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An important but poorly understood aspect of sensory processing is the role of active
sensing, the use of self-motion such as eye or head movements to focus sensing
resources on the most rewarding or informative aspects of the sensory environment.
Here, we present behavioral data from a visual search experiment, as well as a Bayesian
model of within-trial dynamics of sensory processing and eye movements. Within this
Bayes-optimal inference and control framework, which we call C-DAC (Context-Dependent
Active Controller), various types of behavioral costs, such as temporal delay, response
error, and sensor repositioning cost, are explicitly minimized. This contrasts with previously
proposed algorithms that optimize abstract statistical objectives such as anticipated
information gain (Infomax) (Butko and Movellan, 2010) and expected posterior maximum
(greedy MAP) (Najemnik and Geisler, 2005). We find that C-DAC captures human
visual search dynamics better than previous models, in particular a certain form of
“confirmation bias” apparent in the way human subjects utilize prior knowledge about
the spatial distribution of the search target to improve search speed and accuracy.
We also examine several computationally efficient approximations to C-DAC that may
present biologically more plausible accounts of the neural computations underlying active
sensing, as well as practical tools for solving active sensing problems in engineering
applications. To summarize, this paper makes the following key contributions: human
visual search behavioral data, a context-sensitive Bayesian active sensing model, a
comparative study between different models of human active sensing, and a family of
efficient approximations to the optimal model.
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1. INTRODUCTION
The brain excels at performing sensory inference under condi-
tions of uncertainty. One important tool the brain has at its
disposal is active sensing, the ability to utilize self-motion in
order to allocate sensing resources toward the most rewarding or
informative aspects of the environment. Most prominent mod-
els of sensory processing presume passiveness in data collection
(Simoncelli and Heeger, 1998; Riesenhuber and Poggio, 1999;
Lewicki, 2002; Wilson and Mainen, 2006), considering only how
to represent or compute with given inputs, and not how to actively
intervene in the input collection process itself, especially with
respect to behavioral goals or environmental constraints. Having
a formal understanding of active sensing is not only important for
advancing neuroscientific progress but also for engineering appli-
cations, such as developing context-sensitive, interactive artificial
sensing systems.

The most well-studied aspect of human active sensing is sac-
cadic eye movements (Yarbus, 1967). While most existing models
have focused on bottom-up saliency factors related to image
statistics (Koch and Ullman, 1987; Itti and Koch, 2000; Lee
and Yu, 2000; Rao et al., 2002; Itti and Baldi, 2006), empirical

data have long indicated eye movements to be under the influ-
ence of a variety of cognitive factors (Yarbus, 1967; Land and
Lee, 1994; Rayner, 1998; Land and Hayhoe, 2001; Henderson,
2007), such as prior knowledge about target location (He and
Kowler, 1989), temporal onset (Oswal et al., 2007), and reward
probabilities (Roesch and Olson, 2003). Models that assume sac-
cadic eye movements to be passive or automatic responses to
the visual scene sidestep the computational consequences of sac-
cadic decisions, and thus cannot explain how behavioral goals
and environmental context ought to influence eye movements. In
part to overcome this limitation, the notion of saliency has been
reframed probabilistically and dynamically in terms of maximiz-
ing the future informational gain (Infomax) given current beliefs
about the visual scene (Lee and Yu, 2000; Itti and Baldi, 2006;
Butko and Movellan, 2010). Separately, it has also been proposed
that saccades may be dynamically chosen to maximize the greedy
probability of finding the target in one time step (Greedy MAP)
(Najemnik and Geisler, 2005).

While both Infomax and Greedy MAP brought a new level of
sophistication to the modeling of eye movements—in particular,
representing sensory processing as iterative Bayesian inference,
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quantifying the information gain of different saccade choices,
and incorporating knowledge about sensory noise—they are still
limited in some key respects: (1) they optimize abstract compu-
tational quantities that do not directly relate to behavioral goals
(e.g., speed and accuracy) or task constraints (e.g., the cost of
moving sensors from one location to another); (2) there is no
explicit representation of time in these algorithms, and thus no
principled means of trading off fixation duration or number of
fixations with performance.

In this work, we propose a behaviorally-grounded infer-
ence and control framework for active sensing, which we call
C-DAC (Context-Dependent Active Controller). In contrast to
Infomax and Greedy MAP, which optimize abstract statisti-
cal objectives, C-DAC explicitly optimizes behaviorally defined
objectives. Specifically, we assume that the observer aims to opti-
mize a context-sensitive objective function that takes into account
behavioral costs such as temporal delay, response error, and the
cost of switching from one sensing location to another. C-DAC
uses this compound objective to plan eye movements adaptively,
based on a continually updated, statistically optimal (Bayesian)
representation of the history of observations. This framework
allows us to derive behaviorally optimal procedures for making
decisions about (1) where to acquire sensory inputs, (2) when
to move from one observation location to another, and (3) how
to negotiate the exploration-exploitation tradeoff between col-
lecting additional data vs. terminating the observation process.
In what follows, we cast our problem as a Partially Observable
Markov Decision Process (POMDP) since the state (location of
the targets) are hidden and have to be inferred on the basis
of accumulated evidence from sampling (with eye movements).
Since the influence of action choices on the hidden state variable
(e.g., visual object location) is trivial, we can convert the POMDP
into a belief Markov Decision Process, or a Markov Decision
Process whose states are the (observable) belief states and the
action choices non-trivially affect future belief states.

