) (Figure 2h). (b) A related effect with Zöllner stacks. The oblique
segments are collinear two by two, but the upper ones seem to be pulled to
the left with respect to the lower ones. (c) A tilt illusion (Ninio and Pinna,
2006). Here the originality lies in the fact that there are two familes of lines at
different orientations within the perceptually distorted square. (d) The straight
line appears to be bent, due to the influence, in the absence of contact, of
the oblique segments (from Ninio and Pinna, 2006). In part, the illusion may
be due to the principle shown in Figure 5e. (e) misperceived intervals. The
interval between the two vertical stacks appears to be larger than the interval

between the vertical line and the left stack (serendipitous observation). (f)

One sees narrow stripes of alternating black and white elements at a close to
15◦ orientation. The white elements are real, the black ones are part of the
background. The alignments are perfect, yet the ribbons seem to undulate
(From Ninio, 2001). (g) A hybrid between the twisted cord and the Zöllner
illusion. The two stacks on the left with alternating black and white elements
seem to converge at their top, contrary to the all-black or all-white Zöllner
patterns shown on the right (from Ninio and Pinna, 2006). (h) The diagonal of
the diamond seems shorter than the side of the square, but they are equal (a
variation on a pattern shown in Ninio (1998). (i) A hybrid between the Zöllner
and the trapezium illusions (from Ninio, 1998). (j) The central square has a
trapezoidal appearance (a simplified variant of Pinna’s illusion of Figure 3k).
(k) The black lines are at strict +45◦ or −45◦ orientations (from Ninio, 2002).
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FIGURE 5 | Convexity illusions. (a) A convex function that goes through the
origin. If there is such a relationship between extents in a figure, and their
“measured” or perceived values, a number of effects, usually attributed
either to contrast, or to assimilation can be predicted. (b) Bisection illusion.
The undivided segment on the right seems to be larger than the divided
segment in the center, but they are equal. “Inverse” bisection illusion: the
isolated segment on the left is equal to the half-segments in the center, yet it
seems to be shorter. (c) According to the convexity principle, a point
between two points or two lines should be attracted toward the closest
target. The illusions in (d–f) seem to follow this pattern (d) is an illusion by
Lipps (1897). The two central arcs are identical (e) is an illusion by Oyama
(1960). The dotted lines are straight, but seem to be curved toward or away
from the circles (f) is an illusion by Lipps (1897). The central parts of the
Z-shaped and S-shaped lines are all parallel, but the extremities of the
Z-shaped segments seem to be attracted to the closest neighboring lines. (g)

A tentative explanation of the triangle illusion of Figure 3g. MON is the
scalene triangle. When O moves on the circumference, the angle in O
remains constant. The perceived shape of the triangle can be estimated by
considering that the small side MO is underestimated, and the large side NO
is overestimated, with respect to the base MN. Keeping the base MN, the

point O would be shifted to the position O′ obtained as the intersection of a
circle centered on M, with a radius shorter than MO, with a circle centered in
N, with a radius larger than NO. They intersect outside the circumference,
therefore the perceived angle MO′N is underestimated with respect to the
original angle MON. (h) Two triangles extracted from Sander’s parallelogram
(Figure 1e). The illusion is already there. (i) A variation, by the author, on the
theme of sides and diagonals. The hypotenuse of the central triangle seems
to be shorter than the sides of the flanking triangles, but they are strictly
equal. (j) Naito and Cole’s gravity lens illusion. The small squares form a
parallelogram that appears distorted due to the pulling or pushing effects of
the black disks. The pulls or the pushes are as predicted by the convexity
principle: disks with small separation come closer and disks with wider
separation are pulled apart. (k) See main text, Section A Basic Metric Rule:
The Convexity Principle (l) The sides of all three polygons are equal, yet they
seem to increase from the triangle to the pentagon. The triangle-pentagon
illusion was described by Müller-Lyer (1889) and Day (2010) added a square.
Squares and pentagons offer the opportunity to have larger diagonals or
internal segments than the triangle. Their sizes are therefore overestimated
with respect to the size of a triangle, according to the convexity principle. The
illusion on the sides of the polygons would be a side-effect.
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MEASUREMENT THEORIES OF ILLUSIONS
MAPPING DISTORTIONS
One broad analogy, whether pertinent or not, to understand the
origin of geometrical illusions is that of the construction of geo-
graphical maps. In order to represent the surface of the earth on a
planar map, the geometer must choose a system of projection that
inevitably distorts the frontiers. Nevertheless, the construction of
the map follows very strict rules. Knowing them, the navigator
extracts from the map all the information needed to determine his
itinerary with precision. There are many variations on the theme
of mapping. In my initial theoretical proposal (Ninio, 1979), the
brain has, metaphorically, two instruments, a biased meter that
provides a systematic overestimation of large extents, and a more
reliable compass for the orientations.

Contrary to what I held for a long time, the visual representa-
tion of a figure cannot be entirely assimilated to a map, because
it depends upon the way it is looked at. Morinaga’s paradox
(e.g., Morinaga and Ikeda, 1965; Figure 3i) is a classical counter-
example to a strict mapping theory. The study of variants of the
Ebbinghaus illusion (shown in Figure 1j) provide another strik-
ing counter-example to mapping theories. When the circles are
replaced with other elements, strange things happen (e.g., Coren
and Enns, 1993; Rose and Bressan, 2002). The homogeneity or
non-homogeneity of the surrounding elements, their similarity
or non-similarity with respect to the central element play a role.
Furthermore, it is even suggested that there are top-down influ-
ences in the illusion, and that the semantic similarity between the
surrounding and the central elements is also an important factor.

A BASIC METRIC RULE: THE CONVEXITY PRINCIPLE
Assume that you are on the sea front, and you wish to represent
the layout of a number of floating targets. Your only instrument
is a chronometer. You measure the time it takes to swim from
one target to the other. When two targets are close, one can swim
rapidly from one to the other. When the targets are distant, one
swims less rapidly, and the swimming speed diminishes as the
targets become more and more distant. Thus, the measured time
to connect two targets grows more than proportionately with the
distance between targets. This time, provided by the chronometer,
overestimates large distances with respect to small ones. In psy-
chological language, it increases the contrast between large and
small. In mathematical language, the measure is a convex one.
The relationship between an extent x and its measured value m(x)
can be represented by a parabola, or any curve starting at the ori-
gin, and rising with a curvature of constant positive sign. (See
Figure 5a).

Delboeuf (1865) hit upon a similar formalism. He proposed
that the perceived extent between two targets could reflect the
duration of eye-movements from one target to the other, includ-
ing the times for initiating and terminating the movements. He
thus proposed a mathematical model in which the measured val-
ues would be the sum of three terms that predicted a concave,
instead of a convex measure. Delboeuf focused on stimuli other
than those I am considering in this Section A Basic Metric Rule:
The Convexity Principle. In his article, there is a panel with 34 fig-
ures (reproduced, for instance, in Da Pos and Zambianchi, 1996,
p. 78, and Vicario, 2011, p. 63). Delboeuf introduced his theme

with Figure 14 of the panel, similar to Figure 5c here, but he pro-
posed the opposite effect. He illustrated his principle with Figures
15–19 of his panel, but there are, in my opinion, other principles
at work in his examples. Day (2006) conjectured that “it is con-
ceivable that (. . .) the amount of time it takes to move from one
place to another is a determinant of the apparent distance between
them.”—but he did not speculate on the law relating space and
time.

In an early, contribution (Ninio, 1979) I proposed that a
convexity bias was a basic theme in metric illusions. The chrono-
metric metaphor is proposed here to show that a measurement
process may provide raw non-linear readings, in particular read-
ings in which the measured value m(x) varies more than propor-
tionately with the measured extent x (Figure 5a). Eye-movement
theories might suggest an opposite rule, in which m(x) varies
less than proportionately with x. More generally, various theories
might suggest various possible relationships between an extent x,
and its measured (perceived) size m(x).

