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People are habitual explanation generators. At its most mundane, our propensity to explain
allows us to infer that we should not drink milk that smells sour; at the other extreme,
it allows us to establish facts (e.g., theorems in mathematical logic) whose truth was
not even known prior to the existence of the explanation (proof). What do the cognitive
operations underlying the inference that the milk is sour have in common with the proof
that, say, the square root of two is irrational? Our ability to generate explanations bears
striking similarities to our ability to make analogies. Both reflect a capacity to generate
inferences and generalizations that go beyond the featural similarities between a novel
problem and familiar problems in terms of which the novel problem may be understood.
However, a notable difference between analogy-making and explanation-generation is that
the former is a process in which a single source situation is used to reason about a single
target, whereas the latter often requires the reasoner to integrate multiple sources of
knowledge. This seemingly small difference poses a challenge to the task of marshaling
our understanding of analogical reasoning to understanding explanation. We describe a
model of explanation, derived from a model of analogy, adapted to permit systematic
violations of this one-to-one mapping constraint. Simulation results demonstrate that
the resulting model can generate explanations for novel explananda and that, like the
explanations generated by human reasoners, these explanations vary in their coherence.

Keywords: explanation, analogy, logic, modeling, LISA

INTRODUCTION
People constantly seek, generate, and evaluate explanations
(Thagard, 1989, 2012; Sloman, 2005; Keil, 2006). At its most mun-
dane, our propensity to explain guides our simplest actions, as
when we decide to throw away sour milk: “The milk smells sour
because it has gone bad.” At the other extreme, explanation (aka,
abduction; see Josephson and Josephson, 1994; Magnani, 2009)
lies at the heart of our most uniquely human endeavors, including
science, engineering and mathematics. And in between, it helps
us to understand why a street might be closed or why people in
Kansas tend to vote Republican. As anyone who has ever given an
essay exam knows, the ability to explain is also a powerful index
of understanding.

What all these activities have in common is that they are largely
inductive exercises' : Our inference that the milk has gone bad
is based on our previous experiences with spoiled milk, rather

n practice, it is difficult to distinguish inductive inferences from deductive
inferences from faulty axioms. If you misidentify a car in the parking lot as
“your car;” is this an inductive inference (which is not guaranteed to be right,
even given correct premises and a syntactically valid inferential form) or a
(valid) deductive inference from faulty premises? In this paper, we shall refer
to inferences of this kind, and of the kind underlying analogy and explanation
in general, as inductive to emphasize the fact that they are not guaranteed to
be right and the fact that they are typically based more on specific experiences
than a-priori axioms.

than the fact that sour-smelling milk is logically guaranteed to
be spoiled (consider, e.g., buttermilk). Scientific theories are sim-
ilarly inductive in nature. Observations consistent with a theory
add to the evidence that the theory is correct, but they do not
logically prove it correct (a fact known as the problem of scien-
tific induction). Even our species’ most purely deductive endeavor,
logical theorem proving, has an element of induction at its base:
A mathematician’s proof of a theorem may consist entirely of
deductive reasoning from the premises to the conclusion, but
the theorem itself likely arose from less formal, more inductive
(perhaps even “intuitive”), origins.

These considerations suggest a common set of inductive mech-
anisms may underlie all our explanatory behaviors, from throw-
ing away the milk, to discovering and refining the theory of
gravity or evolution, to the decision that Poincare’s Conjecture
or Godel’s Incompleteness Theorems are worth trying to prove.

All animals are capable of inductive inference. Even a rat will
freeze at the presentation of a tone that has been paired with a
shock, or press a lever in anticipation of a food reward. But the
human capacity for inductive inference differs qualitatively from
the inductive abilities of other primates in our ability to make
inferences that depend, not just on the perceptual features of the
objects involved, but on the relations between those objects (Penn
et al., 2008): The fact that a planet orbits a star does not depend
on the perceptual “features” of the planet or star, but on the rela-
tions between the bodies’ masses and distance. And the fact that
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a log will make a suitable bridge across a stream depends on the
relation between the length of the log and the width of the stream,
and on the relation between the strength of the log and the weight
of the objects we wish to move across the stream.

ANALOGY AND EXPLANATION: THE ROLE OF FLEXIBLE RELATIONAL
KNOWLEDGE REPRESENTATION

Chief among the manifestations of our ability to reason explicitly
about relations is our ability to reason using analogies, schemas,
and rules (Gick and Holyoak, 1980, 1983; Gentner, 1983; Holyoak
and Thagard, 1995; Hummel and Holyoak, 1997, 2003). Indeed,
analogy-making is broadly regarded as a sine qua non of rela-
tional thought (see Gentner, 1983; Holyoak and Thagard, 1995;
Doumas et al., 2008). Accordingly, although a detailed, algo-
rithmic account of explanation remains largely elusive (but see
Friedman and Forbus, 2008; Hummel et al., 2008; Hummel and
Landy, 2009; Landy and Hummel, 2010, for progress in this direc-
tion), accounts of explanation generation, use (Ahn et al., 1987;
Vosniadou and Brewer, 1987; VanLehn et al., 1992; Patalano et al.,
2006), and evaluation (Keil, 2006; Lombrozo and Carey, 2006)
rest on assumptions that are common to explanation-generation
and analogy-making (e.g., Falkenhainer, 1990).

This paper presents our early attempts to understand, at a
detailed algorithmic level, the cognitive operations that underlie
our ability to generate explanations. One of our goals in this work
is to understand what our decision to throw away spoiled milk
has in common with, say, the insights that led Godel to prove the
incompleteness of mathematics (on certain reasonable assump-
tions). As the empirical literature on explanation generation is
comparatively thin, our starting point is one of first principles:
What do we know about how people generate explanations, and
how can those facts constrain our modeling?