Complementing the modeling work, we also present data from
a visual search experiment, in which subjects are required to find a
designated target stimulus amongst distractor stimuli, in the pres-
ence of sensory noise. A critical experimental manipulation is that
some locations are more likely to contain the target than others,
during each block of trials. As reported elsewhere (Yu and Huang,
2014), we found that subjects’ first fixation choice on each trial is
consistent with having internalized spatial statistics of target loca-
tion based on experienced target location in previous trials. In this
work, we analyze how this prior information exerts control over
the within-trial, fine-temporal dynamics of eye movements and
perceptual processing. We find that humans exhibit a certain con-
firmation bias on this task—a tendency to favor the most likely
location in processing speed and perceptual choice. We compare
the various models with human behavior, in terms of fixation
choice and duration, to investigate whether human behavior is
better explained by taking into account task-specific considera-
tions, as in C-DAC, or whether it is sufficient to optimize an
abstract, and thus generic, statistical goal, like that of Infomax or
Greedy-MAP.

Due to its contextual sensitivity, C-DAC may also improve
on current algorithms in engineering applications, such as the

digital eye (Butko and Movellan, 2010), where Infomax has
been applied. However, the standard numerical solution for C-
DAC is computationally intense—it scales exponentially with the
number of potential target locations, making it impractical for
most real-world applications. We there for propose two kinds
of approximations schemes for C-DAC to sidestep its computa-
tional complexity: (1) approximate dynamic programming based
on low-dimensional parametric and non-parametric approxi-
mation of the value function, (2) one-step look-ahead myopic
approximation of value function that sidesteps dynamic pro-
gramming. These approximations retain context-sensitivity while
significantly reducing computational complexity. We will exam-
ine in this paper how these approximations compare to C-DAC,
as well as areas for further investigations.

2. METHODS
In the following, we model active sensing as solving a sequential
(Markov) decision process problem, where the observer can con-
trol both the location where the data is collected, and the amount
of data collected in each location. Although we use language
specific to visual search for concreteness, the framework dis-
cussed below easily generalizes to a broad range of active sensing
problems. As a Markov decision process problem, active sensing
consists of two separable computational components, an inference
component that extracts a useful representation of the external
environment based on the observed stream of noisy data, and a
decision component that decides how to maintain or modify or
terminate the sensing process as a function of this extracted rep-
resentation. In the following, we begin with a discussion of the
inference process, common to C-DAC and Infomax, and then dis-
cuss the decision policy for each of C-DAC and Infomax. We then
discuss various possible approximations to the C-DAC policy, and
conclude with a description of the visual search experiment. We
exclude Greedy-MAP from our analysis since it resembles a ran-
dom policy for the simple visual search problem we consider (see
Supplementary Material for details).

2.1. INFERENCE
We assume the observer starts with a prior belief over the true
target location s (out of k possible locations), based on prior
searching encounters (trials in the experimental setting), and
then updates his/her belief about target location via Bayes’ rule,
upon receiving each new observation xt . The observation noise is
assumed to be i.i.d. conditioned on target location s and sensing
(fixation) location λt . Thus, if we denote the sequence of fixa-
tion locations up to time t as λt := {λ1, . . . , λt}, the sequence of
observations up to time t as xt := {x1, . . . , xt}, and the belief state
at time t as pt := (P(s = 1|xt;λt), . . . , P(s = k|xt;λt)), then
the belief-update rule according to Bayes’ theorem is:

pi
t = P

(
s = i|xt; λt = j, λt − 1

) ∝ p
(
xt |s = i; λt = j

)
P (s = i|xt − 1; λt − 1) = fi,j(xt)pi

t − 1 (1)

where fi,j(xt) is the likelihood function, and p0 the prior belief
distribution over target location.
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2.2. C-DAC DECISION POLICY
For the decision policy, C-DAC optimizes the mapping from the
belief state to the action space (continue, switching to one of
the other sensing locations, stopping and report the target loca-
tion) with respect to a behavioral cost function. If the target is
at location s, and the observer declares it to be at location δ,
after spending τ units of time and making nτ number of switches
between potential target locations, then the total cost incurred is
given by:

l(τ, δ; s) = cτ + csnτ + 1{δ �= s} (2)

where c is the cost per unit time, cs is the cost per switch, and
cost of making a wrong response is 1 (since we can always make
one of the costs to be unity via normalization). For any given
policy π (mapping belief state to action), the expected cost is
Lπ := cE[τ ] + csE[ns] + P(δ �= s). At any time t, the observer
can either choose to stop and declare one of the locations to be
the target, or choose to continue and look at location λt + 1. Thus,
the expected cost associated with stopping and declaring location
i to be the target is:

Q̄i
t(pt; λt) := E

[
l(t, i; s)|pt; λt

] = ct + csnt

+ E
[
1{i �= s}

] = ct + csnt +
(

1 − pi
t

)
(3)

And the minimum expected cost for continuing sensing at
location j is:

Q
j
t (pt = p; λt) := c(t + 1) + cs

(
nt + 1{j �= λt}

)
+ min

τ ′,δ,λτ ′
E
[
l(τ ′, δ; s)|p0 = p; λ1 = j

]
(4)

The value function V(p, i), or the expected cost incurred follow-
ing the optimal policy (π∗), starting with the prior belief p0 = p
and initial observation location λ1 = i, is:

V(p, i) := min
τ,δ,λτ

E
[
l(τ, δ; s)|p0 = p; λ1 = i

]
(5)

Then the value function satisfies the following recursive relation
(Bellman, 1952), and the action that minimizes the right hand
side is the optimal action π∗(p, k):

V(p, k) = min

((
min

i
Q̄i

1(p; k)

)
,

(
min

j
Qi

1(p; k)

))

= min

(
min

i

(
1 − pi

)
, min

j

(
c + cs1{j �= k} + E

[
V(p′, j)

]))

(6)

where k is the fixation location and p′ is the random vari-
able denoting the achievable belief states in the next time-step.
The equation can be interpreted as a forward simulation till the
stopping horizon, where for any belief state p, at t = 1, the
observer can either stop and declare a location to be the tar-
get, or sample one more observation, followed by the optimal
action (which in turn can be stop or continue). Notice that the

horizon is finite because the cost of continuation keeps increas-
ing with time and eventually (depending on the parameters) it
would exceed the cost of stopping, making the stop action the
optimal choice. Furthermore, the optimal decision policy is a sta-
tionary policy—the value function depends only on the belief
state and observation location at the time the decision is to be
taken, and not on time t per se. The exact solution can be obtained
using dynamic programming for the continuous belief state. In
practice, we discretize the belief state space, initialize the value
function over this space (any choice would do, we use the stop-
ping cost, 0 is another common choice), and iterate Equation 6
until convergence.

