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Using graph theory measures common to complex network analyses of neuroimaging
data, the objective of this study was to explore the effects of increasing working memory
processing load on functional brain network topology in a cohort of young adults. Measures
of modularity in complex brain networks quantify how well a network is organized into
densely interconnected communities. We investigated changes in both the large-scale
modular organization of the functional brain network as a whole and regional changes
in modular organization as demands on working memory increased from n = 1 to n = 2
on the standard n-back task. We further investigated the relationship between modular
properties across working memory load conditions and behavioral performance. Our
results showed that regional modular organization within the default mode and working
memory circuits significantly changed from 1-back to 2-back task conditions. However,
the regional modular organization was not associated with behavioral performance. Global
measures of modular organization did not change with working memory load but were
associated with individual variability in behavioral performance. These findings indicate
that regional and global network properties are modulated by different aspects of working
memory under increasing load conditions. These findings highlight the importance of
assessing multiple features of functional brain network topology at both global and regional
scales rather than focusing on a single network property.
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INTRODUCTION
The recent use of graph theory measures in complex network
analyses of neuroimaging data has allowed for the identifica-
tion and classification of global and regional brain network
properties as well as the quantification of changes in network
properties across different task conditions. In using this math-
ematical framework, networks are composed of differentiable
elements (nodes) and the pairwise relationships between those
elements (edges). In human functional brain networks, nodes
represent a predefined parcellation of brain tissue, and edges rep-
resent measured functional connectivity between pairs of nodes.
Approaching the study of the brain as a large-scale, interdepen-
dent network with various interacting components that produce
complex behaviors offers an attractive alternative to studying the
brain using univariate comparisons from activation studies or
bivariate methods that exclusively identify direct functional con-
nections between pairs of encapsulated brain regions (Telesford
et al., 2011). However, the vast majority of multivariate, large-
scale network analyses have only examined network proper-
ties while participants remain in a resting-state. Mapping out
the relationship between network topology and cognitive tasks
has been left relatively uncharted. The current work utilizes a

graph theoretic complex network approach to explore a key
aspect of functional brain network topology, modularity, and
the relationship between module properties and behavioral per-
formance during a working memory task in a cohort of young
adults.

Working memory broadly refers to the temporary storage
and active processing of information in the service of ongo-
ing tasks (Baddeley, 1986, 1996). In addition, tasks that tap
working memory often require individuals to constantly update
contents in temporary storage and inhibit competing information
(Jonides et al., 2003). The importance of the working memory
construct is underscored by the important role it plays for opti-
mal cognitive performance in domains as diverse as reasoning,
problem solving, selective attention, general fluid intelligence,
and language processing (Baddeley, 1986; Stoltzfus et al., 1996;
Engle et al., 1999). A critically important feature of working
memory that has received considerable attention is the quantity
of information that must be held “on line” in order to effec-
tively engage in certain tasks, commonly referred to as working
memory load. Numerous neuroimaging studies have sought to
localize particular brain regions activated during working mem-
ory tasks across different load conditions, consistently identifying
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the prefrontal cortex and parietal areas as subserving working
memory functions (e.g., Braver et al., 1997; Cohen et al., 1997;
Jansma et al., 2000; Veltman et al., 2003). Several other stud-
ies have measured changes in bivariate functional connections
between certain regions of the working memory system as a
function of working memory load, reliably identifying load-
dependent increases in connectivity (Narayanan et al., 2005;
Hampson et al., 2006; Axmacher et al., 2008). While these stud-
ies have produced important insights into the neural instanti-
ation of working memory processes across load conditions, it
is likely that the neural components of working memory are
instantiated in a complex, interdependent manner that cannot
merely be localized to particular cortical areas using univariate
methodologies or sufficiently explained using bivariate methods
to measure direct interactions between pairs of encapsulated brain
regions.

More recent neuroimaging studies have begun to implement
multivariate methodologies, such as principal component analy-
sis, to investigate functional networks in working memory (e.g.,
Metzak et al., 2012; Woodward et al., 2013; Li et al., 2014), but
few have taken advantage of the unique benefits conferred by a
complex network paradigm utilizing graph theory measures. The
present work uses graph theory measures to assess changes in
modular organization as a function of working memory load.
Within the realm of cognitive neuroscience, modules are taken
to represent differentiable function-specific processing systems
that tend to be associated with specific neural structures (Barrett
and Kurzban, 2006). Using graph theory measures in complex
network analyses, modules are defined as subsets of nodes within
networks that are more densely interconnected among themselves
than the rest of the network (Newman and Girvan, 2004; Valencia
et al., 2009). The modular nature of the brain allows the system
to flexibly and efficiently adapt to multiple and changing goals
in the environment (Kashtan and Alon, 2005; Bassett et al.,
2011), while simultaneously increasing the robustness and sta-
bility of the brain network (Solé and Valverde, 2008; Valencia
et al., 2009). Properly characterizing the modular structure of
the brain is crucial for understanding brain network organization
during different cognitive states (Valencia et al., 2009). Effective
cognitive performance on working memory tasks may necessitate
the recruitment and optimal information processing of multi-
ple modules serving different functions with weak connections
between modules.

Modular properties of functional brain networks during
resting-state have been identified as predictive of working mem-
ory capacity (Stevens et al., 2012), impulsivity (Davis et al., 2013),
normal aging (Fair et al., 2009; Meunier et al., 2009; Onoda
and Yamaguchi, 2013), and diverse neurological and psychiatric
disorders (Alexander-Bloch et al., 2012; Vaessen et al., 2013;
Baggio et al., 2014; Brier et al., 2014; Gamboa et al., 2014). Such
resting-state analyses measure correlations in spontaneous low-
frequency fluctuations in blood oxygen level dependent (BOLD)
signal (Biswal et al., 1995, 1997) while participants are engaged in
internally oriented mental activities in the absence of cognitively
demanding, externally focused goal-directed tasks (Buckner et al.,
2008; Anticevic et al., 2012). Prior resting-state analyses have
identified a set of brain regions—the default mode network or

DMN—that tend to be highly active, functionally interconnected,
and central to global network function when individuals are not
allocating attentional resources to cognitively demanding, exter-
nally focused tasks. Several graph theoretic analyses on complex
networks have demonstrated that nodes within the DMN tend
to be highly and consistently interconnected during resting-state
(Buckner et al., 2009; Valencia et al., 2009; Cole et al., 2010;
Tomasi and Volkow, 2011; Moussa et al., 2012), but topological
patterns of connectivity within the DMN, as quantified by several
network metrics including modularity, change from rest to task
(He et al., 2009; Moussa et al., 2011; Rzucidlo et al., 2013).
Importantly, however, similar patterns of activity and connec-
tivity observed within the DMN during resting-state have also
been identified during externally focused tasks that exert minimal
demands on relevant cognitive resources (Andrews-Hanna et al.,
2014). During external tasks that require minimal effort and
attentional resources, individuals often retain the capacity to shift
attentional focus toward unrelated self-generated information
without substantially sacrificing cognitive performance on the
external task.