One thing we know about explanation is that it depends on our
ability to flexibly access, combine, and apply existing knowledge
(Ahn et al., 1987; Vosniadou and Brewer, 1987). This flexibility is
illustrated by an experiment by Patalano et al. (2006). In one con-
dition, Patalano et al. gave subjects a novel explanandum of the
form “In the population as a whole, people tend to prefer Pepsi
to Coke as often as they prefer Coke to Pepsi. However, minis-
ters tend to prefer Coke over Pepsi,” and asked them to explain
this new “fact.” Their research subjects generated many different
explanations, but one of the typical ones took the general form:
“Ministers tend to be conservative. Perhaps the Coke Corporation
supports conservative causes.” This explanation reflects a combi-
nation of knowledge about ministers, corporations, and the kinds
of factors that can lead a person to prefer one product to another,
and reflects tremendous flexibility in the way that knowledge is
assessed and combined.

The way we generate explanations suggests at least three kinds
of flexibility in the representations and processes underlying those
explanations. The first is the kind of relational flexibility under-
lying analogical reasoning. For example, one way to account for
the “conservative causes” explanation above is to assume that the
subject knows that if a person agrees with the political leanings
of a company, then that person will tend to prefer the prod-
ucts of that company. Such a schema needs to be relationally
flexible in the sense that it needs to be variabilized so that, in

the limit, it can be used to reason about any person, product and
company.

Second, explanation requires sermantic flexibility so that it can
exploit partial but imperfect matches between the objects and
relations composing an explanandum and those in the relevant
schemas or examples in LTM. For example, imagine that our
experimental subject did not have a “product preference schema”
but did know of a prior case in which her friend preferred to use
a particular cell phone company because of their liberal-leaning
political activism. The subject could use this prior example as a
source analog (Holyoak and Thagard, 1989) with which to reason
about the situation involving ministers and Coke, but only if their
mental representations of the situations allowed them to tolerate
the semantic differences between their friend, the cell phone com-
pany, and the cell phone service on the one hand, and ministers,
the Coca Cola Corporation, and Coke on the other (Hummel and
Holyoak, 1997).

These same kinds of flexibility also characterize human reason-
ing using analogies, schemas, and rules (Holyoak and Thagard,
1989, 1995; Falkenhainer, 1990; Hummel and Holyoak, 1997,
2003).

BEYOND ANALOGY: CAUSAL KNOWLEDGE FLEXIBLE KNOWLEDGE
INTEGRATION

Although our capacity for explanation shares a great deal with
our capacity for analogical reasoning, two additional proper-
ties of explanation seem to distinguish it from general-purpose
analogy-making. The first concerns the role of causal relations
(and related higher-order relations, such as logical entailment).
Although higher-order relations play an important, even crucial,
role in analogy (e.g., Gentner, 1983; Markman, 1997), analogy-
making is nonetheless seen as a general-purpose inference engine,
equally happy to operate over all kinds of relational structures.
By contrast, causal relations enjoy a privileged organizing role
in explanatory structures: It is almost impossible to answer the
question why? without invoking because. As elaborated shortly, we
conjecture that, as embodied in explanations, causal relations are
neither as implicit as simple “associative links” (as embodied, say,
in the Rescorla and Wagner, 1972, model of associative learning,
or even in extant Bayesian models of causal inference) but neither
as explicit, and thus working-memory (WM)-demanding, as full-
blown variabilized relations (Hummel et al., 2008). Rather, they
are explicit structures that organize explanations into meaningful
parts and guide explanatory reasoning, but which can be held in
WM along with the structures they relate.

A second important difference between analogy and explana-
tion concerns the scope of the knowledge structures brought to
bear on the solution of a problem. Analogy is typically construed
as a process of reasoning about a novel target problem or domain
in terms of a familiar source or base domain (Gentner, 1983; Gick
and Holyoak, 1983; Holyoak and Thagard, 1989; Hummel and
Holyoak, 1997, 2003), and accordingly, extant models of analogy
make inferences from a single source to a single target. Of course,
multiple source and target analogs may be used for the purposes
of inducing a general schema or rule from multiple examples
(Gick and Holyoak, 1980, 1983; Gentner and Medina, 1998;
Kuehne et al., 2000; Hummel and Holyoak, 2003) or learning a
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new relation (Doumas et al., 2008). But within any single rea-
soning episode, reasoning is conceptualized as being based on
the mapping from a single source to a single target, and this
convention not arbitrary.

The key bottleneck in analogical reasoning is the process of
mapping the target onto the source: Finding a set of correspon-
dences between the elements (objects, relations, and proposi-
tions) of the target and source that systematically reflects the
relational structures of both (e.g., Gentner, 1983; Falkenhainer
et al., 1989; Holyoak and Thagard, 1989, 1995; Hummel and
Holyoak, 1997). Only once these mappings have been established
can structurally consistent inferences about the target be drawn
from the source. However, this mapping problem is fundamen-
tally ill-posed without assuming constraints on its solution. One
of the most basic constraints on mapping—one that is univer-
sally accepted among models of analogical reasoning—is the 1:1
mapping constraint: Each element in the target may correspond
to at most one in the source, and vice versa. Even with this con-
straint, mapping is hard (NP-hard, to be precise), but at least
it’s solvable; without it, analogical mapping would be hopelessly
underconstrained (e.g., Falkenhainer et al., 1989; Holyoak and
Thagard, 1989). Consistent with these computational consider-
ations, Markman (1997) showed that human analogy-making is
likewise bound by this 1:1 mapping constraint.

Things are not so tidy in the case of explanation. Generating an
explanation often requires integrating information from multiple
sources in LTM. Returning to our ministers and Coke exam-
ple, the reasoner may have one set of schemas describing the
properties of ministers, another describing the conditions under
which one’s beliefs might lead to particular product preferences,
and yet another describing what it means for one person (e.g.,
a minister) to agree with another person or entity (e.g., the
Coke Corporation). In order to generate the “supports conserva-
tive causes” explanation, it is necessary to integrate these diverse
sources of knowledge, somehow keeping track of what corre-
sponds to what within and between the explanandum and the
various schemas. And in order to integrate information from
multiple sources in LTM, it is necessary to violate the 1:1 mapping
constraint: The minister in the explanandum will correspond
to one object in the product preference schema and a different
one in the ministers schema. As elaborated below, we present a
solution to this problem that works by serializing the mapping
of the explanandum onto the various knowledge structures in
LTM. In contrast to the kind of serialization that goes on in the
case of schema-, rule-, or relation-induction from multiple exam-
ples, the serialization required for explanation must be performed
in the service of making inferences about a single target (the
explanandum) during a single reasoning episode.