Now, in the chronometer and floating targets metaphor, all
goes well as long as you consider apparent distances between sin-
gle pairs of targets. But what if you have at least four floating
targets, and wish to put them on a map? You will always be able
to draw a quadrangle in which each of the four sides is propor-
tional to its measured value. Then, the lengths of the diagonals
on your drawing may be shorter or larger than predicted from
their measured values. Some corrections are necessary, and the
simplest is to construct the representation by making reasonable
compromises when there are discrepancies. So far, there is no bold
hypothesis here.

In practice, I found that the combination of a convexity rule
for producing a shape and a principle of compromise when there
are discrepancies between the measurements accounted well for
a large number of geometric illusions in single, non-subdivided
figures. They account for some illusions usually explained with
an “assimilation” principle (Pressey and Murray, 1976). For these
figures (for instance, the Müller-Lyer, or the Sander parallelo-
gram) it would seem that we have just replaced one description
by another, equivalent one. However, the underlying reason-
ings are quite different, and there is at least one illusion (the
Delboeuf illusion with circles of Figure 1f) that is well explained
by assimilation, but not by convexity.

If we take the simplest figure: a segment joining two points,
for which there would be a single measure, it is not clear how we
might detect an illusion, if there is one.

In figures with three points, there are several possibilities. First
let us consider the “bisection illusion” (Figure 5b). An undivided
segment of length y is split into two equal halves of length z =
y/2. The bisected segment looks shorter than the undivided one.
But when the small undivided segment of length z is shown close
to the divided segment, of length y = z + z, the isolated segment
appears shorter than each of the two halves of the bisected seg-
ment. How can the bisection of a segment make it appear shorter
in relation to the whole segment, and larger in relation to its com-
ponents? Is this a logical impossibility? I proposed (Ninio, 2011a)
that the illusion is not where people see it! There would be a hid-
den “convexity effect” that makes us represent the large segment y
more than twice as long as the isolated half-segment, z but this
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is not detected as an illusion. Assume that z receives the mea-
sure 10, and y receives the measure 30. A problem arises with the
subdivided segment, because there would be two conflicting mea-
surements. Measured in a single jump from end to end, we get
y = 30, and measured in two jumps, we get z + z = 20. So, let us
make a compromise such that the measure of the subdivided seg-
ment is intermediate between 20 and 30. I this way, the two effects
illustrated in Figure 5b are like two faces of a same coin. The fig-
ure would be a “pedagogical device” that make the existence of a
geometrical anomaly obvious, without telling us the nature of the
anomaly.

Still, the story must be more complex, since (i) if a segment is
split into two unequal parts, the relationship between one of the
sub-segment and an external segment equal to this one is subject
to strange variations (Botti, 1906; see also the detailed experimen-
tal study of Künnapas, 1955 on the unequal partitioning of the
horizontal segment in a “T” configuration).

If a point B is on a segment AC, but not exactly in the middle,
it should, according to the convexity principle, be attracted to the
closest extremity of the segment, as shown in Figure 5c. An attrac-
tion to the closest line is found in several “contrast” illusions, for
instance the illusions of Figures 5d–f. A related situation is that of
three lines diverging from a same point. Orbison (1939) wrote: “If
the center line is moved so that it is no longer midway between the
two exterior lines, it will no longer be in a position of equilibrium
and will be distorted toward the nearer line.”

Next, if we consider three points A, B, C forming a right
angle such that side AB is larger than side BC, and we complete
the figure to form a rectangle, we would state that rectangles
are perceived as more elongated than they really are, in agree-
ment with Piaget and Denis-Prinzhorn (1953). Then, and this
is more subtle, if we take three points and join them to form a
triangle, we get the new triangle illusion described by Kennedy
et al. (2008), shown in Figure 3g. According to the authors, “For
a reference angle of 60◦, angles embedded in isoceles triangles
were judged to be on average 14◦ larger than angles embed-
ded in scalene triangles.” Understanding why this is so requires
some delicate but unambiguous geometrical reasoning (see the
legend to Figure 5g). In my opinion, Sander’s parallelogram illu-
sion (Figure 1e) can already be detected at the level of its triangle
components (Figure 5h).The same applies to the earlier Dr. Fee’s
illusion (Figure 2c). This inspired me to construct the pattern
of Figure 5i with rectangular triangles. The hypotenuse of the
small triangle appears shorter than the sides of the large triangles,
although they are all equal.

In figures with four points (quadrangles) we obtain without
difficulty the illusion of Figure 3o described by Rausch (1952), in
which a parallelogram seems to be larger than a rectangle having
equal side and height. We also obtain the Naito and Cole (1994)
“gravity lens” illusion (Figure 5j). The small squares form a par-
allelogram that appears distorted due to the pulling or pushing
effects of the black disks. The pulls or the pushes are as pre-
dicted by the convexity principle: disks with small separation
come closer and disks with wider separation are pulled apart.

The much studied Müller-Lyer appears to me as another
instance of the convexity + compromise effect, applied to quad-
rangles. Assume for instance that AB or CD in Figure 5k is larger

than the horizontal distance between the tips of the fins EF
(Müller-Lyer pattern with ingoing fins). According to the assim-
ilation principle, the perceived length of AB is “blended” with
that of EF, so the apparent length of AB is underestimated with
respect to that of the isolated segment of equal length CD. Within
the convexity + compromise framework, both AB and CD are
overestimated with respect to EF, according to a convex measure.
Then there would be a compromise between AB and EF, under the
constraint that the orientations of the fins are roughly preserved.

Day (2010), completing an earlier observation of Müller-Lyer
(1889), stated that lines of a same length, forming a square
appear intermediate in length between those of a triangle and
those of a pentagon (Figure 5l). This is again obvious here, as a
result of compromises between the measurements of sides and
those of diagonals. There would be a hidden effect, the over-
estimation of the diagonals with respect to the sides, but this
would not show up in the closed versions of the square or the
pentagon.

However, in an open version of the square, allowing the diago-
nal to stick out, a diagonal does appear to be larger than it should,
with respect to the sides. This is Pinna’s “illusion of the diagonal”
(Pinna, 2003), shown in Figure 6a. In a variant of this illusion, a
Müller-Lyer pattern with an ingoing fin, placed on the diagonal of
a square, appears subject to expansion, not shrinkage (Figure 6b).
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FIGURE 6 | Some expected and unexpected effects. (a) Pinna’s “illusion
of the diagonal.” The diagonal seems to stick out of the virtual square. (b) A
variation on this illusion. The diagonal with an ingoing fin also sticks out of
the square, contrary to what one would expect from a Müller-Lyer pattern
with ingoing fins (Figure 5k). In (c), as in Figure 4h, the diagonal of the
diamond appears to be shorter than the side of the square. This can be
taken as evidence against the generality of the square-diamond illusion (d).
(e) Bisection illusion with squares. Here, the undivided square on the right
seems to be smaller than the subdivided square in the center, and the
isolated small square on he left seems to be larger than the small squares
within the large one in the center. See also the hybrid case of Figure 3n. (f)

An illusion by von Helmholtz (1866). The bundle of lines seems to cover an
angle larger than 90 degrees, suggesting the existence of an expansion
effect, as with Helmholtz’ squares (Figure 1h). But the examples (g) from
Tolanski (1964) and (h) from de Savigny (1905) seem to suggest the
opposite rule. I am undecided about (i).
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If we compare two unequal squares, in which the side of the
large square is equal to the diagonal of the small one, this diag-
onal is clearly underestimated with respect to the side of the
large square (Figures 4h, 6c; Ninio, 1998, 2011b). The opposite
would have been expected from the “square-diamond” illusion
(Figure 6d), in which there is a similar arrangement of the two
figures, but the square and the diamond have equal sizes.

As we see, the convexity principle accounts for a large number
of geometric illusions (Figures 5, 6) that are usually explained by
a contrast effect (e.g., Figures 5d–f) or, when complemented with
a principle of compromise between discordant measures, by an
assimilation effect (e.g., Figures 1b,e, 5l). A number of illusory
effects cannot be described within this framework, in particular
those of Figures 1f–1k, and Figures 1m – 1p. I also mention here,
in relation to the bisection illusion (Figure 5b) that if segments
are replaced with squares as in Figure 6e, the apparent sizes of
the squares vary in the opposite direction: the central subdivided
square seems larger than the undivided square on its right, and its
components appear smaller than an equal isolated small square
shown on the left (Ninio, 2011a)! However, there is also the pos-
sibility that rules for single lines may differ from rules on objects,
a divided square counting as an object.