While researchers have only recently begun to examine changes
in modularity while participants actively engage in tasks, critical
changes in the modular properties of functional brain networks
have been identified across diverse tasks, including: motor learn-
ing (Bassett et al., 2011; Heitger et al., 2012), visual and auditory
stimulation (Moussa et al., 2011), emotional face processing (Cao
et al., 2014), odor recognition memory (Meunier et al., 2014), and
decision making (Moussa et al., 2014). Particularly important are
those highly connected nodes (hubs) that hold modules together
providing modular structure (provincial hubs) and those network
hubs that interconnect different modules allowing for the global
integration of information (connector hubs; Guimerà and Nunes
Amaral, 2005). Previous work examining the organization and
function of hubs in brain networks has revealed the impor-
tance of hubs for promoting effective neural communication
and integration of information, especially for successful cognitive
performance (Bassett et al., 2009; van den Heuvel et al., 2009;
Lynall et al., 2010; Cole et al., 2013; van den Heuvel and Sporns,
2013).

Few studies to date have investigated the topological prop-
erties of functional brain networks while participants engage
in working memory tasks (Rzucidlo et al., 2013; Cao et al.,
2014), and no studies have investigated changes in functional
brain network topology as a function of working memory load.
The current study fills this knowledge gap by applying graph
theoretic measures of modularity and module hub properties to
investigate differences in functional brain network topology as
a function of working memory load. To this end, we compared
modularity and module hub properties across different versions
of the n-back task, a commonly used paradigm for the study
of working memory that is particularly useful for investigating
the neural basis of working memory processes (Owen et al.,
2005). The task requires participants to monitor the identity
of a sequence of items and to indicate whether the currently
presented item is the same as the one presented n trials pre-
viously. Demands on working memory increase as n increases
allowing for the exploration of the effects of increasing working
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memory processing load. While the 1-back version of the task
primarily taps attentional resources with a simple comparison of
the current item with the prior item in the sequence, the 2-back
version requires many more operations. For successful perfor-
mance on the 2-back task, more attentional resources must be
allocated to the task and competing responses must be inhibited
in order to process, temporarily store, and update constantly
changing intervening items (Jonides et al., 2003; Pehlivanoglu
et al., 2014).

This study investigated changes in both modularity and mod-
ule hub properties of the functional brain network as a whole
and regional changes in modularity and module hub properties
as the demands on working memory increased from n = 1 to
n = 2 on the standard n-back task. In investigating regional
network changes, we drew primarily from previous work con-
ducted by Rzucidlo et al. (2013), who have published data from
the only other investigation of network properties in localized
regions of cortex using functional brain networks while partici-
pants engage in a working memory task. Rzucidlo et al. (2013)
identified a distinct shift in the location of network hubs from
resting-state to the 2-back task. Specifically, they showed that
during resting-state, brain network hubs were predominantly
located in the DMN. During the 2-back task, the connectivity
of the DMN was reduced and network hubs were predomi-
nately located within the working memory network (WMN).
Because the 1-back condition is minimally demanding, partic-
ipants should be capable of shifting attentional focus toward
unrelated self-generated information without a substantial neg-
ative impact on performance. However, because the demands
on working memory drastically increase and more attentional
resources must be allocated to the external task from n = 1 to
n = 2, we hypothesized that there would be clear shifts in the
consistency of modular organization and the functions of module
hubs within the DMN and WMN across load conditions. We
also examined the relationship of behavioral working memory
performance to modularity and module hub properties of the
functional brain networks, both globally and within the DMN
and WMN.

MATERIALS AND METHODS
PARTICIPANTS
A total of 14 young adults (9 females, Mage = 27.21 years,
SD = 4.00, age range: 22–34 years) participated in this study.
All participants were recruited via locally placed advertisements
followed by a telephone screening. The Institutional Review Board
of Wake Forest University School of Medicine approved this
study, and all participants provided informed consent in writing.
Participants were included only after fulfilling several criteria on
batteries for cognition, including the Center for Epidemiolog-
ical Studies Depression Scale (CES-D; Radloff, 1977) and the
Modified Mini-Mental State Examination (MME/3ME; Folstein
et al., 1975). Participants scoring greater than or equal to 25
of the CES-D were excluded from the study. Additionally, only
right-handed participants with functional color vision (Ishihara,
1917), no history of alcoholism using the Alcohol Use Disorders
Identification Test (AUDIT; Bohn et al., 1995), corrected visual
acuity, and no more than moderate hearing loss were included

in these analyses. These participants were originally recruited
as controls in a larger study investigating the effects of aging
and obesity on the brain. For that purpose, participants were
recruited in three separate Body Mass Index (BMI) groups—
normal weight (BMI from 18.5 to <25), overweight (BMI from
25 to <30), and obese (BMI from 30 to <40)—as part of the
larger parent study. No significant systematic effects of BMI group
were observed within or between conditions on any behavioral
measure or network metric. As such, we combined all BMI
groups for the analyses herein. All participants were paid for their
participation.