A PROCESS MODEL OF EXPLANATION

KNOWLEDGE REPRESENTATION

The point of departure for our effort is Hummel and Holyoak’s
(1997, 2003) LISA model of analogical reasoning. LISA is an arti-
ficial neural network whose representations and processes are ren-
dered symbolic (i.e., explicitly relational) by virtue of its solution
to the problem of dynamically binding relational roles to their
fillers. LISA represents propositions [such as prefer (ministers,

Coke)] using a hierarchy of distributed and progressively more
localist codes (see Figure 1).

At the bottom of the hierarchy, objects and relational roles are
represented as patterns of activation distributed over units coding
for their semantic features. At the next level, objects and roles are
represented by localist object and role units, which share bidirec-
tional excitatory connections with the semantic units describing
them. For example, the object unit minister might share connec-
tions with semantics such as human, adult, religious, official, etc.
Role-filler bindings are encoded by sub-proposition units (SPs),
which share bi-directional excitatory connections with the object
and role units they bind together. At the top of the hierarchy,
proposition (P) units bind individual role bindings (SPs) together
into complete propositions.

This hierarchy represents propositions both in LISA’s LTM
and, when a proposition becomes active, in its WM. In LTM, a
proposition’s role bindings are represented strictly by the con-
junctive SPs. However, this kind of conjunctive code is inadequate
as a general solution to the binding problem in WM, because it
fails to represent relational roles independently of their arguments
(Hummel and Biederman, 1992; Hummel and Holyoak, 1997;
Hummel, 2011). When a proposition becomes active (i.e., enters
WM) its role bindings are represented both conjunctively by the
SPs, and dynamically by synchrony of firing: The separate SPs
composing a proposition fire out of synchrony with one another.

prefer (ministers, Coke)

FIGURE 1 | LISA representation of the proposition prefer (ministers,
Coke). Semantic units (small circles) represent the semantic features of
objects and relational roles. Object and role units (large circles and
triangles, respectively) represent objects, such as ministers (M) and Coke
(C), and relational roles, such as preferagent (p1) and preferred-thing (p2),
in a localist fashion. Sub-proposition (SP; aka role-binding) units (rectangles)
represent bindings of arguments (objects or complete propositions) to
relational roles and proposition (P) units (oval) represent complete
propositions. When a proposition becomes active (i.e., enters working
memory), role-filler bindings are represented by synchrony of firing:
Separate role bindings (SPs, object, role and their associated semantic
units) fire out of synchrony with one another, and units representing the
same role binding fire in synchrony with one another.
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As a result, relational roles fire in synchrony with the fillers to
which they are bound, and separate role-filler bindings fire out
of synchrony with one another. On the semantic units, the result
is a collection of mutually desynchronized distributed patterns of
activation, one for each role-filler binding. These representations
have the property that they represent relational roles and their
arguments independently of one another (i.e., the same units will
represent a given object or relational role, regardless of the role or
object to which it happens to be bound at the time) and simul-
taneously specify how roles are bound to their fillers. They are
therefore both distributed and explicitly relational, i.e., symbolic
(see Hummel and Holyoak, 1997).

LISA’s knowledge representations are compartmentalized into
“analogs”: Collections of propositions that together represent
complete events, concepts, rules or schemas. Within an analog,
a given object or role is represented by a single unit regardless
of the number of propositions in which it plays a role. However,
separate analogs do not share object, role, SP or P units: A given
object or role is represented by one unit in one analog and by a
different unit in another analog. As such, object and role units do
not represent objects or roles in the abstract; they represent spe-
cific instantiations or tokens of those objects or roles in specific
analogs. (The same is true of SP and P units.) Accordingly, we will
refer to object, role, SP and P units collectively as token units. In
contrast to the token units, all analogs connect to a common pool
of semantic units. The semantic units thus represent the abstract
types to which the tokens refer.

For the purposes of LISA’s operation, analogs are divided into
three sets: A driver and one or more recipients are assumed to
reside in active memory (a primed subset of LTM that is larger
than WM; Cowan, 2001); all others are dormant in LTM. LISA’s
operations are controlled by the driver. One (or at most three)
at a time, propositions in the driver become active and enter the
phase set: The set of active but mutually de-synchronized role
bindings. The phase set is LISA’s WM, and like human WM (see
Cowan, 2001), is limited to at most 4—6 role bindings at a time.
The patterns of activation that propositions in the phase set gener-
ate on the semantic units excite other propositions in LISA’s LTM
(for memory retrieval) and in its active memory (for mapping,
analogical inference and schema induction) and thereby boot-
strap all the functions LISA performs (see Hummel and Holyoak,
2003, Supplementary Material, for the full details; source code
for the 2003 version of the model can be downloaded free from
http://internal.psychology.illinois.edu/~jehummel/models.php).

PROCESSING

Most of the operations performed by the model described here
are “standard LISA” and, unless stated otherwise, are performed
as described in Hummel and Holyoak (2003) (exceptions to this
generalization are described where they become relevant). LISA
performs memory retrieval as a form of guided pattern recogni-
tion (Hummel and Holyoak, 1997): Patterns of activation gener-
ated on the semantic units by one proposition tend to activate
other, similar, propositions in LTM, retrieving them into active
memory. For example, the patterns activated by the proposition
prefer (ministers, Coke) might activate the proposition prefer
(person, product) in the “product preference” schema.

Augmented with a simple algorithm for learning which struc-
tures in the recipient tend to activate which structures in the
driver, LISA’s retrieval algorithm serves as a basis for analogical
mapping: In this trivial analogy, ministers bound to prefer-agent
activates person bound to prefer-agent in the schema, and Coke
bound to preferred-object activates product bound to preferred-
object; as a result, ministers fires at the same time as (in synchrony
with) person and Coke fires with product, so LISA maps ministers
to person and Coke to product. The same is true for corresponding
roles of the prefer relation, and the SP and P units binding those
roles to their fillers.