STRETCHING RULE FOR SUBDIVIDED FIGURES
Returning to the chronometer and floating targets metaphor,
what happens if a small number of targets form a contour of
which we wish to understand the shape, and there are many
intermediate targets between pairs of contour targets? In the sim-
plest case, we have two well separated targets and a string of
intermediate targets between the two. According to the convex-
ity rule, the apparent distances between two consecutive targets
is underestimated with respect to the distance between the ter-
minal targets. Therefore, if the distance between the terminal
targets is estimated by adding the measures of the distances
between nearest-neighbor targets, it may be severely underesti-
mated. Thus, it is reasonable to expect that, in a measurement
framework, there would be a corrective factor that produces an
apparent expansion of subdivided lines. In practice, an expansion
of subdivided segments is observed when the number of inter-
mediate points is n ≥ 4. This is shown in the “Oppel-Kundt”
illusion (Oppel, 1855), of Figure 1i. There is also the perhaps
related Helmholtz lined square illusion (von Helmholtz, 1866) in
which a virtual square formed of several segments parallel to one
side is perceived as stretched in the direction orthogonal to these
segments (Figure 1h), and the related fan illusion (Figure 6f) in
which a bundle of straight lines constrained within a vertical and
a horizontal axis seems to expand beyond the 90◦ angle.

There is undoubtedly a stretching effect in subdivided figures,
but it may be rather subtle. The Helmholtz square illusion may
be an instance of a more general effect of “orthogonal expansion.”
The idea is that when there are several parallel or nearly parallel
segments, there is an expansion in a direction that is orthogonal
to the segments. When the segments are piled up obliquely, as in
a Zöllner stack, this orthogonal expansion generates an apparent
rotation effect. This is illustrated and explained in Figure 7 and
its legend. It was suggested by experimental observations on the
Zöllner illusion, and related patterns.
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FIGURE 7 | The orthogonal expansion principle. (a) A classical effect,
the expansion of subdivided figures, as observed in the Oppel-Kundt
illusion, and the Helmholtz square illusion. (b) The effect of this expansion
is shown on Helmholtz squares. There is a side-effect on the orientations of
the diagonals. This effect nicely agrees with a perceptual enlargement of
acute angles, always present in the illusions of the Ehrenstein-Orbison
family. For a more elaborate variant of (b), see Figure 4k. (c) orthogonal
expansion effect. It is suggested that with a stack of segments piled up
obliquely, the expansion occurs orthogonally to the segments. This is the
orthogonal expansion principle of Ninio and Pinna (2006). (d) The oblique
side on the right, as noticed by Botti (1909), appears more expanded than
the central stack, suggesting that orthogonal expansion might work better
with oblique than with straight stacks (e) is a variant of the Zöllner illusion
studied by Ninio and O’Regan (1996). The isolated single segment in the
center belongs to both stacks, yet it seems to be much higher than the
meeting point of the stacks. The distortion of the stacks cannot be
described by a rotation, because all the segments have their vertical
orientation preserved. The distortion is however fully compatible with the
orthogonal expansion principle. (f) A Poggendorff-Zöllner hybrid, shown in
Ninio and Pinna (2006). The two segments at the end of the Zöllner stack
are collinear. There is a perceived misalignment effect, and it is as predicted
by a Poggendorff illusion. (g) Here, two segments are abutting orthogonally
on the terminal segments of a Zöllner stack. The two abutting segments
are collinear. I find no illusion.

ADDITIONAL RULES
The convexity + compromise rule, even when complemented
with an orthogonal expansion rule fails to account for a num-
ber of metric illusions. Among these there is the Ebbinghaus
illusion (Figures 1j, 8b) and the reversal of the Müller-Lyer illu-
sion when the outgoing fins become very large (Figure 8a). Since
the convexity rule tends to overestimate large extents, it would
be reasonable to apply a corrective factor that works in the
opposite direction—a factor that would reduce the perceived
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FIGURE 8 | Miscellaneous effects. (a) Reversal of the Müller-Lyer illusion
when the outgoing fins become very large (compare the shaft with the
isolated segment on its bottom right). (b) Variations on the Ebbinghaus
illusion. (c) The small rhombus on the left appears to be slightly larger than
the enclosed rhombus on the right. (d) The diamond at the bottom, within a
horizontal rectangle, is perceived as a square when it is enclosed by a
rectangle oriented at −45◦ (Kopferman, 1930). (e) The left figure with
horizontal alignments of black squares appears to be compressed vertically,
contrary to the expectations from both the vertical-horizontal illusion and
Helmholtz square illusion (Albertazzi and Pinna, 2008). (f–i). Asymmetries in
illusory patterns. In (f) the diamond “points” at the square, enhancing
significantly an effect that is already observed when the two figures are
placed symmetrically (g). In (h) one trapezium “points at the other,” as in
Shepard’s table illusion (Figure 3a), and the Bressamelli and Massironi
illusion (Figure 3j). In (i), a variant of Gerbino’s illusion (Figure 3f) without
the masking triangles. All the segments belong to a hexagon. In (j) we can
see the trapeziums as twisted ribbons, the vertical segments being at the
back, and the horizontal ones protruding toward us (e.g., Ninio, 2011a).

overall size of large figures (Ninio, 1979). For instance, there
would be in the case of the Ebbinghaus illusion an enlarge-
ment of the whole group with small circles, and a shrinkage
of the whole group with large circles, but this would not be
detected as an illusion. However, up until now, I failed to con-
struct an example showing this hypothetical effect. Furthermore,
in the variant of Figure 8b in which a central circle is sur-
rounded by a close band of small circles, and an outward band
of large circles, the central circle appears somewhat larger than
in the variant with large surrounding circles exclusively. Note
also that the Ebbinghaus illusion is known to be modulated by
attention, as observed in people from remote cultures (e.g., de
Fockert et al., 2007). Furthermore, there are many studies show-
ing that if the surrounding circles are replaced with different

shapes, the illusion may be strongly altered (see Section Mapping
Distortions).

Therefore, it would seem that if there is a space occupation
rule, it is of very limited applicability. In fact, there is evidence
(pointed to me by Giovanni Vicario) in favor of a rule saying
that a figure enclosed by another figure appears slightly smaller
than when it is isolated. For instance, in Figure 8c, the isolated
small rhombus on the left appears slightly larger than the enclosed
rhombus on the right. This phenomenon might be related to
the apparent shrinkage, of occluded figures, studied by Vezzani
(1999). On the other hand, it has also been held (at least, in the
case of segments enclosed by a rectangle) that enclosed patterns
look larger than their isolated counterparts (Fellows, 1968).

Another source of complication arises from the fact that
some figures may induce privileged ways of being inspected, that
may differ from the dominant vertical and horizontal axes. For
instance, a diamond enclosed by a rectangle may be perceived
either as a square, or as a diamond, depending on the orientation
of the enclosing rectangle (Figure 8d), as shown by Kopferman
(1930). Albertazzi and Pinna (2008) constructed a number of
patterns for which there may be privileged inspection directions,
generating unexpected illusions (Figure 8e).

I am also struck by the fact that many illusions involve two
identical figures that are oriented differently. One figure, so to
speak, “looks at the other.” This is clear in the case of Shepard’s
table (Figure 3A) and the square-diamond illusion (Figures 8f,g).
There is also an asymmetry in the Bressannelli and Massironi illu-
sion (Figure 3j) and in the trapezium illusion—here the upper
trapezium “embraces” the other (Figure 8h). In Figure 8i I show a
variant of Gerbino’s hexagon illusion of Figure 3f, but without the
usual occluding triangles. The bare segments are arranged asym-
metrically, for instance the top left segment is pointing toward
one terminus of the top right segment, and the set of six segments
does not seem to be on a hexagon (Figure 8j) is an anecdotical
but very striking effect with trapeziums: Here, we can see the
trapeziums as twisted ribbons, the vertical segments being at the
back, and the horizontal ones protruding toward us (e.g., Ninio,
2011a). I have often projected this figure on large screens, at pub-
lic conferences. People may take time to see the 3d effect, but
when they get it, they may have difficulties to revert to the 2d
interpretation.