SCANNING PROCEDURE
During each scanning session, fMRI data were acquired during
the 1-back and 2-back tasks. All participants were provided with
fMRI compatible goggles, ear plugs, and a hand-held button box
custom-made to be MRI compatible and interfaced with the e-
prime (Schneider et al., 2001) response box for the entirety of each
session. During both 1-back and 2-back conditions, a sequence
of 100 letters was presented on the screen in the goggles. The
order of the letters presented in the sequence differed between
participants in order to minimize a potential systematic effect
of the presentation sequence. Letters appeared for 0.3 s followed
by a 2.7 s blank slide during which participants were asked to
respond; as such, individual trials lasted for 3 s. Each task (1-back
and 2-back) lasted for a total of 5 min and 20 s. In the 1-back
condition, for every letter that appeared after the first letter,
participants were required to determine whether the current letter
matched the previous letter in the sequence. Participants were
instructed to press one button on the hand-held remote when
the current letter was the same as the previous letter in the
sequence. Participants were instructed to press a different button
when the current letter was not the same as the previous letter.
In the 2-back condition, for every letter that appeared after the
second letter, participants were required to determine whether
the current letter was the same as the one presented two letters
back in the sequence. Participants were instructed to press one
button on the hand-held remote when the current letter was
the same as the one presented two letters back in the sequence.
Participants were instructed to press a different button when
the current letter was not the same as the one presented two
letters back in the sequence. In both load conditions, participants
were instructed to respond as quickly and accurately as possible
with their right hands using their index and middle fingers to
differentiate responses.

ACQUISITION AND PRE-PROCESSING
For each participant, a multi-slice spoiled gradient inversion
recovery (3DSPGR-IR) was used to collect high-resolution T1-
weighted images on a 1.5T GE scanner. A GE 8 channel neurovas-
cular headcoil was used. The protocol parameters were as follows:
phase/frequency = 256/256; 156 contiguous slices, 1.0 mm thick;
in-plane resolution of 0.938 mm × 0.938 mm; TE = 4.74 ms;
TR = 4.68 ms; T1 = 600 ms. Blood oxygen level dependent
contrast was measured using a whole-brain gradient echo echo-
planar imaging (EPI) sequence with the following parameters:
phase/frequency = 64/64; 159 volumes with 28 contiguous slices
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per volume; slice thickness = 5.0 mm; in-plane resolution of
3.75 mm× 3.75 mm; TR/TE = 2000/40 ms.

All functional data were realigned, slice-time corrected, and
co-registered to a skull-stripped version of the accompanying
structural data. Coregistration was checked visually for each
participant. Structural data were parcellated into gray matter,
white matter, and cerebrospinal maps. As part of an integrated
processing procedure, all maps were warped and normalized to
MNI template space (Montreal Neurological Institute1) using
SPM8 software2. These acquired normalization parameters were
then applied to all functional data. A band-pass filter (0.009–0.08
Hz) was applied to remove physiological noise and low-frequency
drift. Six rigid-body transformation parameters generated during
the realignment process and three mean signals (whole-brain,
white matter, and cerebrospinal fluid) were then regressed out
of the functional data. Additionally, sinus midline and sinus
occipital ROIs were regressed out of the functional data. All
functional data were motion corrected to eliminate scan volumes
with excessive frame-wise displacement and BOLD signal change
(Power et al., 2012). Values of 0.5 for frame-wise displacement
and 0.5% ∆BOLD for DVARS were chosen to represent values
well above the norm found in still subjects. The average number
of volumes removed per subject was 1.21 for the 1-back task and
0.50 for the 2-back task.

GENERATING WHOLE-BRAIN NETWORKS
Pre-processed functional data were masked such that only gray
matter voxels were included. This was achieved by first summing
the gray matter, white matter and cerebrospinal segment maps
to generate a binary whole-brain mask. The mask was then
intersected with gray matter areas specified by the Automated
Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002).
A final step subtracts the white matter segment (thresholded at
99%) to remove subject-specific white matter edges that hap-
pened to coincide with AAL gray matter atlas.

Investigating the functional organization of the brain as a
complex network allows for the mathematically rigorous quantifi-
cation of differences in large-scale properties of the network as a
whole and properties specific to particular regions of the network
(Bullmore and Sporns, 2009; Rubinov and Sporns, 2010; Sporns,
2013). Networks are represented as graphs comprised of sets of
nodes and edges. In the current study, each voxel represented
a node, and functional brain networks were generated from a
correlation matrix of time series data from each voxel pair using
the Pearson correlation coefficient. Edge density across subjects
was matched using the formula N = KS, with N equal to the
number of nodes, K equal to the average degree, and S was set
at 2.5. This threshold was chosen based on prior research showing
that networks tend to fragment when S is greater than 3 (Hayasaka
and Laurienti, 2010), the reproducibility of brain networks is
highest at thresholds between 2 and 3 (Telesford et al., 2013),
and networks with S = 2.5 exhibit a connection density expected
based on the number of network nodes (Laurienti et al., 2011).
A correlation coefficient cut-off that meets this density threshold

1http://www.mni.mcgill.ca/
2http://www.fil.ion.ucl.ac.uk/spm/

was determined and only those correlations above the threshold
were considered as functional edges in the analyses presented
herein. Those edges between any two given voxels that met the
threshold requirement were given a value of 1, and all other edges
were given a value of 0. As such, undirected, unweighted adja-
cency matrices were generated for each participant representing
whole-brain functional connectivity. Thresholding the network in
this way ensures that comparisons are made between networks
of comparable density relative to the total number of network
nodes.

MODULARITY
Modularity identifies the presence of subsets of nodes that are
more densely interconnected among themselves than the rest
of the network (Newman and Girvan, 2004; Newman, 2006).
The degree to which the network can be subdivided into clearly
delineated and nonoverlapping modules is quantified by the
modularity Q statistic. The modularity value assigned to a given
partition using this measure is as follows:

Q =
k∑

i = 1

[
eij

M
−

( ai

M

)2
]

where ei,j is a measure of within module connections in module
i, ai is the total degree of module i, and M is equal to the
degree of the entire network. Modularity algorithms are designed
to maximize the value of Q. Because the determination of the
optimal modular structure of a network is a computationally
intractable problem (Brandes et al., 2008), several algorithms have
been developed to balance the optimization of Q with run time. In
the current study, the Louvain algorithm (Blondel et al., 2008) was
used because it is particularly effective for efficiently quantifying
modular organization in large networks. The Louvain algorithm
was applied ten times for each brain network; the run that
produced the partition with the highest Q value for the network
was chosen as the best partition. Higher values of Q indicate a
more strongly defined modular structure in the network.