LISA represents these correspondences as learned mapping
connections between corresponding structures (e.g., between min-
isters and person, etc.). These connections serve both to represent
the learned mappings and to constrain future mappings. They
also play a central role in LISA’s capacity for self-supervised learn-
ing—the core of its algorithm for analogical inference and schema
induction (Hummel and Holyoak, 2003).

One of the main adaptive functions of analogical thinking is
that it supports relational generalization: Inferences based on the
relational roles that objects play, rather than just the literal fea-
tures of the objects themselves. In the current example, once LISA
maps ministers to person and Coke to product (along with their
roles), it is then prepared to “copy with substitution and gener-
ation” (Holyoak and Thagard, 1989) the structure of the entire
“product preference schema” over onto the “minister and Coke”
situation, effectively filling in a (partial) explanation for why min-
isters might prefer Coke. Through repeated cycles of retrieval,
mapping, and inference (elaborated below), the model is able to
violate the 1:1 mapping constraint to integrate multiple sources
of knowledge through sequential analogical inference.

LISA’s knowledge representations (“LISAese”) enjoy the flex-
ibility of distributed representations and the relational sophis-
tication of symbolic representations. As such, they are an ideal
platform on which to build a model of understanding and
explanation.

CAUSAL RELATIONS
Consider a set of propositions that together might form a “prod-
uct preference” schema:

P1: agree-with (person, corporation)
P2: produce (corporation, product)
P3: prefer (person, product)

Another set of propositions that might form an “agreement”
schema:

P1: believe (entityl, proposition)
P2: believe (entity2, proposition)
P3: agree-with (entityl, entity2)

Assuming that these propositions constitute reasonable carica-
tures of the preference and agreement schemas, they are clearly
causally related to one another. Specifically, P1 and P2 (agree-with
and produce) in the preference schema jointly cause P3 (prefer),
and P1 and P2 (believe) in the agreement schema jointly cause P3
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(agree-with). How should these causal relations be represented for
the purposes of generating explanations?

One straightforward approach is to represent them as explicit
propositions, for example:

P4: and (P1, P2)
P5: cause (P4, P3)

LISAese makes it possible for one proposition to take another
as an argument, so this approach to representing causal rela-
tions is perfectly plausible; and in some circumstances, people
can undoubtedly do so. However, LISAese assumes that explicit
propositions are represented in WM and therefore consume finite
WM capacity (specifically, when the propositions become active,
all their roles must fire out of synchrony with one another, each
role occupying a “slot” in WM). As such, we suggest that this
approach is likely to be too demanding of WM capacity to serve as
a general solution to the problem of representing causal relations
for the purposes of explanation: Note that P4 and P5 collectively
introduce four additional role bindings into each schema; that’s
eight additional role bindings that would need to occupy slots
(although not all at the same time) in our intrinsically capacity-
limited WM. It seems intuitive that, although we are aware of the
causal relations, and can name them when asked, we do not nec-
essarily think so explicitly about them in the service of generating
an explanation.

Alternatively, we could represent causal relations in an entirely
implicit fashion, for example as associative links whose weights
indicate causal strength (e.g., as in a Bayes net). This approach
would solve the WM problem caused by the explicit propositions,
but it goes too far in the opposite direction, representing causal
relations only as implicit links rather than explicit structures that
can be activated, analogically mapped, and ultimately inferred
(e.g., by analogical inference) into the emerging explanation.

We propose a third alternative: To represent groups of related
propositions by connecting them to group units (Hummel et al.,
2008). For example, the fact that P1 and P2 in the agreement
schema (the believe relations) jointly cause something can be rep-
resented by connecting P1 and P2 to a single group unit, and
tagging that group as a cause by connecting it to semantic units
representing cause (see Figure 2). Likewise, the fact that P3 is an
effect can be represented by connecting it to a group unit, and
connecting that unit to semantic units representing effect. Finally,
the fact that the P1/P2 group is the cause of P3 can be represented
by connecting the cause and effect groups to a higher-level cause-
effect (CE) group unit. This latter unit represents the strength of
the causal relation by connecting to semantic units coding for that
strength.

The resulting representation is more explicit than simply rep-
resenting causal relations as associative links: causal relations are
represented as collections of units that can be activated, mapped
and inferred. But at the same time, it is less WM-demanding
than explicit propositions: Because group units reside “above”
P units in the representational hierarchy (and are effectively
different “data types”), they incur no additional WM burden
over and above the propositions they link as causally related.

(Of course, the notion of units as “data types” is metaphorical.
All that matters is that the cognitive architecture respect the units’
different spots in the representational hierarchy; see Doumas
et al., 2008).

Group units also serve to organize LISA’s knowledge into
meaningful packages, including but not limited to causes, effects,
and cause-effect pairings. As a result, they play a central role
in determining which propositions are likely to become active
in close temporal proximity (i.e., what LISA is likely to “think
about” in what order; see Hummel and Holyoak, 1997, 2003).
Specifically, LISA’s processing is constrained to activate propo-
sitions in group-based sets (in the driver), and it is constrained
to retrieve propositions from LTM in group-based sets (a depar-
ture from the original LISA; Hummel and Holyoak, 1997, 2003).
During memory retrieval, the probability of a group being
retrieved into WM at any instant, ¢, is proportional to the group’s
activation at time ¢. If a cause or effect group gets retrieved, then
that event automatically triggers retrieval of the group’s parent
CE group. As a result, if LISA is reminded of a familiar effect
(e.g., some novel explanandum activates a proposition in LTM
connected to an effect group), then it will tend to be reminded
of the cause as well (via the shared CE group). Thus, group units
not only play an important role in LISA’s representation of causal
relations; they also play a key role in its metacognition, control-
ling what it “thinks about” together, and controlling what it is
reminded of together.