2.3. INFOMAX DECISION POLICY
The objective of Infomax is to maximize long-term future infor-
mation gain (or minimize cumulative future entropy of the
posterior belief state) (Butko and Movellan, 2010). Thus, the
action-values, value function, and the resultant policy can be
formulated as follows in the Markov decision process framework:

QI(pt, j) =
T∑

t′ = t + 1

E[H(pt′)|pt; λt + 1 = j];

VI(pt) = min
j

QI(pt, j);

λt + 1 = argmin
j

QI(pt, j)

Infomax policy (and value function) does not depend on current
location, since the action costs QI(pt, j) only concern with the
entropy of the belief state in the next time step, a random vari-
able that depends on the current belief state and next location but
not on the current fixation location. Furthermore, Infomax does
not directly prescribe when to stop, since there are only contin-
uation actions and no stopping action. A general heuristic used
for such strategies is to stop when the confidence in one of the
locations being the target (the belief about that location) exceeds
a certain threshold, which is a free parameter challenging to set
for any specific problem. We augment infomax policy using the
bound developed in Theorem 1, which yields a stopping region
that is a provable subset of the optimal stopping region for C-
DAC, and which is sensitive to observation noise parameterized
by β and the cost of time parameterized by c.

2.4. APPROXIMATE DECISION POLICY
We present two approximate decision policies that limit the com-
plexity of dynamic programming (Equation 6) by either approxi-
mating the value function using a low-dimensional basis function
representation, or by forgoing value iteration altogether by using
a myopic horizon to assess action values.

2.5. VALUE FUNCTION APPROXIMATION
As shown in Figure 1, the Q-factors (Equation 3, 4) as well as
the resulting value function (Equation 6) are smooth and con-
cave, making them amenable to low dimensional approximations.
At each step, we find a low dimensional representation of the
value function, and use that for the update step of the value iter-
ation algorithm. Specifically, instead of re-computing the value
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FIGURE 1 | C-DAC Q-factors for different actions. Blue: stop and declare.
Green: fixate location 1. Orange: fixate location 2. Brown: fixate location 3.

function at each grid point, here we generate a large number of
samples uniformly on the belief state space, compute a new esti-
mate of the value function at those locations, and then extrapolate
the value function to everywhere by improving its parametric fit.

The first low-dimensional approximation we consider is Radial
Basis Function (RBF) approximation (Buhmann, 2003), which
has been proposed to characterize neural encoding and computa-
tion in the visual pathways (Poggio, 1990), and also having been
applied to many engineering applications. The overall scheme
for approximating value functions with RBF proceeds using the
following sequence of algorithmic steps:

1. Generate M RBFs, centered at {μi}M
i = 1, with fixed σ : φ(p) =

1
σ (2π)k/2 e

||p − μi ||2
2σ2

2. Generate m random points from belief space, p.
3. Initialize {V(pi)}m

i = 1 with the stopping costs.
4. Find minimum-norm w from: V(p) = 	(p)w.
5. Generate new m random belief state points (p′).
6. Evaluate required V values using current w.
7. Update V(p′) using value iteration.
8. Find a new w from V(p′) = 	(p′)w.
9. Repeat steps 5 through 8, until w converges.

While we adopt a Gaussian kernel function, other func-
tional forms are also possible, e.g., multiquadratic
(φ(p) = √

1 + ε||p − μi||2), inverse-quadratic(φ(p) =
(1 + ε||p − μi||2)−1), and thin plate spline (φ(p) =
||p − μi||2ln||p − μi||). We have implemented some of
these for our problem without observing significant deviations
from the RBF results (data not shown).

The RBF approximation requires setting several parameters
(number, location and width of bases), which can be imprac-
tical for large problems, when there is little or no information
available about the properties of the true value function. We
thus also implement a non-parametric variation of the algorithm,

whereby we use Gaussian Process Regression (GPR) (Williams
and Rasmussen, 1996) to estimate the value function (step 4, 6,
and 8). In addition, we also implement GPR with hyperparam-
eter learning (Automatic Relevance Determination, ARD), thus
obviating the need to pre-set model parameters.

The approximations lead to considerable computa-
tional savings. The complexity of the RBF approximation is
O
(
k(mM + M3)

)
, for k sensing locations, m random points

chosen at each step, and M bases. For the GPR approximation,
the complexity is O(kN3), where N is the number of points used
for regression. In practice, all the approximation algorithms we
consider converge rapidly (under 10 iterations), though we do
not have a proof that this holds for a general case.

2.6. MYOPIC APPROXIMATION
This approximation attempts to optimize the contextual cost of
C-DAC, but only for one step in the future. In other words, the
planning is based on the inherent assumption that the next action
is the last non-terminal action permissible (or considered), and
so the goal is to minimize the cost incurred in this single step. The
actions available are, thus, stop and declare the current location
as the target, or choose another sensing location before stopping.
Similar to Equation 6, we can write the value function as:

V(p, k) = min

((
1 − pk

)
, min

j

(
c + cs1{j �= k} + min

lj

(
1 − E[plj ]

)))

(7)

where j indexes the possible sensing locations, and lj indexes the
possible stopping actions for the sensing location j.

Note that the value function computation does not involve any
recursion, just a comparison between simple-to-compute action
values for different actions. Furthermore, this online policy only
needs to be calculated for the current belief state, making the
computational complexity to be constant in time.