Once modularity was computed for each individual func-
tional brain network, the recently developed measure of scaled
inclusivity (SI) was used to identify the consistency of modular
organization across a specified set of participant functional brain
networks (Steen et al., 2011). Scaled inclusivity is calculated
by identifying the overlap of modules across multiple networks
in a standardized space while penalizing for the disjunction of
modules. For instance, suppose node V is part of module A in
participant i and module B in participant j. Then, SI for node V is
calculated as

SIV =
|SA ∩ SB|

|SA|

|SA ∩ SB|

|SB|

where SA and SB denote sets of nodes in modules A and B,
and |·| denotes the cardinality of the set. Scaled inclusivity
images represent the similarity in location and size of func-
tional network modules across a set of individual participant
networks (Steen et al., 2011; Moussa et al., 2012, 2014). Scaled
inclusivity is calculated for each network node, and the SI
value assigned to each node measures how consistently that
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node participates within a particular module across partici-
pants. Higher values of SI for a given network node indi-
cate that the node is more frequently located within the same
module across participants, while lower values of SI indicate
that the node is more frequently located within different mod-
ules across participants. Scaled inclusivity values were calculated
using DMN and WMN templates acquired from Rzucidlo et al.
(2013) as referents. Figure 1 shows the location and extent
of the regions included in the DMN and WMN, respectively.
The resulting SI maps were compared across working memory
load conditions using a modified permutation test (Simpson
et al., 2013). The original form of this permutation procedure
only compares the location of modules across participants using
binary images. The Jaccardized Czekanowski index (Schubert,
2013; Schubert and Telcs, 2014) was incorporated to extend
this statistic to include SI magnitude in addition to spatial
location.

MODULAR HUB ORGANIZATION
Once the optimal modular partition was identified using the
Louvain algorithm, each node’s pattern of connections rela-
tive to this partition was quantified using a method called
functional cartography (Guimerà and Nunes Amaral, 2005).
Particularly important are those network hubs highly inter-
connected with the immediate community that hold mod-
ules together and provide modular structure (provincial hubs)
and those that interconnect different modules allowing for the
global integration of information (connector hubs). Functional
cartography has become a predominant means of identify-
ing and classifying hubs within modules by associating two
parameters to each node in the network: the participation coef-
ficient (pci) and within module degree (pki). The participa-
tion coefficient is a metric that expresses the distribution of

FIGURE 1 | After computing SI on the group data obtained from
Rzucidlo et al. (2013) with each participant contributing five runs
during resting-state and five runs during the 2-back condition,
modules were identified that encompassed the DMN and WMN,
respectively. These modules were binarized to focus on the regions that
exhibited consistency across all participants in each condition. The images
show the regions identified as composing the DMN and WMN,
respectively, which closely mirror those regions thought to subserve default
mode and working memory functions across the literature.

a node’s connections across all modules in a brain network.
Mathematically, the extent to which a given node i connects to
different modules is measured by the participation coefficient pci

defined as

pci = 1−
M∑

m = 1

(
ki,m

ki

)2

where ki,m is the number of links of node i to nodes in module
m, and Ki is the degree of node i. The closer the pci value
is to 0, the more connections that node has within a single
module; the closer the pci value is to 1, the more connections
that node has to different modules in the network relative to
connections within the module to which that node belongs.
The p-value, pki was used to accurately represent within mod-
ule degree determined by 1 minus the cumulative distribution
function of within module degrees (Joyce et al., 2010). In this
study, those nodes with a pki 0.05 were identified as hubs. Using
the participation coefficient and within module degree measure,
different classes of hubs were identified in the network. Provincial
hubs, defined as those nodes with pki ≤ 0.05 and pci ≤ 0.3,
are high degree nodes for which the majority of connections
are intra-modular connections. Connector hubs, defined as those
nodes with a pki ≤ 0.05 and 0.3 <pci ≤ 0.75, are high degree
nodes for which a substantial quantity of connections are inter-
modular connections. Kinless hubs, defined as those nodes with
pki ≤ 0.05 and pci > 0.75, are high degree nodes for which
almost all of their connections are with nodes in other modules.
Across all participants, only 14 kinless hubs were identified at
1-back, and only 12 kinless hubs were identified at 2-back. Due
to the limited quantity of kinless hubs, we did not run any
additional analyses on the spatial consistency or locations of
these hubs.

BEHAVIORAL MEASURES OF WORKING MEMORY
Based on work in signal detection theory (Swets et al., 1961), the
best available method for quantifying performance on the n-back
task is a total score (d′) that takes into account the range for
hits and false alarms by calculating the normalized proportion of
correct hits minus the normalized proportion of false alarms. d′

is calculated from the hit (H) rate and false-alarm (FA) rate using
the formula d′ = ZH − ZFA, where Z represents a transformation
of the two distributions to generate z-scores of the rate of hits
and the rate of false alarms (Macmillan and Creelman, 1997).
The better an individual maximizes hits (and thus minimizes
misses) and minimizes false alarms (and thus maximizes correct
rejections), the higher the individual’s d′ score. Higher scores on
the d′measure indicate better performance on the n-back task (for
review of the d′measure, see Haatveit et al., 2010). After excluding
those responses+/− 3 SDs from the mean for each participant in
each load condition, mean response times (ms) on correct trials
were also evaluated.

RESULTS
BEHAVIORAL RESULTS
There was a marginally significantly difference in working mem-
ory performance (d′) from 1-back to 2-back, t(13) = 1.78,
p = 0.099, such that participants performed somewhat worse on
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the 2-back task (M = 3.40, SD = 1.02) than the 1-back task
(M = 3.81, SD = 0.40). Average response times were significantly
longer for the 2-back task (M = 420.32 ms, SD = 149.26) than the
1-back task (M = 332.99 ms, SD = 99.75), t(13) = 3.62, p = 0.003.
Taken together, these results suggest that the 2-back task was more
cognitively challenging than the 1-back task.

MODULARITY
Whole brain individual modularity values, as defined by Q
scores, ranged from 0.514–0.691 for the 1-back condition and
from 0.562–0.691 for the 2-back condition. Thus, modular
structures at both 1-back and 2-back are confirmed by these
high values of Q obtained for each participant. Individu-
als’ whole brain network modularity at 1-back and 2-back
were positively correlated, r(12) = 0.690, p = 0.006, indi-
cating that higher modularity at 1-back was reliably asso-
ciated with higher modularity at 2-back, and vice versa.
There was no significant difference in average whole brain
modularity among all participants across load conditions
(p > 0.37).