FLOW OF CONTROL

Armed with group-augmented LISAese, LISAs algorithm for
explanation operates according to a retrieve-map-infer cycle that
is applied iteratively to construct a causal chain representing
an explanation of the explanandum (see Table1). (The same
retrieve-map-infer process also characterizes reasoning by anal-
ogy (e.g., Gentner, 1983; Holyoak and Thagard, 1989; Hummel
and Holyoak, 2003); but in analogical reasoning, it is performed
only once, not iteratively). This process can be initiated by placing
the proposition(s) representing the explanandum into the driver,
connected to an isolated effect group (i.e., an effect group with no
parent CE group and no sibling cause group). All of LISA’s other
knowledge resides dormant in LTM. In the case of our ministers
and Coke example, the driver would contain the proposition pre-
fer (ministers, Coke) connected to an effect group; LTM would
contain all of LISA’s other knowledge, including the preference
and agreement schemas. (In general, it is not necessary to con-
nect the propositions of the explanandum to an effect group, as
elaborated in the Simulations, but doing so is a convenient way to
mark the explanandum as that which is to be explained.)

LISA initiates the explanation process by activating the propo-
sition and its effect group in the attempt to retrieve a rele-
vant schema or prior example from LTM. In the case of the
current example, the isolated effect group activates the effect
semantic, and the prefer proposition activates the semantics of
ministers+prefer-agent and Coke+preferred-object (the semantics
of ministers fire in synchrony with those of prefer-agent and out
of synchrony with those of Coke and preferred-object, but all these
units fire in synchrony with effect). The resulting patterns of
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believe (el, p)

believe (€2, p)

CE: (b(el,p), b(e2,p))>a(el,e2)

agree (e2,e2)

FIGURE 2 | LISA representation of the cause-effect relation: Entity 1
believes proposition p [believe (e1, p)], entity 2 believes proposition p
[believe (e2, p)], and these facts jointly cause e1 to agree with e2 [agree
(e1, e2)]. To represent that believe (e1, p) and believe (e2, p) jointly cause
something, the units representing these propositions (left-most ovals) share
bi-directional excitatory connections to a unit (left-most diamond) representing
a cause group. To represent that agree (e1, e2) is the effect of something, the

unit representing that proposition (right-most oval) shares a bi-directional
excitatory connection to a unit (right-most diamond) representing an effect
group. To represent that the cause on the left is the cause of the effect on the
right, the corresponding cause and effect groups share bi-directional
excitatory connections with a unit (uppermost diamond) representing a
cause-effect (CE) group. Connections between the group units and their
respective cause, effect, and CE semantic units are not shown.

Table 1 | lllustration of the retrieve-map-infer cycle that governs
explanation-generation in LISA.

Cycle Retrieval Retrieved Mappings Inference
Cue
0 prefer prefer (person,  prefer1 — preferl agree-with
(ministers,  product) prefer2 — prefer2 (min., corp.)
Coke) (from Product ministers — person  produce
Preference Coke — product (corp., Coke)
Schema)
1 agree-with  agree-with (ent1, agreel — agreel believe
(min., corp.) ent2) agree?2 — agree2 (min., prop.)
(from Agreement ministers — entityl  believe

Schema) corporation — entity2 (corp., prop.)

activation on the semantic units represent the query Why do min-
isters prefer Coke?, and tend to activate effect groups (via the effect
semantic) connected to semantically similar propositions in LTM
(via the semantics connected to the proposition).

In the current example, P3 in the preference schema, pre-
fer (person, product), is likely to be retrieved. Since retrieval is
group-based, with a bias in favor of retrieving CE groups over
isolated cause or effect groups, the activation of P3 in the prefer-
ence schema is likely to result in the retrieval of the whole product
preference schema. (For convenience, we illustrate flow of con-
trol in LISA using the preference and agreement schemas, but the
logic is exactly the same if, instead of schemas, LISA has analogous
specific examples.)

If LISA fails to retrieve a CE group from LTM, then it halts,
declaring the explanation complete. (If the resulting explanation
is the empty set, then LISA’s answer is effectively “I don’t know.”)
If LISA succeeds in retrieving a CE group, then it places a proxy
of that group into a workspace. That is, it copies the units com-
posing the group into a new target analog, which we assume to
correspond to neurons in frontal cortex with rapidly modifiable
synapses (see Knowlton et al., 2012). Retrieval is thus a matter
of activation and proxy creation rather than simply activating
an existing structure in LTM (another important departure
from Hummel and Holyoak, 1997, 2003). LISA then maps the
elements of the explanandum onto the proxy of the CE group, for
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example, mapping ministers onto person, Coke onto product, and
prefer onto prefer (along with their SPs, P units and effect groups;
see Table 1).

The model next makes the workspace the driver and the
explanandum the recipient and, using analogical inference (i.e.,
self-supervised learning; Hummel and Holyoak, 2003), infers
the missing elements in the explanation. In this case, it would
infer:

P2: agree-with (ministers, corporation)
P3: produce (corporation, Coke).

In making these inferences, it will connect both P2 and P3 to
a cause group (also inferred from the workspace), and connect
both that cause group and the existing effect group [containing
P1: prefer (ministers, Coke)] to a CE group. LISA’s explanation
now consists of the hypothesis “ministers prefer Coke because
they agree with the corporation that makes Coke.”

Finally, LISA attaches both P2 (agree-with) and P3 (produce) to
their own effect groups, turns control back over to the explanan-
dum (which is now an emerging explanation) and starts the whole
cycle over again. Attaching P2 and P3 to effect groups is LISA’s
way of seeking new causes to explain these facts: Why do ministers
agree with the Coke corporation? (P2) and (less sensibly) Why does
the Coke corporation produce Coke? (P3). When the effect group
connected to P2: agree-with (ministers, corporation) is used to
drive retrieval, the result is likely to be retrieval of the agreement
schema (or an analogous specific example), in which case the
same processes described above augment the explanation with the
statements:

P4: believe (ministers, some-proposition)
P5: believe (corporation, some-proposition),

Connecting both P4 and P5 to a cause group linked via a CE group
to the effect group connected to P3 (agree-with).

In the current instantiation of the model, these processes are
repeated until the retrieval phase fails to retrieve a CE group.
This “explanation is done when retrieval fails” approach is a clear
limitation of the model in its current state.