If we define the stopping region as the subset of the belief space
where it is optimal to stop the search and declare the target, it
can be seen that this myopic policy overestimates the size of the
stopping region as compared to the C-DAC policy: if there is only
one step left, it is never optimal to continue looking at the same
location, since such an action would not lead to any improvement
in expected accuracy, but incur a unit cost of time c. We present a
novel theoretical result that gives an inner bound of the stopping
region, which is sensitive to the sampling cost c and the signal-to-
noise ratio of the sensory input.

2.7. STOPPING THRESHOLD BOUND
Theorem 1. Assuming that the observations are binary and
Bernoulli distributed:

fi,j(x) = p(x|s = i; λ = j) = 1{i = j}βx(1 − β)1 − x

+ 1{i �= j}(1 − β)xβ1 − x

If p∗ is the solution of the equation:

p
(2β − 1)(1 − p)

βp + (1 − β)(1 − p)
= c
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where c is the cost per unit time as defined in section C-DAC
Decision Policy, then for all pi > p∗, the optimal action is to stop
and declare location i under the cost formulation of C-DAC.

Proof. The cost incurred for collecting each new sample is c.
Therefore, stopping is optimal when the improvement in belief
from collecting another sample is less than the cost incurred to
collect that sample. Formally, stopping and choosing i is optimal
for the corresponding belief pi = p when:

max
p′ ∈P

(p′) − p ≤ c

where P is the set of achievable beliefs starting from p.
Furthermore, if we solve the above equation for equality, to find
p∗, then by problem construction, it is always optimal to stop for
p > p∗ (stoppingcost(1 − p) < (1 − p∗)

)
. Given the likelihood

function fs,λ(x) (Equation 8), we can use Equation 1 to simplify
the above relation to:

p
(2β − 1)(1 − p)

βp + (1 − β)(1 − p)
= c

2.8. EXPERIMENTAL DESIGN
In this subsection, we detail our visual search experiment. We col-
lected the data from eleven subjects, recruited from the UCSD
undergraduate students (five females). Subjects first performed
a random-dot coherent motion direction discrimination task
(Britten et al., 1992) training session and achieved an accuracy
exceeding 75% for 12%-coherence stimuli, before continuing
onto the main experiment. In the main visual search experiment,
subjects must identify one of the three random-dot stimulus
patches as the target (left-moving for five subjects, right-moving
for six subjects), the other two being distractor stimuli moving
in the opposite direction. Subjects began each trial by fixating
a central cross, then sequentially fixated one or more stimulus
patches until pressing a space bar, which indicated that the last
viewed stimulus was the chosen target. The three stimulus patches
were circular and equidistant from the central cross, rotationally
symmetrically positioned at non-cardinal angles. In the 1:1:1 con-
dition (2 blocks), the target appeared in the three locations with
equal likelihood on each trial; in the 1:3:9 locations (6 blocks, one
of each possible configuration), the target appeared in the three
locations with correspondingly biased probabilities. The order
of the eight blocks (six biased blocks and two uniform ones, 90
trials per block) were randomized for each subject. Before the
main experiment, subjects experienced 3 practice blocks: respec-
tively, they consisted of 30, 40, and 40 trials, each with target
location distribution drawn randomly from the configuration in
the main experiment (2/8 probability of a 1:1:1 block, 1/8 prob-
ability of each of the 6 1:3:9 blocks). The random-dot motion
coherence of the three blocks were 30%, 20%, and 12%, respec-
tively. A target identification accuracy of 80% had to be reached
in the first two practice blocks, or else the same block has to
be repeated; similarly, in the third practice block, an accuracy
of 68% had to be reached before the subject could proceed to

the main experiment. Other than experiencing practice blocks
with similar statistics as in the main experiment, subjects did not
receive explicit instructions on the spatial distribution of target
location.

The gaze-contingent display only revealed a motion stimulus
in the fixated location, with the remainder replaced by a cen-
tral dot; boundaries for fixation determining which stimulus was
shown at any given time are as shown in Figure 2A. Subjects’ eye
movements were monitored using a SR Research Eyelink 1000 eye
tracker. A timing bar on the left side of the screen indicated time
elapsed since onset of first stimulus fixation, first decreasing in
length (green) until 8 s elapsed, and then growing in length in the
opposite direction (red) at the same rate, though subjects were
told that points were deducted indefinitely in proportion to their
total response time (12.5/s). At the end of each trial, subjects were
shown the true target location and the total points gained/lost for
that trial: 100–12.5 × (seconds taken to respond) −25× (number
of fixation switches, 0 if only one patch fixated) ± 50 (+ if final
response correct, —if incorrect). Subjects were paid at the end of
the experiment proportionally to the total points earned, which
were calibrated so as to award the average subject about USD 10
an hour.

All subjects had normal or corrected vision. They were
excluded from the analyses if they achieved less than 50% accu-
racy in the main experiment (lower than in the practice blocks),
or showed unusually large first fixation spatial bias (> 2 standard
deviations away in Kullback-Leibler divergence from the popula-
tion mean distribution of first fixation, in the 1:3:9 condition).
This lead to the exclusion of one out of twelve participants.

3. RESULTS
We first briefly describe the visual search task (see Methods,
also Yu and Huang, 2014), before delving into the experimen-
tal findings and comparison to the various models. In the task
(Figure 2A), subjects must find a target stimulus (random-dot
motion stimulus moving in a certain direction) in one of three
possible locations, with the other two locations containing dis-
tractors (random-dot motion stimulus moving in the opposite
direction). In the 1:3:9 condition, the target location is biased
among the three options with 1:3:9 odds. In the 1:1:1 control
condition, the target appears in the three locations with equal
probability on each trial. To eliminate the complications associ-
ated with the spatiotemporal dynamics of covert attention, which
we cannot measure directly, the display is gaze-contingent: only
the fixated stimulus is visible at any given time, with the other
two stimuli being replaced by two small dots located at the cen-
ter of the stimulus patches. Subjects receive feedback about true
target location on each trial after making their choice, as well as
their choice accuracy, search duration, and number of switches;
they are encouraged through a point-based reward function to be
fast, accurate, and efficient with the number of fixation switches
(see Methods).