The regional consistency of modular structure across par-
ticipants was measured using SI. Scaled inclusivity simultane-
ously identifies the degree of module overlap of nodes across
participants and penalizes for any disjunction between modules.

The SI maps presented in Figure 2 summarize the consistency
of modular structure for the DMN and WMN across par-
ticipants during the 1-back and 2-back tasks. Using the per-
mutation framework developed by Simpson et al. (2013) in
conjunction with the Jaccardized Czekanowski index (Schubert,
2013; Schubert and Telcs, 2014) to compare differences in
both spatial location and magnitude of SI values, the modular
structure within the DMN was identified as highly consistent
across participants during the 1-back task, but that consis-
tency in modular structure was significantly reduced during the
2-back task (p = 0.020). The consistency of modular struc-
ture across participants exhibited the opposite pattern within
the WMN with significantly higher consistency across partic-
ipants during the 2-back task compared to the 1-back task
(p < 0.001).

MODULAR HUB ORGANIZATION
Previously established methods of functional cartography
(Guimerà and Nunes Amaral, 2005; Joyce et al., 2010; Moussa
et al., 2011) were implemented to evaluate differences in the
quantity and spatial consistency of provincial and connector
hubs as a function of working memory load. Provincial hubs,
defined as those nodes with pki ≤ 0.05 and pci ≤ 0.3, are
high degree nodes for which the majority of connections are

FIGURE 2 | Scaled inclusivity (SI) was used to compute the
consistency of modular structure within the 1-back and 2-back
conditions separately. Higher values of SI for a given network node
indicate that the node more consistently participates in the same
functional module across a group of participants. The modular
structure within the DMN is highly consistent across participants

during the 1-back task but this consistency significantly diminishes
during the more demanding 2-back task (p = 0.020). The consistency
of modular structure across participants exhibited the opposite pattern
within the WMN with significantly higher consistency in modular
structure across participants during the 2-back task than the 1-back
task (p < 0.001).
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intra-modular connections. Provincial hubs are thought to
integrate processing within modules and serve to increase
specificity of modular function. Connector hubs, defined as
those nodes with a pki ≤ 0.05 and 0.3 < pci ≤ 0.75, are high
degree nodes for which a substantial quantity of connections
are inter-modular connections. Connector hubs are thought to
integrate information between modules resulting in increased
distributed information processing. This analysis revealed that
there was not a significantly different quantity of provincial hubs
or connector hubs in the entire brain across load conditions (both
p’s > 0.14). The mean quantities of provincial and connector hubs
during 1-back and 2-back conditions are presented in Table 1.

Further analyses revealed neither a significant difference in the
quantity of provincial hubs within the DMN across conditions
(p > 0.29) nor a significant difference in the quantity of provincial
hubs within the WMN across conditions (p > 0.41). However,
there was a significant increase in the quantity of connector hubs
within the DMN from 1-back to 2-back, t(13) = 5.29, p < 0.001.
Similarly, there was a significant increase in the quantity of con-
nector hubs within the WMN from 1-back to 2-back, t(13) = 7.23,
p < 0.001. The mean quantities of provincial and connector
hubs within the DMN and WMN during 1-back and 2-back
conditions are presented in Table 2. These data show that despite
the fact that there are no significant changes in the quantity of
connector hubs in the entire brain across load conditions, there
is a substantial increase in the quantity of connector hubs within
both the DMN and WMN as load increases. While the quantity of
module hubs that serve to integrate processing within modules
and improve the specificity of modular function remains rela-
tively stable across load conditions in both the DMN and WMN
circuits, there is a clear shift toward integrating information and
distributing information processing between modules in the brain
network serving different information processing functions as
task demands increase.

In light of the substantial increase observed in the total
quantity of connector hubs in both the DMN and WMN with
increasing load, we further sought to explore the consistency in
spatial location of provincial and connector hubs across partici-
pants within the DMN and WMN. Figure 3 shows maps of the
consistency of provincial and connector hubs across participants
during 1-back and 2-back conditions. Despite no significant
change in the total quantity of provincial hubs in either the
DMN or WMN with increasing load, there was a clear difference
in the consistency in spatial location of provincial hubs across
participants. During the 1-back condition, the ventral precuneus
(PC) and posterior cingulate cortex (PCC) were identified as
regions of the DMN with a highly consistent presence of provin-
cial hubs across participants. However, the PC and PCC no

Table 1 | Mean (SD) quantities of provincial and connector hubs in the
entire brain for both 1-back and 2-back conditions.

Condition Provincial hubs Connector hubs

1-back 545.57 (138.07) 348.21 (132.60)
2-back 517.00 (137.87) 406.14 (117.76)

longer displayed any consistency in the location of provincial
hubs across participants during the 2-back condition. Using the
permutation framework developed by Simpson et al. (2013) in
conjunction with the Jaccardized Czekanowski index (Schubert,
2013; Schubert and Telcs, 2014), there was a significant decrease
in the spatial consistency of provincial hubs in the DMN from
1-back to 2-back (p = 0.014). Overall, Figure 3 qualitatively
shows that the spatial distribution of connector hubs across the
brain were fairly inconsistent across participants during both
1-back and 2-back conditions, especially in comparison to the
high level of consistency of provincial hubs in the PC and PCC
during the 1-back condition. However, there was still a significant
increase in the spatial consistency of connector hubs within the
WMN across participants from 1-back to 2-back (p = 0.001).
This change in consistency was undoubtedly aided by the fact
that there were very few connector hubs located in the WMN
during 1-back, whereas there was a sizeable increase in the total
quantity of connector hubs across participants during 2-back.
A much larger quantity of connector hubs in the WMN during
2-back (see Table 2 for details) should increase the probability
of obtaining overlap in the spatial location of connector hubs.
These results further suggest that the roles of certain individual
nodes in the brain network are dynamic in nature and capable of
functional reconfiguration in accordance with working memory
load demands.