ABOUT ANISOTROPY EFFECTS
Most specialists will agree with the proposal that the vertical-
horizontal illusion is a primary visual effect. It is a factor that
contributes to many visual patterns, so the illusions they produce
must be corrected by the vertical-horizontal effect. It is strongly
subject-dependent. I might have stated that our view of a scene is
subject to an anamorphosis that expands the scene in the vertical
direction, but this is probably not true. For instance, although a
square looks elongated along the vertical direction, a circle does
not. It does not look like an ellipse elongated along a vertical
diameter—or does it? This point deserves to be settled experi-
mentally. I believe that a circle does look like a circle, that we have
perhaps a kind of instrument to measure curvature that would
tell us that curvature is the same all along the circumference of
a circle. Here, I am introducing an important theme—that the
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illusory effects of which we are aware are those that remain after
being somewhat counteracted by control instruments.

There is a striking anisotropy effect, the square-diamond illu-
sion. A classical interpretation of this effect is that we appreciate
the dimension of a square according to the lengths of its sides,
and that of a diamond according to the length of its vertical and
horizontal diagonals. However, as I showed experimentally (see
Section Trapezium, Square-Diamond and Other Illusions) (i) the
illusion is due, in part, to an asymmetric presentation of the
square and the diamond: the diamond “points” at the square, but
the square does not point at the diamond. When the square and
the diamond are presented symmetrically, the illusion is substan-
tially reduced (Figures 8f,g) (ii) the illusion can be dominated by
a stronger effect, in which a side of a square looks larger than the
diagonal of a diamond of the same length (Ninio, 2011b, see again
Figure 6c). I add here that there is a general cultural problem with
patterns composed of two very similar figures. People may appre-
hend the patterns globally, or they may fixate their attention on
one figure then the other. They may also have culturally privi-
leged viewing axes that favor symmetry perception and that differ
from the horizontal and the vertical axes.

Are there anisotropies in the perception of orientations? It is
often considered that there may be two tendencies: (i) a ten-
dency for orientations to be perceived as closer to the vertical
than they really are (Hotopf, 1981). This would agree with a
vertical magnification effect, but I am not aware of a quantita-
tive treatment reducing one effect to the other. It would require
precise data, due to the fact that the horizontal-vertical illusion
is strongly subject-dependent. (ii) there would also be a tendency
for orientations close to the horizontal, to be perceived as closer
to the horizontal than they are. Rochlin (1955), quoted by Stuart
and Day (1988) has shown “that parallel lines do not appear par-
allel at all orientations (. . .),”and that “parallel lines are distorted
away from parallel when tilted clockwise from vertical, but not
when they are tilted counterclockwise from vertical.”

ON PARADOXES IN SHAPE PERCEPTION
What we find strange, and sometimes classify as an illusion, turns
out to be a legitimate perception once we understand better the
geometry of space and shape. One historical example is the obser-
vation of Lucretius about the appearance of a monument as seen
in perspective, which he reported as being an illusion, while we
accept this as a legitimate perspective effect that does not require
an explanation. (Quite to the contrary, we feel that we need
to explain the anti-perspective effect of size constancy at short
distances).

As a general rule in shape perception, we accept the princi-
ple that the perceived shape of a figure does not depend upon
its size: A figure can be enlarged or reduced, and look the same
all the time. This creates some problems in the perception of
curvature because curvature—contrary to angles—varies with
size. This is illustrated with the so-called flattening of short arcs
effect, already discussed in Ninio (1979) (Figure 9a). In this stim-
ulus, three arcs having the same radius but different extensions
are shown one above the other. The widest arc is on top, the
narrowest one is at the bottom. The shorter the arc, the flat-
ter it is perceived. Actually, the three arcs are not a same object
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FIGURE 9 | Paradoxes of shape perception (see the Section On

Paradoxes in Shape Perception). In (a), from Ninio (1979). Just below an
arc of 120◦ is shown a fragment of this arc covering an angular sector of
60◦. Still below, one sees a still shorter arc. The shorter the arc, the flatter it
looks, yet all three arcs have the same radius. In (b) the arcs are
approximated with broken lines, and one cannot speak of an illusion (c) The
two continuous black arcs are concentric. They have the same center and
different radii. One arc is thus a reduced variant of the other, they are seen
equally curved. The arc represented with a dotted line is a truncated version
of the arc above (they have the same radius) and it is seen as flatter as the
arc just above, which is geometrically legitimate. This arrangement shows
that the dotted arc must indeed be seen as flatter than the top continuous
arc. (d,e), from Ninio (2011a). The ellipses in (d) are homothetical, those in
(e) are equally spaced. The curves in (e) appear more similar to each other
than the ellipses in (d). (f,g), A variation on an illusion by Ehrenstein (1954),
shown in Ninio (2011a). In (f), when one goes from the larger square to the
smaller ones, their outlines seem to become thicker and thicker, yet they
are rigorously of the same width. Since the line thickness is constant in (f),
the ratio of the area covered by the lines to the blank area of the squares
does increase as the size of the squares decreases. Small squares have
indeed (relatively) thicker borders. A similar effect can be detected with the
small circles in Figure 1j. In (g) the (bold) contour of the squares is
replaced with a pair of thin, parallel outlines. The space between the
parallel contours seems wider when the squares are small. In (h) the
segments are equally spaced along the vertical in the two stacks, yet there
seems to be a strong compression effect in the stack with the oblique
segments. This is probably not an illusion, if we measure the distances
between the segments orthogonally to the segments.

at different sizes, but an object and its truncated versions (as
in Figure 9b). When we say that an arc is more or less flat,
we refer to a shape property. However, shape should not be
invariant under truncation (Figures 9b,c), so the three arcs in
Figure 9a need not be perceived as equally curved. One reviewer
remains unconviced. He writes: “At the most basic framing of
the illusion, one mentally moves one arc on top of another and
decides if they match, or if the shorter arc diverges somehow.
For me, there is a clear effect even at that level. Is that not an
illusion?”

I do not wish to be dogmatic about shape invariance under
homothetic transformations. The ellipses in Figure 9d are homo-
thetic, those in Figure 9e are equally spaced, and decidedly not
homothetic. The curves in the second set (there is a single true
ellipse among them) appear more similar to each other than the
ellipses of the first set.
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Another intriguing effect, described by Ehrenstein (1954) can
be counted as a similar paradox of shape perception. Empty
squares differing in size are drawn with contours of equal thick-
ness. The smaller the figure, the thicker its contour appears to
be. This is again legitimate from the point of view of shape
perception. The surface occupied by the contour in the small
square is relatively larger, compared to the inside surface, than
it is in the larger square. The paradox is enhanced in the stim-
ulus of Figure 9f, by connecting the small and the large squares
by contour lines of constant thickness. In this figure, there are
two conflicting principles at work. The veridical perception of
line thickness implies a perception of constant line thickness.
The respect of shape constancy makes us perceive the thickness
of the contours in relation to the size of the enclosed figures.
A similar argument applies to the stimulus of Figure 9g. Here,
the thick contour lines are replaced with thin double contours.
The separation between the double contour lines is invariable, yet
it seems to be larger when the double contours enclose a small
square.

In Figure 9h, there is on the left a stack of oblique segments,
piled up vertically, and on its right a stack containing horizontal
segments of the same length, also piled up vertically. The vertical
separation of the segments is exactly the same in the two stacks,
but there seems to be a strong compression effect in the stack
with the oblique segments (e.g., Judd, 1899). Morgan and Casco
(1990), argued that this might be a pure “trigonometric” effect.
What counts, for the perception of spacing between adjoining
segments, in this case, would be their distance, taken orthogonally
to the segments, a choice agreeing with geometer’s practice. There
would be a perceptual compression effect in the left stack if we
appreciate the spacing along the axes of the stacks, i.e., here, in
the vertical direction.