As shown in Figure 2 (adapted from Yu and Huang, 2014),
human subjects appeared to internalize and exploit the spatial
statistics to locate the target stimulus more accurately (Figure 2B)
and more rapidly (Figure 2C). Subjects were more accurate in
finding the target in the 1:3:9 condition than the 1:1:1 condition
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FIGURE 2 | Experimental design and data. (A) On each trial, two of the
random-dot stimuli are distractors, one is the target; subjects must find
the target (see Methods). (B) Subjects are more accurate in finding the
target in the 1:3:9 condition than the 1:1:1 condition, and (C) faster. (D)

1:3:9 condition, allocation of fixation location on first fixation (black), and
second fixation when subjects first fixated the 9 location and found that it

was not the target (white), averaged over all subjects. Green dashed lines
indicate the matching probabilities on the first fixation, (1/13, 3/13, 9/13);
blue dashed lines indicate matching probabilities on the second fixation,
(1/4, 3/4). n = 11. Errorbars: s.e.m. across subjects. Adapted with
permission from Yu and Huang (2014). Copyright © 2014 by the American
Psychological Association.

(one-sided t-test, p < 0.01), and faster at finding the target than
in the 1:3:9 condition than the 1:1:1 condition (p < 0.001).
Underlying this performance improvement was a prioritized
search strategy that favors the more probable locations as a fix-
ation choice (Figure 2D). For first fixation, subjects preferentially
fixated the 9 location over the 3 location (p < 0.0001), which in
turn was favored over the 1 location (p < 0.01). For second fixa-
tion, on trials in which the first fixation was at 9 and that was not
the target, subjects then favored the 3 location over the 1 location
(p = 0.005).

Subjects’ first-fixation choices reflect a dynamically updated
Bayesian prior belief, related to the true underlying spatial dis-
tribution of target location as well as incidental stimulus history
experienced in the recent past (Yu and Huang, 2014). In this work,
we focus on how that prior belief on each trial modulates sensory
processing and perceptual decision-making within each trial, as
reflected in the fine temporal dynamics of fixation patterns and
durations. As shown in Figure 3A, subjects exhibit a certain con-
firmation bias in their fixation patterns. When viewing the same
sensory input, subjects were more likely to identify the stimulus
as a target if it is in the 9 location rather than in the 1 or 3 loca-
tions, thus exhibiting both a higher hit and false alarm rate in the

9 location compared to the other locations. Moreover (column
3 and 4), on correct trials, subjects appear to need less sensory
evidence to confirm a stimulus as the target but more evidence
to reject it as a distractor in the more probable location: subjects
spent less time viewing a target stimulus in the 9 patch than the
1 and 3 patches; conversely, they spent longer viewing a distrac-
tor stimulus in the 9 patch than the 1 and 3 patches. To isolate
the effect of prior spatial information on perceptual processing,
and thus any indirect influence of prior information on motor
response (evident in Figure 2D), which in turn may affect sensory
processing, all the data shown here (Figure 3A) only include trials
where subjects first fixated the labeled patch, i.e., the 9 patch in the
“9” column and the 1 or 3 patch in the “1 and 3” column. Data for
1 and 3 patches were combined together due to the small number
of trials in which subjects first fixated one of these locations.

We consider two different models for human eye movements:
C-DAC and Infomax. We do not present results for Greedy MAP,
which is highly sub-optimal and behaves like a random policy
for this task (see Supplementary Material). In the simulations,
observation noise is assumed to be binary (Bernoulli distributed).
Separate simulations using Gaussian observation noise leads to
very similar value functions and policies for different settings
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FIGURE 3 | The influence of prior spatial knowledge on sensory

processing and decision-making, in humans and models. (A) In terms of
perceptual choice, subjects are more likely to choose the most probable
target location (“9”) than the less probable locations (“1 and 3”) as
containing the target, whether it actually contains the target (“hits,” first
column) or not (“false alarms,” second column). In terms of fixation duration
(milliseconds), subjects are faster to accept the most probable location,
compared to the less probable locations, as containing the target, when the
fixated location contains the target (third column); they are slower to accept

the most probable location, as compared to the less probable locations, as
not containing the target, when the fixated location does not contain the
target (fourth column). All data included in the plots are from trials where the
subject first fixated the labeled location. The data for the “1” and “3”
locations are combined due to the relatively low incidence of subjects’ first
fixating these locations. (B) C-DAC reproduces the same pattern of behavior
as human subjects. Fixation duration in number of simulation steps. (C)

Infomax fails to reproduce the same pattern of behavior as human subjects.
Simulation settings: (c, cs, β) = (0.005, 0.1, 0.68).

of the problem (results not shown); thus, for simplicity, we use
the simpler binary noise model to illustrate the main points in
the paper. C-DAC uses iterative Bayesian inference to update the
belief about the target location based on sequential sensory data,
and makes a decision about how long to view a location before
switching to another one or choosing a terminal response, so that
the overall behavioral cost is minimized (a linear combination of
the cost of time, the cost of making a switch among locations, and
the cost of making an incorrect response). The Infomax formu-
lation also employs Bayesian belief updates about target location,
but makes fixation decisions so as to maximize the anticipated
cumulative future entropy reduction about the target location.
The parameters for C-DAC were selected by first transposing the
experimental parameters into appropriate units and then per-
forming a grid search in a narrow region around these initial
values to find the best fitting candidates.