WORKING MEMORY PERFORMANCE AND MODULARITY
We further investigated the relationship between changes in
modularity across load conditions and individual differences
in behavioral performance. Our analysis revealed no significant
relationship between the change in modularity Q values from
1-back to 2-back and the change in behavioral performance
(d′) from 1-back to 2-back, r(12) = −0.421, p = 0.13. However,
diagnostic assessments revealed a single outlier exerting sub-
stantial leverage over the slope of the least squares line. After
excluding that single case from the data set, there was a sig-
nificant correlation between the change in modularity Q values
from 1-back to 2-back (2-back Q minus 1-back Q) and the
change in d′ from 1-back to 2-back (2-back d′ minus 1-back d′),
r(12) = −0.644, p = 0.017. Those who exhibited larger magni-
tude increases in modularity from 1-back to 2-back also tended
to exhibit larger magnitude declines in behavioral performance
from 1-back to 2-back, and vice versa (Figure 4). This suggests
that a global change in modularity is associated with individ-
ual variability in working memory performance. A less defined
modular structure facilitating greater integration of information
between modules is associated with better working memory
performance.

However, no significant correlations were obtained between
the change in average SI value within either the DMN or WMN
across load conditions and the change in behavioral performance
across load conditions (both p’s > 0.97).

WORKING MEMORY PERFORMANCE AND MODULAR HUB
ORGANIZATION
Investigating the relationship between changes in modular hub
organization across load conditions and individual differences in

Frontiers in Human Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 954 | 7

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Stanley et al. Modularity and working memory load

Table 2 | Mean (SD) quantities of provincial and connector hubs within the DMN and WMN circuits for both 1-back and 2-back conditions.

Condition DMN provincial hubs DMN connector hubs WMN provincial hubs WMN connector hubs

1-back 54.00 (32.39) 30.07 (19.86) 55.79 (26.41) 23.79 (13.98)
2-back 46.00 (22.58) 73.43 (28.14) 48.86 (24.80) 81.21 (26.80)

behavioral performance, we found a significant negative corre-
lation between the difference in the total quantity of provincial
hubs in the brain network from 1-back to 2-back (quantity
at 2-back minus quantity at 1-back) and the change in work-
ing memory performance from 1-back to 2-back (2-back d′

minus 1-back d′), r(12) = −0.772, p = 0.001 (Figure 5). Larger
magnitude declines in working memory scores from 1-back to
2-back were strongly associated with larger magnitude increases
in the total quantity of provincial hubs from 1-back to 2-back,
and vice versa. There was also a significant positive correla-
tion between the difference in the total quantity of connector
hubs in the brain network from 1-back to 2-back (quantity at
2-back minus quantity at 1-back) and the change in working
memory performance from 1-back to 2-back (2-back d′ minus
1-back d′), r(12) = 0.692, p = 0.006 (Figure 5). Larger magnitude
declines in working memory scores from 1-back to 2-back were

strongly associated with larger magnitude decreases in the total
quantity of connector hubs from 1-back to 2-back, and vice
versa.

However, no significant correlations were obtained between
changes in the quantity of provincial hubs or connec-
tor hubs within the DMN across load conditions and the
change in working memory performance across load con-
ditions (both p’s > 0.11). Similarly, no significant corre-
lations were obtained between changes in the quantity of
provincial hubs or connector hubs within the WMN across
load conditions and the change in working memory per-
formance across load conditions (both p’s > 0.45). These
results suggest that a more global change in the connectiv-
ity profiles of module hubs across load conditions is related
to individual variability in the change in working memory
performance.

FIGURE 3 | Individual participant provincial hub (pki ≤ 0.05 and
pci ≤ 0.3) and connector hub (pki ≤ 0.05 and 0.3 < pci ≤ 0.75)
maps were summated within each working memory load condition
separately to create an overlay image of the spatial distribution of
modular hubs in standardized brain space. Note the high
consistency of provincial hubs within the ventral PC and PCC, critically

important hubs of the DMN, during the minimally demanding 1-back
condition, but the absence of consistency in the spatial location of
provincial hubs during the 2-back condition. In addition to the sizeable
increase in the total quantity of connector hubs within the WMN with
increased load, there was also a significant increase in the spatial
consistency of connector hubs within the WMN across participants.
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FIGURE 4 | Change in whole brain modularity from 1-back to 2-back
(Q value at 2-back minus Q value at 1-back) was significantly and
negatively related to the change in working memory performance from
1-back to 2-back (2-back d’ minus 1-back d’ ). Each participant was
identified by a unique shape and color on the graph. Participants
represented by these same shapes and colors in Figure 5 correspond to
the same participants in Figure 4.

DISCUSSION
This study utilized data-driven methods and graph theory mea-
sures to quantify changes in functional brain network topology
as a function of working memory load. These analyses were
made possible by recent advances in the study of complex brain
networks that allow for the systematic investigation of global
and regional module properties implicated in working memory.
No significant changes in modularity or module hub properties
were observed as a large-scale property of the brain network as a
whole when working memory load on the n-back task increased
from n = 1 to n = 2. However, significant regional changes
in network topology were observed within DMN and WMN
circuits across working memory load conditions. The modular
organization of the DMN became significantly less consistent
across participants from 1-back to 2-back, whereas the modular
organization of the WMN became significantly more consistent
across participants from 1-back to 2-back. Furthermore, while
the quantities of provincial hubs (highly connected nodes that
integrate processing within modules and serve to increase speci-
ficity of modular function) in the DMN and WMN were similar
and relatively stable from 1-back to 2-back, the quantities of con-
nector hubs (highly connected nodes that integrate information
between modules resulting in increased distributed information
processing) in both the DMN and WMN drastically increased
from 1-back to 2-back. Despite clear shifts in regional modular
consistency and module hub properties within the DMN and
WMN from 1-back to 2-back and the absence of significant
change in modularity and module hub properties in the entire
brain network across load conditions, only the slight changes in
modularity and module hub properties in the entire brain were
significantly associated with individual variability in the change in
behavioral working memory performance from 1-back to 2-back.

FIGURE 5 | (A) The change in the total quantity of provincial hubs in the
entire functional brain network from 1-back to 2-back (quantity at 2-back
minus quantity at 1-back) is significantly and negatively related to the
change in working memory performance from 1-back to 2-back (2-back d’
minus 1-back d’). (B) Conversely, the change in the total quantity of
connector hubs in the entire functional brain network from 1-back to 2-back
(quantity at 2-back minus quantity at 1-back) is significantly and positively
related to the change in working memory performance from 1-back to
2-back (2-back d’ minus 1-back d’). Each participant is identified by a unique
shape and color on the graph. These same shapes and colors correspond to
the same participants in Figure 4. Notice that individuals who exhibited
substantial decreases in modularity from 1-back to 2-back in Figure 4
tended to be the same individuals who exhibited increases in the total
quantity of connector hubs from 1-back to 2-back and decreases in the total
quantity of provincial hubs from 1-back to 2-back in Figure 5. These were
the same individuals who actually improved their performance on the
n-back task even though demands on working memory increased from
n = 1 to n = 2. This suggests that a shift to more integrated, distributed
processing is necessary for optimal working memory performance as
working memory load increases.