THE PERTINENT CLASSIFICATION ISSUE
Classification has been of paramount importance in several
domains of science. Linnaeus classification work on plants paved
the way for both Lamarckian and Darwinian theories of evolution
(although Linnaeus himself was a fixist). Mendeleev’s classifi-
cation of the natural elements, embodied in his famous table,
paved the way for the understanding of the electronic structures
of atoms, and from there, to large sections of modern chem-
istry and physics. A major difficulty, in a classification task, is to
neglect some features that jump to the eyes, and focus on less
obvious aspects that turn out to be far more pertinent. In the
classification of natural elements, the physical state—solid, liq-
uid or gaseous—turns out to be of secondary importance, while
the types of chemical bonds that the element can make is of the
highest importance. In the classification of species, living on land
or in the sea is secondary, while the sexual reproduction mode is
primordial (thus, a dolphin is not a fish).

In a classification of geometric illusions based uniquely upon
their appearance, one may distinguish two major groups: met-
ric illusions, and orientation illusions. The metric illusions are
often split into two categories: contrast illusions, and assimilation
illusions. Metaphorically, the brain would use two instruments:
a meter and a compass. But how to classify an illusion when
an angle looks wrong? Should we invoke a metaphorical third

instrument that measures angles,—a protractor —used by the
brain? The protractor would produce biased measure of angles—
the so-called “regression to right angles” tendency (Wundt,
1898). Day (2010) treats Poggendorff, Zöllner and Müller-Lyer as
instances of a same basic effect, whereas most other authors treat
them as distinct effects.

I believe that it is very important—as a substitute for bril-
liant insights—to develop objective classification criteria, based
upon experimental paradigms. There were great hopes that the
stereoscopic perception of illusory patterns could produce clear-
cut results. Seymour Papert (1961) constructed a random-dot
stereogram representing, in camouflaged form, a Müller-Lyer pat-
tern. This pattern could not be perceived monocularly, but clearly
emerged in depth under stereoscopic viewing. Since the pattern
was not accessible to the brain prior to the combination of the
optical information from the two retinas, Papert concluded that
the illusion arose at a late stage of visual perception, after the stage
of combination of the visual streams from the two eyes. Julesz
(1971) showed that other geometrical illusions that were cam-
ouflaged in random-dot stereograms, were similarly produced
under stereoscopic viewing (including Ponzo, horizontal-vertical,
Ebbinghaus, and Poggendorff). There was however an excep-
tion: the Zöllner illusion (Figure 1m) was not maintained in
the random-dot stereogram presentation. Therefore, it seemed,
it arises rather early in visual processing, before the stage at which
the streams from the two eyes are normally combined.

Thus, it seemed, stereoscopic vision provided an objective way
to classify the illusions into two groups, the “early” and the “late”
illusions. However, there was a hidden assumption in this work,
that was also present in almost all the stereoscopic work of Bela
Julesz: that the nature of the pattern is not altered by its encoding
in random-dot mode. His stereograms, by construction, did not
contain visible edges, contrary to natural scenes in which there are
plenty of edges at various orientations. So an effect that required
lines with well-defined orientations may not well be captured in a
random-dot stereogram. As a matter of fact, Herbomel and I were
able to construct stereograms containing camouflaged Zöllner
patterns with explicit edges. In this case, the Zöllner illusion was
well-preserved in stereo (Ninio and Herbomel, 1990). With a few
exceptions, studies on stereoscopic versions of 2d illusory pat-
terns were rare (but see, e.g., Schiller and Weiner, 1972; Wang and
Idesawa, 2004). One reviewer objected that RDS studies may be
misleading, beacuse “it could as well be that the same illusion can
occur early or late depending on how it is presented,” and he/she
suggested to “test the temporal resolution of an illusion viewed
monocularly vs. binocularly.” The suggestion to study the tempo-
ral aspects is quite pertinent. Actually, Rychkova and Ninio (2011)
have studied stereopsis under alternating presentation condi-
tions. Incidentally, they reported the existence of ‘intermediate’
3d percepts at sub-optimal alternation frequencies. The work
deserves being extended to stereograms representing illusory
patterns.

Another path to an objective classification of geometrical illu-
sions might be provided by the study of their dependence on
eye movements. It has long been held that geometrical illusions
do not depend on eye-movements, since they are also observed
when the stimulus is presented in a flash, too briefly to allow
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eye-movements. However, Fischer et al. (2003) reported that
“some well-known geometrical illusions disappear when the eyes
are fixating and saccades are suppressed for a period of time.
(. . .). Any saccade made on purpose restores the illusion imme-
diately.” Some illusory effects disappeared quickly upon fixation,
others seemed to persist but finally disappeared. A few illusory
effects were stable. Therefore, there is here a promising path to an
objective classification of geometric illusions.

There is still another possible experimental strategy that
applies to patterns that can be decomposed into two sub-
patterns (for instance, the Müller-Lyer illusions with ingoing
and ougoing fins). The method is to present the two sub-
patterns in rapid alternation on a computer monitor. There is
a spectacular effect of shrinkage or expansion on the screen.
However, there is no systematic study of such effects, to my
knowledge.

Starting in the end of the 1990’s, I initiated with Kevin O’Regan
a program with the ambition to acquire data that could be useful
in an objective classification of geometrical illusions. We mea-
sured the magnitude of illusions in various figures at equally
spaced orientations, over a range of 360◦. We thereby produced
what might be termed “orientation profiles.” Comparing the ori-
entation profiles for many illusions and their variants gave us
a sensitive technique for judging whether the variants might be
related, and whether or not they are likely to be derived from the
same underlying mechanisms (Ninio and O’Regan, 1996, 1999).
Precise orientation profiles also allow us to decompose an illusory
effect into more elementary components, see Section Orientation
Profiles.

ORIENTATION PROFILES
GENERAL
By “orientation profile”, Kevin O’Regan and I (1996) meant the
plot showing how the magnitude of an illusory effect in a pattern
varied as a function of the orientation of the pattern. We hoped
to obtain, for each illusion a kind of characteristic signature.
By comparing orientation profiles of various illusions, we would
be able, we thought, to improve the illusion’s classification. It is
important, in my opinion, to study geometrical illusions at all ori-
entations. Theories about illusory patterns as somewhat related to
perspective effects in a “carpentered world” (e.g., Gregory, 1963;
Spehar and Gillam, 2002; and many others) become less convinc-
ing when one looks at detailed orientation profiles. The discussed
illusory effects occur at nearly all orientations. Their magnitude
varies smoothly with their orientation. It is sometimes rewarding
to look at any illusion just upside down. Our monkey ancestors
were living part of the time swinging with their tails wrapped on
a branch, and the body upside down—this would explain why the
perception of some illusory patterns is not as strongly dependent
upon the vertical and the horizontal as required by perspectivist
theories.

HORIZONTAL-VERTICAL ILLUSIONS
Some orientation profiles had already been published by several
authors, in particular for the horizontal-vertical illusion and some
of its variants (Hoffmann and Bielchowsky, 1909; Künnapas,
1955; Cormack and Cormack, 1974; Bulatov and Bertulis, 1999).

If we rotate a horizontal and a vertical segment in the plane, they
exchange their status every 90◦. In the intermediate range of rota-
tions (for instance when the original test figure is rotated by 30◦,
so that one segment is at 30◦, and the other is at 120◦), there
is still an illusory effect. There are also hints that the orienta-
tion profiles are less symmetrical with respect to the vertical than
expected. Quantitatively, the illusion varies smoothly all around
the trigonometric circle. The observed smooth variation may be
unexpected for some of us, but it may be rationalized by invok-
ing a general anamorphosis in the vertical direction, so whatever
the orientation of a segment, its vertical component would be
enlarged. However, I am not aware of the existence of a mathe-
matical treatment of the data that would support or refute this
interpretation.