We find that the confirmation bias phenomena exhibited by
humans are captured by C-DAC (Figure 3B), but not by Infomax
(Figure 3C). This is due to Infomax’s insensitivity to the cost of
switching sensing location, parameterized by cs in C-DAC. As seen
in Figure 4, the inability to incorporate switching cost makes the
Infomax decision policy quite different from the optimal policy

(C-DAC). In C-DAC, larger cs induces increasingly more asym-
metric decision regions, whereby the optimal policy becomes
more reluctant to switch away from the currently fixated location,
despite sensory evidence pointing to the contrary. This would
come into play when the observer is fixated in a stimulus loca-
tion that does not contain the target (Figure 3, column 4), as
the switching cost accentuates a reluctance to switch away from
this location, especially when it is a priori perceived to be more
likely to contain the target. Separately, larger cs also increases the
size of the stopping region (Figure 4), as the incentive of switch-
ing to other location just to “make sure” the currently fixated
location contains the target diminishes, and the optimal policy
instead chooses to terminate observations and select the current
location as the target even for intermediate levels of confidence.
This is why C-DAC has shorter fixation duration on target tri-
als for the “9” location, as the higher prior probability, combined
with the preliminary sensory evidence, is sufficient to push the
optimal policy into the stopping region, whereas the lower prior
confidence accorded to “1” and “3” locations does not succeed in
doing so. In contrast, Infomax in its original formulation (Butko
and Movellan, 2008) has no principled stopping policy at all, and
in its augmented form here (Theorem 1) is still insensitive to cs
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FIGURE 4 | Decision policies as a function of switching cost. (A) No
switch-cost environment: (c, cs, β) = (0.1, 0, 0.9). (B) Switch-cost
environment: (c, cs, β) = (0.1, 0.1, 0.9). Triangle represents the belief state
space, (p1, p2), under affine transform for visual symmetry. Color-coding

denotes the action prescribed by each policy for different values of the belief
state vector. Blue: stop and declare location 1 as target. Green: fixate location
1. Orange: fixate location 2. Brown: fixate location 3. All policies are
deterministic (see Methods).

and moreover under-estimates the size of the stopping region (see
Figure 4). Thus, not only does Infomax fixate longer than C-DAC,
in general, before stopping on the target trials (Figure 3, column
3), but the higher prior for the “9” location is insufficient, com-
bined with sensory data, to push it earlier into the stopping region
than for the “1” and “3” locations. Altogether, the results suggest
that humans, like C-DAC, modify the fine temporal dynamics of
their visual search behavior in a way that is apparently sensitive
to the switch cost, which may arise from intrinsic temporal or
energetic cost associated with saccades, and/or due to the exper-
imental design, which levies 25 points per fixation switch in the
task (see Methods).

3.1. MODEL PREDICTIONS
In this section, we describe future experiments that can further
differentiate the various eye movement models, by considering
scenarios in which Infomax and C-DAC are predicted to have par-
ticularly divergent behavior. We showed in the previous section
that the switch cost may play a key role in modulating human
visual search behavior. We therefore use model simulations to
predict how behavior should change depending on whether the
switching between fixation locations is penalized or not (e.g.,
in our experiment design, this can be done by changing the
number of points charged for fixation switch, which results in
greater monetary penalty). As can be seen in Figure 4, explic-
itly manipulating switch cost leads to rather different control
policies. This should presumably lead to rather different behav-
ioral outcomes as well. As shown in Figure 5A, for the case cs =
0, the accuracy of C-DAC is poorer as compared to Infomax,
because the threshold used for Infomax (based on Theorem 1)
is more conservative (thus stopping and declaration happens at
higher confidence, leading to higher accuracy), but C-DAC takes
less time (Figure 5B) and fewer switches (Figure 5C) to reach
the decision. Looking at the various behavioral costs, we see
that although C-DAC loses in accuracy, it makes up through
other measures, leading to slightly lower total cost (Figure 5D).
For the case when cs = 0.1, the accuracy and search time for
both policies are relatively comparable to the case with cs = 0.
However, C-DAC has a notable advantage in terms of number

of switches, while the number of switches remains unchanged
for Infomax (Figures 5A,B). This case exemplifies the context-
sensitivity of C-DAC, as it reduces number of switches when
switching becomes more costly (Figure 5C). When all these costs
are combined, we see that C-DAC incurs a lower cost than
Infomax (Figure 5D). These observations can be used to aid the
design of future experiments, to gain a fuller understanding of
human eye movement behavior.

Another way to extend our work is to include peripheral vision
in future experiments. Here, we model a simple task with periph-
eral vision (see Figure 6A), whereby the observer can saccade to
intermediate locations that give information about more than one
stimulus (either on the edge between two stimuli, or in the cen-
ter of the triangle delimited by all three stimuli), but gives noisier
information than when a stimulus is directly fixated. This is par-
ticularly relevant given experimental observations, that humans
not only fixate the most probable target locations but sometimes
also center-of-gravity locations that are intermediate among two
or more target locations (Findley, 1982; Zelinsky et al., 1997).

Formally, we need the notion of gradually degraded periph-
eral vision, such that the quality of sensory information decreases
at greater spatial distance away from the fovea. For example,
consider the task of Figure 6A, whose fixation space consists of
7 elements, L = {l1, l2, l3, l12, l23, l13, l123}, where the first three
actions correspond to fixating one of the three target locations,
the next three to fixating midway between two target locations,
and the last to fixating the center of all three. We parameterize the
quality of peripheral vision by augmenting the observations to be
three-dimensional, (x1, x2, x3), corresponding to the three simul-
taneously viewed locations. We assume that each xi is generated
by a Bernoulli distribution favoring 1 if it is the target, and 0 if it
is not, and its magnitude (absolute difference from 0.5) is greatest
when observer directly fixates the stimulus, and smallest when the
observer directly fixates one of the other stimuli.