In sum, while regional changes in modularity and module hub
properties were highly sensitive to increases in external cognitive
demands, only global changes in modularity and module hub
properties were sensitive to changes in behavioral performance
across load conditions.

Regarding changes in the entire functional brain network
from 1-back to 2-back, a more weakly defined modular structure
signifying greater integration of information between modules,
an increase in connector hubs, and a decrease in provincial hubs
collectively facilitate improvements in behavioral performance as
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working memory load increases. Taking Figures 4, 5 together,
those individuals who exhibited decreases in modularity from
1-back to 2-back in the entire brain network tended to be the
same individuals who exhibited increases in the total quantity of
connector hubs and decreases in the total quantity of provincial
hubs from 1-back to 2-back. These were the same individu-
als who displayed high performance on the 2-back task, and
often individuals who actually improved their performance as
working memory load increased. These findings suggest that the
recruitment of the relevant cognitive resources associated with
higher levels of working memory load requires more integrated,
distributed processing between network modules for optimal
working memory performance. Individual nodes in the brain
network are capable of functional reorganization, and the manner
in which nodes reorganize their functions has a substantial impact
on individual variability in behavioral performance. The fact
that only changes in whole brain network measures accounted
for substantial individual variability in working memory perfor-
mance complements prior working indicating that organizational
properties of the entire functional network are linked to intelli-
gence (van den Heuvel et al., 2009), learning (Bassett et al., 2011;
Heitger et al., 2012), and working memory capacity (Stevens et al.,
2012).

An abundance of task-relevant effects support the con-
clusion that DMN activity is suppressed during externally
focused, demanding goal-directed behaviors (Shulman et al.,
1997; McKiernan et al., 2006; Binder, 2012), while WMN activity
increases in accordance with increasing task demands (Cohen
et al., 1997; Rypma and D’Esposito, 1999; Kondo et al., 2004;
Osaka et al., 2004). Default mode network activity suppression
appears to be a mechanism through which the brain suspends
certain internally oriented mental activities (e.g., mind wander-
ing) in order to optimize externally-directed cognitive functions
facilitated by other neural systems (e.g., WMN) relevant to task
demands (Buckner et al., 2008; Anticevic et al., 2012; Andrews-
Hanna et al., 2014). As such, DMN activity is inversely related
to cognitive demand, where higher cognitive demands produced
by more difficult external tasks reduce activity in DMN regions
in order to accommodate the increased need for task-related
processing. However, during external tasks that require mini-
mal effort and attentional resources, individuals often retain the
capacity to shift attentional focus toward unrelated self-generated
information without necessarily a noticeable negative impact on
behavioral performance (Stawarczyk et al., 2011; Andrews-Hanna
et al., 2014).

Despite a sizeable body of work reporting changes in DMN
and WMN activation with changes in task demands, little is
known about changes in complex patterns of functional connec-
tivity in the DMN and WMN in accordance with task demands.
Among the few studies exploring functional connectivity within
the DMN and WMN as working memory load increases, results
have indicated that connectivity within both the DMN and WMN
increases with working memory load, although these increases in
connectivity were unrelated to behavioral performance (Newton
et al., 2011; Sala-Llonch et al., 2012). Our results provide evi-
dence for an inverse relationship between the DMN and WMN
in the consistency of modular organization across participants

by examining complex patterns of functional connectivity. The
modular structure of the DMN was identified as highly consis-
tent across participants during the less demanding 1-back task.
Because the 1-back task requires minimal effort and attention,
our results suggest that: (1) the suppression of a specific modu-
lar organization subserving internally-oriented mental functions
was unnecessary in recruiting the minimal cognitive resources
required in performing the task; and/or (2) participants regularly
shifted attentional focus toward unrelated self-generated thoughts
during the task while still performing adequately. Because the
2-back task requires many more operations making the task more
demanding on relevant cognitive resources, there was a significant
decrease in modular consistency across participants within the
DMN and a concomitant increase in modular consistency across
participants in the WMN. Thus, the specific, consistent modular
organization of the DMN facilitating internally oriented mental
activities receded as the external task became more difficult, while
the specific, consistent modular organization of the WMN asso-
ciated with relevant cognitive demands became highly engaged
across participants as the task became more difficult.

The status of hubs as provincials or connectors in functional
brain networks is determined by their central embedding within
the network. These network hubs influence other nodes in the
network via their strong participation in dynamic interactions
across disparate brain regions produced by neuronal signaling.
Thus, the concept and function of brain network hubs are
intimately related to assessments of network communication
(Hagmann et al., 2008; Estrada, 2011; van den Heuvel and Sporns,
2013). An important goal of brain network analyses is to infer
patterns of communication on the basis of network topology. In
the current study, functional properties of module hubs within
the DMN and WMN changed in similar ways as working memory
load increased. A relatively consistent quantity of provincial hubs
identified within the DMN and WMN facilitated the integration
of information within their respective modules during both load
conditions, thereby serving a similar, critical role in specialized
information processing. However, an increase in the quantity
of connector hubs within both the DMN and WMN facilitated
the integration of information across different modules in the
network during the 2-back condition, thereby sharing informa-
tion across disparate elements of the system for more global
communication. Taken together, these results suggest that while
DMN and WMN modules retained their respective capacities for
integration of information within their respective modules facil-
itated by the relatively stable quantity of provincial hubs across
load conditions, nodes within both DMN and WMN modules
acquired a larger quantity of connections to other modules in
the network as load increased, thereby facilitating the transfer of
information between disparate processing systems required for
increasing cognitive demands.