What is important to point out in the preceding description
of the flow of control is the model’s solution to the 1:1 map-
ping problem: LISA mapped ministers to person in the context
of the preference schema, and then mapped ministers to per-
son (a completely different token) in the agreement schema. It
then inferred corporation from the preference schema into the
explanandum and then mapped corporation onto entity in the
agreement schema. How did it “know” that corporation in the
preference schema had the same referent as entity in the agree-
ment schema, or that person in the preference schema had the
same referent as person in the agreement schema? The answer is
that it did not know, and it did not have to. Rather than hav-
ing to make the impossible decision of whether two tokens have
the same referent, LISA’s iterative retrieve-map-infer algorithm
need only decide whether two units correspond, that is, map to
one another, within the confines of the current retrieve-map-
infer cycle. In so doing, it side-steps the question of whether

the tokens “have the same referent.” In short, LISA replaces the
question “are they the same?” with the question “do they cor-
respond?” and in so doing provides an effective solution to one
particularly thorny variant of the type-token problem. Its ability
to do so is a cornerstone of its ability to integrate multiple diverse
sources of knowledge in LTM in the service of explaining a novel
explanandum.

SIMULATIONS

The model described thus far is still in an early stage of devel-
opment. In order to test its potential, we ran three sets of
simulations. The first two were based on elaborations of the min-
ister/Coke example given previously, and the third was directed
as a small first step to understanding how the processes of anal-
ogy and explanation might manifest themselves in the domain
of mathematical theorem proving—specifically, Godel’s First
Incompleteness Theorem (GI).

SIMULATION 1: WHY DO MINISTERS PREFER COKE?
Our first simulations were designed to explore the model’s abil-
ity to explain why a novel (but nonetheless fairly mundane)
explanandum, such as the assertion that ministers prefer Coke to
Pepsi. In these simulations, the explanandum was the statement
that ministers prefer Coke. We placed several schemas into LISA’s
LTM (see the Supplementary Material for the simulation details):
(1) A (partial) preference schema stated that a person may pre-
fer some manufacturer’s product because they agree with (e.g.,
the politics of) that manufacturer. (2) A minister schema speci-
fied various properties of ministers. And (3) an agreement schema
specified that if a person supports some (e.g., political) cause and
some other entity supports the same cause, then that person and
entity agree with one another. We also seeded LISA’s LTM with
an irrelevant story about a person driving to the beach so that we
could evaluate the selectivity of the model’s retrieval process.

We ran this simulation several times, and the model pro-
duced explanations of varying quality. A typical result was an
explanation such as:

P1: prefer (ministers, Coke)
P2: support (ministers, some-cause)
P3: support (corporation, some-cause)
P4: agree-with (ministers, corporation)
P5: manufacture (corporation, Coke)
cause (P2, P3) (P4)
cause (P4, P5) (P1)

where P1 is the explanandum and “cause” is shorthand for a col-
lection of cause, effect, and CE groups; the first pair of parentheses
on each line enclose the P units connected to the cause group and
the second pair enclose the propositions connected to the effect
group. In other words, LISA inferred that: ministers support some
cause (P2); the corporation that makes Coke (P5) supports the
same cause (P3); these facts together cause the minister to agree
with the corporation [cause (P2, P3) (P4)]; and this agreement,
along with the fact that the company manufactures Coke, causes
the ministers to prefer Coke [cause (P4, P5) (P1)].
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This explanation represents the most typical result of the pilot
runs. The model sometimes also produced a truncated “expla-
nation” in which the ministers are assumed to agree with the
Coke corporation, but the model failed to infer why. This expla-
nation obtains when the explanandum, prefer (ministers, Coke),
retrieves the preference schema on the first retrieve-map-infer
cycle, but fails to retrieve anything on the next cycle.

A third result obtained when the explanandum retrieved noth-
ing even on its first retrieval cycle. In this case, LISA halted with-
out generating any explanation at all (effectively saying, “I don’t
know”).

Finally, the model occasionally retrieved the agreement
schema (rather than the preference schema) on the first retrieval
attempt. In this case, because analogical mappings are relation-
ally flexible, ministers maps to person, and Coke maps successfully
(but nonsensically) to entity. In this case, the model generates the
nonsensical “explanation”:

P1: prefer (ministers, Coke)
P2: support (ministers, some-cause)
P3: support (Coke, some-cause)

In no cases did the model retrieve completely irrelevant informa-
tion from LTM (e.g., about Bill driving to the beach), illustrating
that the algorithm is capable of selectively retrieving and mapping
only situation-relevant information. That said, both its successes
and its failures can be traced directly to the success or failure of
the retrieval stage: LISA’s mappings and inferences on a given
retrieve-map-infer cycle will follow structurally from whatever
it retrieves during the retrieve phase of this cycle. If it retrieves
something sensible, then its inferences will be sensible; if not, then
its inferences will be less sensible or even nonsensical. It is a sharp
limitation of the model in its current state that it cannot evaluate,
for itself, which of these is the case.

SIMULATION 2: WHY DO MINISTERS DISLIKE COKE?

The results of the first simulations were informative for the pur-
poses of exploring the model’s properties, but in order to quantify
the model’s behavior, we ran a suite of 60 additional simulations
during which we more carefully tabulated the simulation results.
On these simulations, the explanandum was the statement “min-
isters dislike Coke” (a proxy for “ministers prefer Pepsi”). These
simulations replaced the agreement schema from the first simu-
lations with a disagreement schema and included an additional
schema specifying that Coke used to contain cocaine (see the
Supplementary Material for details).

Table 2 summarizes the results of Simulation 2. On 16 of the 60
runs, the model produced no explanations (by failing to retrieve
anything from LTM on the first cycle), and on an additional 10
runs it made inferences without causally connecting those infer-
ences to the explanandum. In each of the latter 10 cases, the model
simply asserted that ministers disagree with some entity, and that
that entity supports Coke (the beverage, not the corporation).
This response is analogous to LISA declaring, “some people sup-
port Coke and ministers disagree with those people.” Inasmuch as
this assertion is not an explanation of why ministers dislike Coke
(or disagree with those people) it is perhaps strangely appropriate

that LISA did not embed the constituent propositions inside cause
and effect groups. It is also tempting to observe that this general
form of “explanation”—simply restating the original question in
different terms—is not uncommon in human interactions (e.g.,
answering “Because it’s true!” when asked, “Why do you believe
x?”). Part of understanding explanation is explaining the kinds of
explanations people are likely to offer, including the bad ones.