We use 4 parameters to characterize the observations (1 >

β1 > β2 > β3 > β4 >= 0.5). So, when the agent is fixating one
of the potential target locations (l1, l2, or l3), it gets an observa-
tion from the fixated location (parameter β1 or 1 − β1 depending
on whether it is the target or a distractor), and observations from
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FIGURE 5 | Behavioral predictions as a function of switching cost.

(A) Accuracy, (B) search time, (C) number of switches, and (D) total
behavioral cost, for C-DAC and Infomax for two environments

(c, cs, β) = (0.005, 0, 0.68) and (0.005, 0.1, 0.68). For cs > 0, C-DAC
reduces the number of switches and incurs overall less behavioral
cost.

the non-fixated locations (parameter β4 or 1 − β4 depending on
whether they are a target or a distractor). Similarly, for the mid-
way locations (l12, l23, or l13), the observations are received for the
closest locations (parameter β2 or 1 − β2 depending on whether
they are a target or a distractor), and from the farther off location
(parameter β4 or 1 − β4 depending on whether it is the target or a
distractor). Lastly, for the center location (l123), the observations
are made for all three locations (parameter β3 or 1 − β3 depend-
ing on whether they are a target or a distractor). Furthermore,
since the agent can now look at locations that cannot be target,
we relax the assumption that the agent must look at a particu-
lar location before choosing it, allowing the agent to stop at any
location and declare the target.

For performance comparison in terms of behavioral output,
we again investigate two scenarios: (1) no switch cost, (2) with
switch cost. The threshold for infomax is set so that the accura-
cies are matched to facilitate fair comparison. For all simulations,
the algorithm starts with uniform prior (p = (1/3, 1/3, 1/3))
and initial fixation at the center (location l123), while the true
target location is uniformly distributed. Figures 6B–D show the
accuracy, number of time steps, and number of switches respec-
tively for both scenarios. We do not show the total cost here
(as in Figure 5D), because for this case, C-DAC matches or out-
performs Infomax on all relevant criteria for both parameter
settings, leading to a trivially lower cost. Note, however, that C-
DAC makes more switches for cs = 0 (Figure 6D), which makes
sense since switches incur no cost while search time does, and
search time can potentially be reduced by allowing more switches.
However, when switch cost is added (cs = 0.005), C-DAC signifi-
cantly reduces number of switches (Figure 6D), whereas infomax
lacks this ability to adapt to a changed environment.

3.2. APPROXIMATE POLICIES
The active sensing framework proposed here is formally a vari-
ant of POMDP (Partially Observable Markov Decision Process),
whereby the state space (target location) is hidden but the state
dynamics is trivial as it does not depend on the action choice.
Although there is a rich body of literature on approximate solu-
tions of POMDP (e.g., Lagoudakis and Parr, 2003; Powell, 2007;
Kaplow, 2010) for both general and application-specific scenar-
ios, most are inappropriate for dealing with the problem here, as
they are more aimed at solving problems with non-trivial state
transitions and without low-dimensional sufficient statistics.

Equivalently, our problem can be treated as a fully observ-
able Markov decision process problem, whereby the (observable)
states are belief states and the transitions are known (via
Bayesian belief updates). The dynamical programming equation
(Equation 6) yields a numerical algorithm for computing the
optimal decision policy, by defining an initial “guess” of the value
function over the belief state space, and then using dynamic pro-
gramming (Equation 6) to improve the value function until it
converges to the true value function and the corresponding opti-
mal decision policy. In practice, to use the dynamic programming
equation (Equation 6), one needs to either assume a finite num-
ber of states, or use a parametric value function. Since our states
represent belief states and are thus infinite (uncountably so, in
fact), and the value function can be of arbitrary complexity, some
approximation is needed. The standard approximation is to dis-
cretize the belief state space (Powell, 2007), which is known to
be asymptotically optimal in the limit of arbitrarily fine gridding
(Lovejoy, 1991) However, it has the twin disadvantages of intro-
ducing extra noise, as well as being exponentially expensive in
representation and computation costs as a function of the num-
ber of dimensions in the state space, i.e., the number of possible
target locations in the visual search task, or the number of possi-
ble hypotheses in a general active sensing problem. In particular,
when there are k possible target locations, a uniform grid of size
n has O(knk − 1) cells.

In this paper we have proposed two classes of approximate
control policies that limit the complexity of the value function:
(1) low-dimensional parametric and non-parametric approxi-
mation of the Q-factors, and (2) myopic approximation of the
value function. These approximations retain context-sensitivity
while significantly reducing computational complexity. We dis-
cuss how these approximations compare to C-DAC, as well as
their limitations that suggest further investigation.

Figure 4 shows different policies for a behavioral task on two
environments: (c, cs, β) = (0.1, 0.1, 0.9) and (0.1, 0.1, 0.9). Each
point on the plot corresponds to a belief state, i.e., the belief
(expressed as probability) about which location has the target.
For example, the belief state (p1, p2) translates to: probability
that the target is at location 1 is p1, that it is at location 2 is p2,
and that it is at location 3 is (1 − p1 − p2). There is a different
policy plot for each location since the fixation strategy depends
on current fixation location, but we only show the policy look-
ing at location 1 since others are rotationally symmetric to this
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FIGURE 6 | Visual search with peripheral vision. (A) Task schematics:
agent fixates one of the blue circle regions at any given time, the target
(left-moving dots) is in one of the black circle regions. (B) Accuracy, (C)

Search time and (D) number of switches for C-DAC and Infomax for two

environments (c, β1, β2, β3, β4) = (0.05, 0.62, 0.6, 0.55, 0.5), cs = 0 and
cs = 0.005. C-DAC adjusts the time steps and number of switches depending
on the environment, taking a little longer but reducing number of switches
when effort has cost.

one. The color encodes the action prescribed by the policy at any
given belief state, such that blue stands for stop and declare the
current location as target, green for fixate location 1, orange for
fixate location 2 and brown for fixate location 3. For example,
as expected from any sensible policy, if the belief state is (1, 0)
while looking at location 1, the suggested action is to stop and
declare it as the target. Although the belief state is continuous, we
discretize over a grid of size 201 for implementation. Note that
for C-DAC (Figure 4B), the green region is larger compared to
orange or brown signifying that the policy prescribes looking at
location 1 even when the belief about target being at location 1
is somewhat low. This makes sense, since there is a cost associ-
ated with switching between locations, so the policy will choose
switching only when the belief gets below a certain threshold.