In examining the consistency in spatial location of provincial
and connector hubs across the brain network, we identified the
PC and PCC as subregions of the DMN with a highly consistent
presence of provincial hubs during the minimally demanding
1-back condition. However, the consistency in the location of
provincial hubs in the PC and PCC was reduced across partici-
pants during the 2-back condition. Despite no significant change
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in the total quantity of provincial hubs within the DMN across
load conditions, individual nodes within the DMN still reorga-
nized their functions in accordance with external task demands.
That is, the particular spatial distribution of provincial hubs
changed from 1-back to 2-back. In line with prior work showing
a high consistency of provincial hubs within the PC and PCC of
the DMN during resting-state (Moussa et al., 2011), our results
suggest that those provincial hubs within the PC and PCC may
play an integral role in facilitating internally oriented mental
activity (e.g., daydreaming) during minimally demanding tasks.
When attentional resources must be allocated to more demanding
external tasks, however, nodes within the PC and PCC function-
ally reorganize to serve different roles in the brain network.

Early definitions of modules treated such structures as com-
pletely encapsulated information processing units (Fodor, 1983)
that are neutrally instantiated in localized brain regions. It is
important to emphasize again that the modules identified in the
current study remain integrated with one another via a complex
pattern of network connections. While viewing brain networks in
terms of functional modules allows for the identification of brain
regions with similar features or functions, nodes within any given
module still maintain weak connections with nodes in different
modules. In this sense, modularity captures an important organi-
zational principle characterizing optimal system organization: the
integration of information within subsystems allows for efficient,
specialized local processing while sparse connections between
subsystems reduce the proliferation of noise in the system and
permit the more global integration of information for complex
tasks (Bassett et al., 2011; Stevens et al., 2012).

The idea that localized brain regions are functionally special-
ized information processing units and make specific contribu-
tions to cognitive processes is supported by a substantial body
of evidence from diverse research programs. However, localized
functional specialization alone cannot fully account for most
aspects of brain function (van den Heuvel and Sporns, 2013). In
fact, rapidly accumulating evidence has suggested that integrative
processes and dynamic, complex interactions across numerous,
distributed brain regions subserve visual recognition (Behrmann
and Plaut, 2013), language functions (Friederici and Gierhan,
2013), cognitive control and executive functioning (Power and
Petersen, 2013), emotion-cognition interactions (Pessoa, 2012),
decision making processes (Moussa et al., 2014), and social
cognition (Barrett and Satpute, 2013). Similarly, our results
demonstrate that the degree to which modules are intercon-
nected by central network nodes allowing for the continuous
sharing of information across distributed elements of the net-
work is critically important for successful performance on more
complex tasks. Although many different modules are engaged
in more cognitively demanding working memory tasks (Jonides
et al., 2003), integration of information via complex interactions
between modules is critically important for improvements in
working memory performance, even when working memory load
increases. While univariate neuroimaging studies varying working
memory load have repeatedly shown that increases in working
memory load are associated with increased activation across
several brain regions (Cohen et al., 1997; Rypma and D’Esposito,
1999; Kondo et al., 2004; Osaka et al., 2004), relatively little

is known about the relationship between activity and complex
patterns of connectivity with increases in working memory load.
Whether the observed global shift from provincial to connector
hubs facilitating behavioral performance is associated with greater
brain activity as working memory load increases remains an open,
empirical question worth investigating.

Most investigations of modularity in complex brain networks
have examined network topology derived from resting-state func-
tional connectivity both in healthy individuals (Fair et al., 2009;
Meunier et al., 2009; Valencia et al., 2009; Stevens et al., 2012;
Onoda and Yamaguchi, 2013; Cao et al., 2014) and among
those with neurological and psychiatric disorders (Alexander-
Bloch et al., 2012; Vaessen et al., 2013; Baggio et al., 2014;
Brier et al., 2014; Gamboa et al., 2014). More recently, changes
in modular organization and certain properties of modules in
functional brain networks have been observed during diverse
tasks, including: motor learning (Bassett et al., 2011; Heitger
et al., 2012), olfactory recognition memory (Meunier et al.,
2014), decision making (Moussa et al., 2014), and visual and
auditory stimulation (Moussa et al., 2011). Results from these
studies have demonstrated that certain modular properties are
dynamic and changing across diverse tasks. The current study
complements this prior work by demonstrating that important
modular properties in functional brain networks change as a
function of working memory load. Additionally, the flexible
adaptation in whole brain modularity and the respective changes
in provincial and connector hubs in the entire functional brain
network are strongly associated with behavioral performance as
load increases, a finding that underscores the value of a complex
networks approach for studying task-evoked functional brain
data.

Using data-driven methods each voxel in the current study
represented a network node, allowing for the generation of
large-scale, high resolution networks, which are unbiased and
unconstrained by unnecessary a priori assumptions that limit
the potential for making new discoveries (Stanley et al., 2013).
Both large-scale properties of the network as a whole and
regional changes in critical features of network topology were
simultaneously investigated in the current study. Simultane-
ously documenting both whole brain and regional differences in
network topology while relating those differences to behavioral
performance on the n-back task allows for a particularly com-
prehensive investigation of neural differences in working mem-
ory processes. Complex network analyses of neuroimaging data
provide a research paradigm capable of simultaneously capturing
both distributive, integrated information processing and local-
ized functional specialization within the brain (Sporns, 2013).
Furthermore, we not only produced the first study detailing
brain network differences as a function of working memory load,
but this study also complemented a growing literature showing
that functional network topology changes with task demands.
Nevertheless, there are two limitations worth mentioning. First,
partitioning the network into a set of modules is an NP hard
problem (Brandes et al., 2008), meaning that all modularity algo-
rithms must balance the optimization of Q with run time. While
the modularity algorithms used in the literature are unlikely
to produce the best possible network partition, the number of
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near-optimal partitions tends to be larger for large-scale, binary
networks (Good et al., 2010), such as those networks analyzed in
the current study. The use of modularity also limits each network
node to a single community. It is highly probable that individ-
ual nodes can belong to multiple communities simultaneously.
Future methodological development is still needed to perform
the type of analyses on large-scale networks used here based on
networks with overlapping communities. Second, although no
significant whole-brain differences were observed in modularity,
the quantity of provincial hubs, or the quantity of connector
hubs as a function of working memory load, the relatively small
sample size may have limited power to detect group differences.
Using a larger sample size, future work should seek to investigate
differences in whole brain and regional network properties as
working memory load increases.
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