On eight runs, the model generated short explanations consist-
ing of a single causal link: either “ministers dislike Coke because
Coke used to contain cocaine” (5 runs) or “ministers dislike Coke
because Coke is immoral” (3 runs). On an additional eight runs,
it generated explanations consisting of two causal links, for exam-
ple, “ministers dislike Coke because Coke is immoral, and Coke
is immoral because it used to contain cocaine.” The remaining 18
runs resulted in explanations consisting of thee causal relations.
The most common (15 runs) asserted that “Ministers dislike
Coke because Coke is immoral. Coke is immoral because it used
to contain cocaine. The Coke Corporation is immoral because
Coke is immoral and the Coke Corporation manufactures Coke.”
This last statement (that the Coke Corporation is immoral)
seems unnecessary to the logic of the explanation, and demon-
strates that the algorithm is able to pursue causal chains that
do not strictly lead to the explanandum. Interpreted colloquially,
this behavior resembles the model adding a parenthetical aside
(“Oh, by the way, this also implies that the Coke Corporation is
immoral.”).

PROOF GENERATION AS EXPLANATION

In logic and mathematics, and the formal sciences generally,
exquisite, definitive explanations are routinely provided via
proofs. (This empirical fact leaves perfectly intact the important
observation that in many disciplines, deduction doesn’t explain;
and indeed leaves intact the specific empirical fact that much
deduction has no explanatory value in many contexts, scientifi-
cally speaking: A disjunction of P or Q follows deductively from
P, and this theorem is crucial in proofs of P or not-P, but the the-
orem is manifestly empty in many contexts.) The Incompleteness
Theorems are themselves a case in point, for until one sees how
the proofs work, one cannot really understand in what senses
these results are limatative, and until one understands these
senses, one cannot understand what the theorems in question, in
broad context, tell us.

The mechanisms used for analogy and explanation generation
can also be implicated in the generation of logico-mathematical
proofs. One might think of a proof as a type of explanation where
instead of having causally-connected explanations, the individual
progression of beliefs is connected by accepted inference rules in
some logical system. (Because causal and logical relations have
similar syntactic forms, and because LISA’s cause, effect and CE
groups are equally suited to represent both, we will, for conve-
nience, simply refer to such relations as “causal,” bearing in mind
that causal and logical relations have important semantic dif-
ferences.) The generation of such proofs, then, can be aided by
analogy in at least two ways: First, the mechanism described ear-
lier for retrieving source analogs might be used in retrieving a
relevant logical inference rule. Alternately, analogy may be used
to transfer high-level strategies from one domain to another.
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Table 2 | Summary of the number (n) of each category of explanation the model generated in Simulation 2.

Explanation category n
Nothing (“l don’t know") 16
Assertions without causes 10
e disagree-with (minister, entity), support (entity, Coke)
One causal link 8
e contained (Coke, cocaine) — dislike (minister, Coke) (5)
e immoral (Coke) — dislike (minister, Coke) (3)
Two causal links 8
e (contained (Coke, cocaine), illegal (cocaine))— dislike (minister, Coke) (5)
(contained (Coke, cocaine), manuf. (Coke-corp., Coke)) — contained(Coke-corp.)
e immoral (Coke)— dislike (minister, Coke) (1)
contained (Coke, cocaine)— immoral (Coke)
e (contained (Coke, cocaine), illegal (cocaine))— dislike (minister, Coke) 2)
contained (Coke, cocaine)— contained(Coke-corp.)
Three causal links 18
e immoral (Coke)— dislike (minister, Coke) (15)
(contained (Coke, cocaine), illegal (cocaine)) immoral (Coke)
(immoral (Coke), manufacture (Coke-corp., Coke)) —immoral (Coke-corp.)
e immoral (Coke)— dislike (minister, Coke) (2)

(contained (Coke, cocaine), illegal (cocaine)) immoral (Coke)
immoral (Coke) — immoral (Coke-corp.)

e (contained (Coke, cocaine), illegal (cocaine)) — dislike (minister, Coke)
illegal (cocaine) — dislike (minister, cocaine)

(contained (Coke, cocaine), manu. (Coke-corp., Coke))— contained (Coke-corp.)

Right-facing arrows indicate causal relations. Propositions nested within parentheses act as joint causes.

As an example, consider the highly influential Incompleteness
Theorems of Kurt Godel. The First Incompleteness Theorem,
which we will refer to as G1, places fundamental limitations
on any finitely formal theory that is expressive enough to cap-
ture ordinary arithmetic.2 How could Gédel have devised such a
brilliant proof in the first place?

Of course, we can never know precisely what it was that
allowed Godel to figure out what he did, except to note that Godel
mustered plenty of extra-analogical innovation to accomplish
his Incompleteness Theorems. At most, we can speculate based
on the mathematical knowledge that was already well-known to
Godel at the time [see Ebbinghaus et al. (1994), which is regarded
to be a description of G1 that is quite close to Godel’s origi-
nal work], but as we are not interested here in the details of the
intellectual history of mathematical logic, we will be very brief.
One plausible speculation is that the initial insight that led to
GUI’s conjecturing came from an analogy to a simpler problem.
Godel was described as having a thought that moved “from con-
jecture to conjecture,” even when he was not quite sure “how (or
whether it is possible) to bridge the gap between them” (Wang,
1995, p. 184). In fact, there is a suitable source analog, known as
the Liar Paradox (LP). The simplest form of LP consists of a single
proposition I: “This sentence is a lie.” One runs into trouble when
attempting to determine the truth value of I: If it is true, then it
is a lie, and therefore false; but if it is false, then since it says it is

2We leave out a more precise description of Godel’s Incompleteness Theorems
because they are not directly relevant to the purposes of this paper.

false, it’s true. What are we to do with a sentence that seemingly is
neither true nor false, but is still somehow meaningful?