We note that the parameter that accentuates the major differ-
ence between C-DAC and Infomax is the switch cost, cs, since
its introduction leads to a shift in action boundaries. Unlike
Infomax, the approximations we introduce can be seen to be sen-
sitive to this cost and can modulate their switching boundaries.
The boundary shift is less pronounced in Myopic C-DAC because
of its greedy nature which only allows for incorporating one
switch at the most, whereas in C-DAC and other approximations,
a trial can potentially have multiple switches, leading to accu-
mulating cost. In addition, Infomax does not adjust the size of
its stopping boundary, unlike C-DAC and its parametric approx-
imations. We used 49 Gaussian kernel bases for RBF (Radial
Basis Functions) approximation, centered so as to uniformly grid
the belief space (σ 2 = 0.05), and 200 points to approximate the
value function over. GPR (Gaussian Process Regression) approx-
imation also uses 200 points to approximate the value function,
and the parameters used are length scale 1, signal variance 1
and noise variance 0.1. GPR with ARD (Automatic Relevance
Determination) uses 200 points as well and learns the parameters
simultaneously with the value function.

4. DISCUSSION
In this paper, we proposed a Bayes-risk minimization framework
for active sensing, C-DAC, which optimizes behaviorally relevant
objectives in expectation, such as speed, accuracy, and switch-
ing efficiency, and can reproduce the confirmation bias. We also
presented a novel visual search experiment that involves find-
ing a target stimulus amongst distractors, whereby the spatial

distribution of the target stimulus is biased toward certain loca-
tions. We found that the fixation and choice behavior of subjects
is modulated by top-down factors, specifically the likelihood of a
particular location containing the target. Subjects were found to
exhibit a certain confirmation bias—the tendency to systemati-
cally favor a location that is a priori judged more likely to contain
the target, compared to another location less likely to contain the
target, even in the face of identical sensory input and motor state.
C-DAC was able to reproduce this confirmation bias. In contrast,
Infomax, a policy that aims to optimize statistical objectives of
task demands and ignores behavioral constraints (e.g., cost of
time and switch), falls short. We augmented Infomax by intro-
ducing a stopping policy, which takes into account the time or
sampling cost c, but that still did not sufficiently alleviate the
context-insensitivity of Infomax. This is most likely due to both a
sub-optimal incorporation of sampling cost and an intrinsic lack
of sensitivity toward switching cost.

While C-DAC does a good job of reproducing human behav-
ior, at least based on the experimental data presented here, we
note that this does not necessarily imply that the brain imple-
ments C-DAC exactly. In particular, solving C-DAC exactly using
dynamic programming requires a representational complexity
that scales exponentially with the dimensionality of the search
problem (i.e., the number of possible target locations), thus mak-
ing it an impractical solution for more natural and complex
problems faced daily by humans and animals. However, it is
possible that the underlying computations can be approximated
efficiently, making the formulation psychologically more plausi-
ble. We proposed different approximate algorithms that reduce
the computational complexity of C-DAC in its original formula-
tion. The low dimensional approximations provide a very good
approximation to C-DAC, but these are still offline and global,
requiring the computation of the policy for all possible belief
states before engaging in the task. On the other hand, the myopic
approximation to C-DAC we proposed scales linearly with search
dimensionality, by eschewing a globally optimal solution that
must be computed and maintained offline, in favor of an online,
approximately and locally optimal solution. However, this myopic
algorithm does not approximate C-DAC as well as the low-
dimensional Q-factor approximations. One way to improve the
myopic algorithm is to find better approximations to the switch-
ing and stopping boundaries without having to undergo the
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computationally expensive value iteration procedure, since these
together completely characterize any decision policy. Our simula-
tions (not shown here) suggest that there might be a systematic,
monotonic relationship between the decision boundaries and the
different cost parameters. We proposed one such bound on the
stopping boundary here, and other approximate bounds have
been proposed for similar problems (Naghshvar and Javidi, 2013).
An alternative direction for exploring approximations to the opti-
mal control problem is the recently proposed notion of “active
inference," which casts the control problem as a pure inference
problem and replaces value functions with a desired “belief state"
regarding the consequences of actions, thus enabling the use of
approximate inference techniques (e.g., variational) to solve the
control problem (see Friston et al., 2012 for an introduction to
active inference).

Another direction for future work is to do model comparison
by comparing model predictions to individual human behav-
ior on a trial-to-trial basis. The Experimental Prediction section
describes some experimental settings and model predictions that
could be particularly illuminating for differentiating the various
models. It is worth noting that while the approximate policies are
computationally simpler than the optimal model (and thus neu-
rally more plausible), they are in fact more complex for fitting
to human behavior, as they have additional model parameters
(for parameterizing the approximation) on top of any parame-
ters related to environmental statistics or cost functions, which all
the policies share. This is an important point to keep in mind for
experimental design and model fitting in future investigations.

In conclusion, although there is a rich body of literature on
related problems in the application domain, our formulation
stands out for its principled approach to incorporating contextual
elements into the problem of active sensing. In general, the frame-
work proposed here has the potential for not only applications in
visual search, but a host of other problems, ranging from active
scene categorization to active foraging. Its flexibility and robust-
ness to different environments makes the framework an appealing
choice for a variety of active sensing and related problems.
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