MÜLLER-LYER
My experiments on orientation profiles with Müller-Lyer pat-
terns were frustrating. I studied stimuli containing Müller-Lyer
patterns and visually related stimuli, including the receding
arrow illusion (Figure 3h), and Judd’s bisected arrow illusion
(Figure 1c). Unfortunately, my orientation profile experiments
failed to show a relationship between the Mûller-Lyer, the Judd
and the receding arrow illusions. The results with Müller-Lyer
patterns were erratic. They were strongly subject-dependent,
there was no simplifying symmetry when the patterns were
turned upside down, etc. My provisional, not too satisfactory,
explanation is that a subject may compare the lengths of the
segments between the fins according to various criteria, (for
instance, forming a virtual rectangle with a pair of segments,
looking at orientations, etc.) and the criterion he/she chooses
depends upon the orientation of the stimulus. These erratic
results are in strong contrast with almost all my other results
on orientation profiles. It was perhaps a mistake to study pairs
of patterns placed one above the other. I now recommend to
study versions of the illusion in which the shafts are placed on a
same line. Bertulis and Bulatov (2001) published detailed data on
the Müller-Lyer illusion at two orientations; they also performed
detailed studies of the Oppel-Kundt and the bisection illusions,
and showed their orientation profiles.

POGGENDORFF
The Poggendorff illusion and its many variants (Figure 10) have
generated a considerable amount of speculations, and a reason-
able amount of experimental studies. In its standard variant,
there are two collinear segments abutting obliquely on two, usu-
ally long, parallel lines. The illusion consists in the fact that the
two collinear segments appear to be parallel but not collinear,
and the direction of their lateral separation is what would have
occurred had the segments rotated around the abutting intersec-
tions according to a law of enlargement of acute angles. Theories
of the Poggendorff illusion usually invoke a rationale based on
perspective effects in a carpentered world (e.g., Gillam, 1971;
Phillips, 2006), or in natural surrounds (Howe et al., 2005). In
another spirit, theoretical discussions have focused on whether
the Poggendorff illusion should be due to a metric effect, or to an
orientational effects. Greene (1994), p. 666, lists 6 possible com-
ponents to the Poggendorff illusion that were put forward in 15
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FIGURE 10 | Poggendorff variants and controls. Orientation profiles were
established by Ninio and O’Regan (1999) for the 15 patterns of this figure
(c,d,h,i,l,n) are controls for the various corresponding illusory patterns.
They were subtracted from the results on the illusory patterns. Data were
obtained for the corner-Poggendorff illusion (g), our standard Poggendorff
illusion (e,f), the obtuse angle variants (a,b), the illusions with a single
oblique (j–m). The patterns in (o,p) were studied by Weintraub et al., and
some of their results were reproduced in Ninio and O’Regan (1999). The
“L” and “R” annotations in (a,b) indicate our conventions for distinguishing
a pattern from its mirrror-image pattern.

publications. The “corner-Poggendorff” pattern (Figure 10g) is
particularly interesting because here, the collinear obliques do not
seem to be parallel, they do seem to diverge according to a law of
perceptual enlargement of acute angles. Vicario and Zambianchi
(1993) argue that this pattern is not a Poggendorff variant, but
a variant of a pattern proposed earlier by Judd (1899), in which
two collinear segments abut on an ellipsoidal shape, and seem
to diverge (Figure 2i). I fully agree with them on the equivalence
between the Judd pattern and the corner-Poggendorff pattern, but
I consider both as variants of the Poggendorff effect.

Quite important and detailed observations were published by
Weintraub and co-workers on variants of the Poggendorff illusion
(Weintraub et al., 1980). Weintraub and his colleagues studied
the simplified pattern composed of two parallel lines, an oblique
abutting on one line, and a small disk on the other line, collinear
with the oblique (Figures 10o,p) They found that the main deter-
minant of the illusion was the orientation of the oblique—not
that of the parallels. They reported orientation profiles for several
angles between the oblique and the parallels (from −15◦ to −90◦
and from 15◦ to 90◦). They showed that the illusion increased
when the angles decreased in absolute values and that there were
maxima around the −45◦ and +45◦ orientations of the obliques,
but not exactly.

Kevin O’Regan and I reexamined the issue. We determined the
orientation profiles for Poggendorff patterns having a 45◦ angle
between the oblique and the parallels, and there were several con-
trols to distinguish between metric and orientational effects (see
Figure 10). We confirmed the observations of Weintraub and co-
workers and found, to our surprise that the variant they had

studied, with a single oblique gave a far stronger illusion than any
of the other classical variants (see Figure 11).

We firmly concluded from our orientational profiles that the
Poggendorff illusion is mainly a misangulation effect—contrary
to my initial hypothesis, developed in Ninio (1979). This effect
is observed in its purest form, in the corner-Poggendorff illusion.
In this pattern, the misangulation component is always compat-
ible with a trend toward orthogonality. It has a characteristic
orientation profile: the maxima are located strictly at the ±45◦
orientation of the obliques, and the peaks are quite symmetric
(Ninio and O’Regan, 1999). In most other variants, the illusory
pattern is asymmetric, one can speak of an “L” variant, and its
symmetric “R” variant (see Figures 10a,b). In the orientation
profile of the “R” variant, there is a maximum near the 45◦ orien-
tation, whereas the maximum is around 67◦ for the “L” variant
(Figure 11a). The results are contaminated by the “pure mis-
alignment effect” (the Zehender, 1899 illusion, Figure 10i) that
tends to increase the illusion at some angles for one configuration,
and decrease it by the same amount in the symmetric configura-
tion. After subtraction of the pure misalignment effect, we obtain
the profiles in Figure 11b. The maxima are shifted significantly.
The magnitude of the illusion is much larger than in the case of
the corner-Poggendorff, and it is lower in the patterns with two
obliques, than in the patterns with a single one.

Kevin O’Regan and I interpreted the hierarchy of illusion mag-
nitudes as follows. We postulated that parallelism, more than
collinearity, is a strong primitive in shape perception. If misan-
gulation plays a role, in the standard Poggendorff illusion, it
would affect collinearity judgments but not parallelism judg-
ments in most patterns, because the misangulation effects would
be compatible with the maintenance of the parallelism of the
two obliques. However, in the case of the corner-Poggendorff
configuration, misangulations on the two sides of the corner
destroy the parallelism of the obliques. Then, the misangulation
effects is counteracted by the influence of parallelism detectors.
Now, why does the configuration with a single oblique give a
stronger illusion than those with two obliques? Perhaps there is
a collinearity detecting device (Field et al., 1993) that works well
with segments, thus counteracting the variants with 2 collinear
obliques.

ZÖLLNER WHEN AN ORIENTATION ILLUSION BECOMES A METRIC
ILLUSION
I made an erroneous choice, in my theoretical 1979 article (Ninio,
1979). I left aside the Zöllner illusion (being in part, induced in
error by Bela Julesz). It seemed obvious to me that the Zöllner pat-
terns had a chiral character (one of the two stacks can be labeled
left the other can be labeled right—see Figure 1m). The illusion
can be described by saying that one pattern is perceptually rotated
clockwise, and the other one is rotated in the anti-clockwise
direction. So, I thought that the brain was sensitive to the chiral
character of the stacks and that it applied independent transfor-
mations to each stack (Ninio, 1977). This was, characteristically
a youth mistake, I was very pleased to find, in a phenomenon of
shape perception, the imprint of a subtle mathematical notion.
However, chiral patterns generating a torque are now invoked—
with reason, I believe—in relation to illusions of the Münsterberg
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FIGURE 11 | Orientation profiles in the Poggendorff illusion, and some

of its variants (from Ninio and O’Regan, 1999). Top panels (a)

Misalignment measured in the obtuse-angle (Figures 10a,b) and the
standard Poggendorff (Figures 10e,f) configurations. The errors are given
in degrees, according to a mathematical procedure described in Ninio
and O’Regan (1999), applicable in a homogeneous way to all the studied
patterns. The results for the L and the R configurations are shown
separately. Each data point represents an average over 100 experimental
determinations (10 measurements by each of 10 subjects). (b) The same

results after subtraction of the pure misalignment effect (Figure 10c) are
shown in the central panel. Bottom panels (c) Misangulation in
configurations with a single arm. The results for the L and the R
configurations are shown separately, as indicated in the figures. Here,
black disks or unfilled circles represent averages of the results for
patterns of Figures 10j,m. Each black disk or unfilled circle represent
averages over 10 measurements by each of six subjects. The diamonds
are replotted from the work of Weintraub et al. (1980), and correspond
to one measurement made by each of 48 subjects.

family (Figure 2k, see e.g., Wade, 1982; Kitaoka, 1998; Kitaoka
et al., 2001).