A careful analysis of [ will allow us to make some useful
inferences. Since [ is self-referring, we might take this to con-
stitute a simple existence proof of a property of the English
language: that it is self-referable, meaning that it allows for the
formulation of a self-referring statement such as I Our failed
attempt to assign a truth value to [ also tells us that English
has at least one unverifiable statement. The fact that such a
statement exists means, by definition, that English is logically
incomplete. Let us name the three properties we just deduced
of English as: self-referable, has-unprovable-statement, and incom-
plete, respectively.

The analogy that allows a high-level proof-sketch to trans-
fer from LP to GI can then be sketched as follows. We have a
source analog consisting of the knowledge that our analysis of
provided:

P1: self-referable (English)
P2: has-unprovable-statement (English)
P3: incomplete (English)

cause (P1) (P2)

cause (P2) (P3)

We can then fill out a very minimal target analog, consisting of
only a single proposition:

Q3: incomplete (X)
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Here ¥ represents any theory of interest; in this case X is ulti-
mately going to range over all formal theories of arithmetic that
have certain basic properties. That, however, is not relevant for
this particular analogical match. Rather, all we are asking LISA to
do is tell us: If we want to show that some theory ¥ is incomplete,
what do we have to do?

The resulting inference retrieves concepts from the domain to
which ¥ belongs, which in our hypothetical example is the for-
mal logico-mathematical domain. A successful analogical match,
then, will match the predicates used in our source analog to the
very rigorously defined formal concepts in the target domain.
Finally, the resulting set of analogical inferences give a high-level
description of how to prove Q1.

When we ran LISA with the source (P1...P3, along with
their causal relations) and explanandum (Q3) described above,
it generated the explanation:

Q1:
Q2:
Q3:

self-referable (X)
has-unprovable-statement (X)
incomplete (%)

cause (Q1) (Q2)

cause (Q2) (Q3)

It would also be plausible to assume that instead of starting with
Q3 in the target, we start with nothing but Q1. We ran this
simulation as well, and LISA again generated the correct expla-
nation. Essentially, these analogical inferences would have told
Godel that in order to show incompleteness for ¥, he would
have to show that ¥ has an unprovable sentence, which he
would in turn be able to show by exploring whether ¥ can be
self-referring.’.

What we have just described is an overview of what has
been called Analogico-Deductive Reasoning (ADR), or the com-
bination of analogical and hypothetico-deductive reasoning
(Bringsjord and Licato, 2012; Licato et al., 2012). In ADR, an
analogical inference is used to generate some hypothesis in the
target domain, and subsequent deductive reasoning is used to
either deductively prove this hypothesis, refute it by deriving a
contradiction, or suggest an experiment and an expected out-
come of the experiment which would then either support or
refute the hypothesis. ADR is just another example of how anal-
ogy can be used to generate an understanding of the world,
whether through explanation, or through formal proofs, as in the
LP-to-G1 example.

For a more detailed example modeling the analogy from LP
to G1, see Licato et al. (2013). We conclude this example by
noting that although analogy may have been useful in pointing

3Note that self-reference is not the only way to show incompleteness, or even
the only way to get a version of the Liar Paradox. For example, suppose one
has the two sentences:

The sentence below is false.

The sentence above is true.

These two sentences form a paradox that is similar to LP, without exploiting
(direct) self-reference. Here, however, we are only concerned with one route
that Godel might well have used to discover incompleteness

Godel toward the insight that LP may be useful in proving G1,
much more work was necessary before his proofs could be con-
sidered complete, e.g., the creation of Godel numbering, the
formalization of effective procedures, etc.

DISCUSSION

We described our progress toward a process model of expla-
nation. The model is based on a model of analogy (Hummel
and Holyoak’s, 1997, 2003, LISA), reflecting our assumption that
many of the core processes of explanation are also core processes
of analogy making.

However, modeling explanation necessitates going beyond
modeling analogy in at least two important respects: First, expla-
nation, much more than analogy, depends on causal relations.
We model the representation of causal relations using units
representing groups of propositions (and other groups). This
representational format is more explicit than simple associa-
tive links between causes and effects (as in Bayesian models,
e.g., Tenenbaum et al., 2006), but less explicit than propositions
about cause and effect. It permits the model to use cause, effect,
and cause-effect groups as units of both cognitive control and
memory retrieval.

Second, explanation, unlike analogy, often requires the rea-
soner to integrate information from diverse sources in LTM,
which in turn requires the reasoner to violate the 1:1 mapping
constraint. We resolve this difficulty by serializing the process of
incorporating facts from different sources in LTM.

Preliminary simulation results suggest that the approach is a
promising approach to modeling explanation, and indeed, to the
problem of understanding more broadly.

That said, the model is in an early stage of development, and
many problems remain to be solved before we have a complete
(much less correct) process model of explanation. First, we must
address the problem of how a human reasoner knows when an
explanation is complete. In the current model, this decision is
based strictly on the failure to retrieve additional causes from
LTM. This is clearly incomplete, but what is right is harder to
say. Second, we must address the problem of explanation eval-
uation (for progress in this direction, see Thagard, 2001). One
of the hard problems to be solved in this domain is contradic-
tion detection: How does the cognitive architecture know when it
has postulated something just plain stupid [e.g., “believe (Coke,
some-proposition)”]? Third, we must include a role for elab-
oration in explanation: in our example problem, for instance,
the model is given the knowledge that ministers are politically
conservative, but the model never suggests that the source of
agreement between the Coke corporation and the ministers is one
of conservative values. Such elaboration is not part of the causal
chain approach here, but seems to be a central component of
explanation generation.

These issues remain serious hurdles in our attempt to
understand how people generate explanations. In the mean-
time, we believe our current work takes us a step closer to
understanding the basic processes underlying explanation, from
inferences/hypotheses as simple as why ministers might prefer
Coke, to conjectures about theorems that might be possible and
worthwhile to prove.
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