The Zöllner illusion was studied in conjunction with several
variants in a large number of studies. It was often compared with

Orbison-like patterns (a target line over a background of paral-
lel inducing lines at a different orientation) or with tilt illusions
(a target line surrounded by a band of parallel inducing lines
at a different orientation). In particular many such studies were

Frontiers in Human Neuroscience www.frontiersin.org October 2014 | Volume 8 | Article 856 | 16

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Ninio Classification of geometrical illusions

performed in Japan (review in Oyama, 1960), and orientation
profiles were published, but they lacked precision concerning the
position of the peaks and their shapes. Kevin O’Regan and I were
mostly interested by the following question: Is the Zöllner illusion
the result of an interaction between stacks of opposite handed-
ness (as it is nearly always represented, for instance in Figure 1m),
or can it be already demonstrated in stacks of a single, left or
right handedness? The orientation profiles were established for 10
variants, plus some variants of variants. Ironically, the standard
presentation of the Zöllner illusion as closely packed, vertically
oriented stacks is about the least efficient one, first because the
illusory effect is minimal at the vertical orientation of the stacks,
then because the illusion increases with the separation of the
stacks.

The results were consistent with the existence of a single com-
mon mechanism underlying the standard pattern of Figure 1m,
and the other patterns, including patterns with stacks of a sin-
gle polarity, or patterns with two stacks of different polarities,
but arranged in a non-classical way (e.g., Figure 7e). Concerning
this figure, a reviewer objected “that to see the top middle seg-
ment between the two converging lower stacks as part of those
stacks would mean that the observer groups that segment with
the stacks. I hardly believe this to be the case (. . .) In addition,
consider that eventually, if forced to see the connection between
the central segment and either or both stacks, you would have a
variation of the Oppel-Kundt illusion, not of the Zöllner illusion.”
However, Figure 7e is one of several variants studied in the 1996
article, and the results were highly consistent over all variants and
orientations. The points raised by the Reviewer may contribute to
the illusion, but cannot be, in my opinion, its major determinants.
O’Regan and I suggested that the illusion itself is not a rotation of
the stacks but “a shear deformation in which the segments of a
stack slide with respect to one another, or an expansion of the
stacks orthogonally to the segments.”

In order to have a more precise idea about the nature of
the deformation in the Zöllner illusion, consider the pattern of
Figure 7f with a single Zöllner stack, and two abutting collinear
small segments at the two ends of the stack (Ninio and Pinna,
2006). It can be considered as a hybrid Zöllner/Poggendorff
pattern. There is a perceived misalignment effect, and it is as pre-
dicted by a Poggendorff illusion. We anticipate that there is also
a Zöllner illusion in the stack. But if this illusion amounts to a
rotation of the whole stack, we should expect no effect on the
positions of the abutting segments. If the illusion amounts to
a shear deformation, there should be a disruption of collinear-
ity of the abutting segments, but in a direction opposite to that
of the Poggendorff effect. In this case, Zöllner and Poggendorff
effects would counteract each other. Last, if there is an orthog-
onal expansion of the stacks, the Zöllner and the Poggendorff
effects would reinforce each other. Now, consider the control pat-
tern of Figure 7g. Here, two segments are abutting orthogonally
to the terminal segments of a Zöllner stack. The two abutting seg-
ments are collinear. There can be no Poggendorff effect, because
the abutting angle is 90◦. A Zöllner illusion due to a rotation of
the stacks, or due to an orthogonal expansion of the stacks should
produce no disruption of collinearity, but a shear deformation
would produce a substantial disruption of collinearity—which is

not observed. Actually, I carried out a very substantial orientation
profile studies on the patterns of Figures 7f,g and their mirror-
image patterns, with controls on pure misalignment effects. The
results of this study run against the shear deformation expla-
nation of the Zöllner illusion, and are in full support of the
orthogonal expansion theory. It would even seem, from an illu-
sory figure by Botti (1909), that orthogonal expansion might
work better with oblique than with straight stacks Figure 7d).

In an exhaustive survey of tilt illusions, involving both known
and new effects (Ninio and Pinna, 2006) we showed that a large
number of variants of the Zöllner illusion could be described
with a well-known metric effect, that of expansion of subdivided
extents (the known prototype being Helmholtz square), and the
adjunction of a simple clause: that the expansion effect occurs
orthogonally to the dividing lines. Careful examination of Zöllner
stacks indicate that this cannot be the whole story, since there are
also effects on the lengths of the segments composing the stacks.
Not too surprisingly, some articles in the field are misguided. The
emphasis of Dakin et al. (1999) on the interaction between the
orientation of the segments in the stack, and their envelope in
the stack is misplaced, because the Zöllner effect can be shown to
work with envelopes oriented in any direction.

Psychophysical work by Morgan on the Poggendorff illusion
(Morgan, 1999) clearly indicates the importance of the local con-
tacts between the parallels and the abutting segments. On the
other hand, the illusory effects in the Zöllner family do not
seem to require local contacts (see Figure 4d). So, there is, in my
opinion, a dividing line between the two families of illusions.

TRAPEZIUM, SQUARE-DIAMOND AND OTHER ILLUSIONS
I determined orientation profiles for two classical illusions, the
trapezium illusion and 3 variants, and the square-diamond illu-
sion and 7 variants (Ninio, 2011b). The trapezium illusion was
maximal when the bases of the trapeziums were horizontal, and
minimal when they were vertical. The oblique sides, but not the
bases, were essential to the illusion, suggesting the existence of
a common component between the trapezium and the Zöllner
illusion. The study is made somewhat difficult by the fact that
figures with trapeziums often lead to interpretations in perspec-
tive that perturb the comparison of trapeziums as flat figures (see
also the paradoxical appearance in Figure 6j). One philosophi-
cally important side-result of the study is that two trapeziums in
the standard configuration can never be altered in such a way as
to be seen equal! When you try to equalize (by a nulling proce-
dure) the two large bases and the orientations of the two sides,
the small bases look unequal, and when you try equalize the two
small bases and the orientations of the sides, then the two large
bases look unequal. It is thus impossible to draw two trapeziums,
one above the other, so that they would look identical.

The square-diamond illusion is usually presented with one
apex of the diamond pointing toward the square (Figure 8f). I
found that when the figures were displayed more symmetrically
(Figure 8g) the illusion was significantly reduced. Furthermore,
it is surpassed, for all subjects, by an illusion that goes in the
opposite direction, in which the diagonal of a small diamond
is underestimated with respect to the side of a larger square
(Figure 6c and Ninio, 2011b).
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DISCUSSION
My main motivation here was not to propose a theory on the
origin of geometrical visual illusions (although I have one, see
below) or discuss alternatives to the many circulating theories,
that involve depth processing, eye movements, filtering, neu-
ronal mechanisms, natural scene statistics and so on. I have
been aiming at finding the most adequate formal description
for what there is in an illusion. Typically, when we look at the
Zöllner illusion, as usually presented (Figure 1m), in which the
stack labeled L is a mirror-image of the stack labeled R, we
may think that the stacks of opposite polarities L and R repel
each other at one end, and attract each other at the other end.
Experimental studies demonstrate the falsehood of this intuition,
because whatever distortion we find in the usual displays with
multiple parallel stacks of opposite polarities is also well detected
with stacks of a single polarity. So, what happens to the Zöllner
stacks? Intuitively again, we might describe the distortion as a
(clockwise or counter-clockwise) rotation of the stack. Then, we
might invoke physiological interpretations, involving orientation
detectors in the visual cortex, and interactions between classes
of orientation detectors that capture various aspects of a Zöllner
stack. It is not my purpose to challenge or to support the phys-
iological interpretations. I remain at a descriptive level, in a way
reminding the early formal geneticists who described the laws of
genetic transmission, before knowing the nature of the genetic
material. So, my question is: does the distortion in the Zöllner
stack amount to a rotation? There is at least one good argu-
ment to oppose to the rotation hypothesis of the stacks: the
oblique segments that compose the stack are never perceived with
an incorrect orientation. For instance, in Figure 7e, the vertical-
ity of the segments is clearly perceived, while at the same time,
there is clearly an illusion. When we look at Figure 7e, another
descriptive hypothesis comes to mind: that the segments com-
posing the Zöllner stack slide with respect to their neighbors.
Thus, in Figure 7e, it is as though the segments that are com-
posing the stacks are sliding down differentially. In this case, the
best description for the distortion in a Zöllner stack would be a
shear deformation. However, a shear deformation would predict
a misalignment of the small sides of the corners at the ends of the
Zöllner stack of Figure 7g, but there is strictly no illusion there.
One possibility remained, that the segments composing the stack
is subject to an expansion that is orthogonal to the segments of
which it is composed (see Figure 7c). Through the accumulation
of experimental results (in collaboration with Kevin O’Regan)
then the examination of a very large number of illusory patterns
that seemed related to the Zöllner illusion (in collaboration with
Baingio Pinna), I favored an orthogonal expansion principle to
describe the distortions in the Zöllner illusion. This principle
can describe a number of visual illusions not usually associated
with the Zöllner illusion. These include the Helmholtz square
illusion and the illusions of the Ehrenstein and Orbison fam-
ily: The principle predicts, as a side effect, a regression to right
angles tendency—see Figure 7b, and from there, other illusions
such as Hering’s illusion (Figure 1o) and perhaps tilt effects (e.g.,
Figure 4c). I also aggregate the trapezium illusion with Zöllner
(see Figure 4i) A complicating factor in the experiments is the
fact that the lengths of the segments are most probably subject to

small variations from one end of a Zöllner stack to the other end.
This needs to be documented.

The illusions of the twisted cord family are often associated
with the Zöllner illusion, but I will draw a frontier between the
two. The twisted cord (Figure 2l) and the related Fraser illusions
are usually presented with at least three levels of gray. But there are
weaker versions of these illusions in pure black outlines (Stuart
and Day, 1988). The illusion strength has been studied as a func-
tion of the angle of the obliques composing a stack and the axis
of the stack (e.g., Oyama, 1975), showing an inversion around
10–15◦ from a twisted cord to a Zöllner effect. This taken alone
does not disprove the existence of a link between the two illusions.
But there are also quite different effects associated with the two—
it is not merely a question of sign reversal. In Figure 4g, I show
a Zöllner effect with all-black or all-white stacks, and show the
opposite effect with exactly the same geometry, but with an alter-
nation of black and white sections. In Figure 2k a Münsterberg
pattern is annotated. The A–B obliques would generate a Zöllner
pattern, but the configuration with A and C well separated on the
opposite sides of a segment seems to be essential for most of the
illusions of the Münsterberg and Fraser family—see for the first
the checkered patterns in (Wade, 1982); Wade, and for the second
the variations by Kitaoka (1998) or Kitaoka et al. (2001).

Contrary to the pessimistic introduction to this review, I
believe that some definite progress has been achieved in this
area of “orientation illusions.” There are two main classes:
an orthogonal expansion class, and a twisted cord class. The
Poggendorff illusion is left out of this classification. It is, I believe,
correctly described by a misangulation distortion (see Section
Poggendorff), for which Morgan (1999) proposed a physiological
explanation.

A large number of other illusions were discussed within a mea-
surement framework. Assuming that the brain is constructing
a representation from measurements taken on the illusory pat-
tern, I proposed that a “convexity” principle (Section A Basic
Metric Rule: The Convexity Principle) could well describe a
number of effects. There is a difference between the traditional
description by “contrast,” and the description by “convexity,”
although both assume a perceptual increase of large over small
extents. In the explanations involving contrast, two adjoining
figures (for instance, a peripheral and a central circle in the illu-
sion of Ebbinghaus) are compared. However, in many illusions,
for instance the Müller-Lyer patterns of Figures 1a,b two equal
segments seem to have different lengths, and a principle of assim-
ilation with neighboring segments is then invoked. On the other
hand, in the explanations involving convexity, measurements are
taken over all the segments in a figure, a global representation is
constructed, and compromises are made to deal with the discrep-
ancies. Convexity alone can describe pure contrast effects (such as
in Figures 5d,e,f) and, when complemented with the compromise
principle, convexity can describe many effects usually described
by an assimilation principle. Therefore, we have unified into a
coherent framework two classes of explanations that seemed to
be antagonistic. Here also, I think, there is a clear progress.

Yet, there are still many complications to deal with. It is as
though the brain was using several instruments to construct
a representation: a metric instrument to measure extents, an
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instrument to evaluate orientations (presumably, the edge detec-
tors of the visual cortex), and perhaps instruments to measure
collinearity, angles or curvature. Important differences in the
magnitudes of the illusions in very similar patterns may arise from
the fact that one pattern is interpreted with the help of a subset of
the instruments whereas the geometry of the other pattern makes
possible the use of an instrument that is outside the subset, and
acts as a control device that counteracts the illusion.

One thing that strikes me, in relation to measurement theo-
ries is that we have several ways of capturing metric information
through the eyes. We may view a scene by fixating a region with
still eyes, we thus get a kind of camera picture that follows the
rules of linear perspective. Or we may move our eyes over the
scene in which case we derive metric information that obeys the
rules of curvilinear perspective. However, we have a representa-
tion that does not seem to change as we move our eyes, then
stop, then move them again. There is also the related isuue of
shape constancy when the head or the body are tilted (e.g., Rock,
1990; Daini et al., 2003). We are also reminded that the results
of psychophysical experiments—at least in the case of studies on
the Poggendorff illusion—may reflect different types of process-
ing, that vary with some conditions of stimuli presentation, as
discussed by Gallace et al. (2012).

My conjecture is that evolution has devised a way to make us
see a scene in an extremely stable fashion. To achieve this goal, the
measurements taken with still eyes, and those taken with moving
eyes are subject to distortions so as to make them agree (Ninio,
1998). We may also wonder whether or not the illusory effects are
the same, when they are seen through the left, or the right eye? It is
known that through stereoscopic vision, the brain can match the
information flows from the two eyes with extraordinary precision.
In particular, it matches the left and right projections of an ori-
ented segment to deduce its orientation in 3d. From this, we may
anticipate that visual illusions have the same magnitude whether
measured through the left, or through the right eye, and perhaps
conjecture that left and right projections are subject to transfor-
mations, prior to the operations of stereopsis, to bring them into
comparable formats. By these arguments, I tend to believe that
at least some geometric distortions that manifest themselves in
visual illusions are deliberate, and have the goal to bring the visual
representations into a single format, at least for the purpose of
shape analysis, and make us see stable shapes, that do not vary
with eye motion or the closing of one eye. Note that there are
important differences in the viewing traditions of various popu-
lations, e.g., between a tribe of hunters, and a flock of television
watchers.

It has been argued that our visual representation of shape
is perhaps different from the representation that would guide
motor responses, such as grasping an object or pointing at a tar-
get (e.g., Goodale and Milner, 1992 claimed that the preparation
of the hand for grasping object was not influenced by illusory dis-
tortions; on the other hand, Melmoth et al., 2009 showed that
pointing errors were subject to the Poggendorff distortions). I
have no difficulty in accepting the idea that there may be sev-
eral representations of shapes, and that these representations are
tapped by different systems. It is clear, from visual memory work,
that there are several representations of a same stimulus. As we go

from iconic memory to short term visual memory then to deeper
layers, the representations become more and more abstract. Yet,
an abstract representation may work by its ability to activate a less
abstract one (for instance, the word “circle” is a compact, abstract
way of encoding the visual shape of a circle). It may well be that
an early, topographic representation is used to direct hand move-
ment rapidly, and that a more stable representation is constructed
afterwards for a finer understanding of shape.
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