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The supplementary motor area (SMA) syndrome is a characteristic neurosurgical syndrome
that can occur after unilateral resection of the SMA. Clinical symptoms may vary from
none to a global akinesia, predominantly on the contralateral side, with preserved muscle
strength and mutism. A remarkable feature is that these symptoms completely resolve
within weeks to months, leaving only a disturbance in alternating bimanual movements. In
this review we give an overview of the old and new insights from the SMA syndrome
and extrapolate these findings to seemingly unrelated diseases and symptoms such
as Parkinson’s disease (PD) and tics. Furthermore, we integrate findings from lesion,
stimulation and functional imaging studies to provide insight in the motor function of the
SMA.
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INTRODUCTION
The supplementary motor area (SMA) syndrome is a charac-
teristic neurosurgical syndrome that may occur after unilateral
resection of the SMA. The classical SMA syndrome, following
unilateral resection of the SMA, is characterized by a global
akinesia with normo- or hyporeflexia and a normal tonus, more
profound on the contralesional side, while muscle strength can
be preserved (Laplane et al., 1977). A remarkable feature is that
the symptoms completely resolve within weeks to months, only
leaving a disturbance in alternating bimanual movements as the
remaining deficit (Laplane et al., 1977).

The SMA and its function have been the subject of intensive
study (see Nachev et al. (2008)). Here we specifically focus on
the lessons learned from the clinically observed SMA syndrome,
particularly the motor components. The origin of reflex abnor-
malities in the SMA syndrome has been described previously
(Florman et al., 2013). This review aims to integrate previous
findings from lesion and stimulation studies in both monkeys
and man with current lesion and neuroimaging studies in patients
with an infarct or resection of the SMA.

The SMA or SMA proper (Brodmann area 6) is localized
in the posterior part of the superior frontal gyrus (Penfield
and Welch, 1951). The cingulate sulcus and gyrus demarcate its
inferior border. The posterior SMA border is constituted by the
precentral sulcus separating it from the leg area of the primary
motor cortex. The lateral and anterior borders are less clearly
demarcated on macro-anatomical criteria, although histochem-
ical and cytoarchitectonic differences have been well described
(Matelli et al., 1985, 1991; Geyer et al., 1998). Functionally,
the position of the SMA has been extensively characterized in

a meta-analysis of 126 functional studies (Mayka et al., 2006).
Anteriorly the SMA can be distinguished from the pre-SMA,
roughly by using the vertical traversing the anterior commissure
as a border (Picard and Strick, 2001). The lateral borders are
constituted by the dorsal premotor cortex in each hemisphere
(Mayka et al., 2006).

The SMA has a somatotopical organization, first described in
monkeys (Mitz and Wise, 1987; Luppino et al., 1991), and later
confirmed in humans (Fried et al., 1991; Lim et al., 1994; Mayer
et al., 2001; Fontaine et al., 2002; Chainay et al., 2004). It has been
shown that the face, upper limbs and lower limbs are represented
in an anteroposterior direction in the SMA. In the dominant
hemisphere, language seems to be represented most anteriorly
(Fontaine et al., 2002).

The SMA is an eloquent area with rich connections to both
cortical and subcortical structures. About ten percent of the input
from the corticospinal tracts originates in the SMA (Murray
and Coulter, 1981; Mitz and Wise, 1987; Dum and Strick, 1991;
He et al., 1995; Maier et al., 2002). Furthermore, the SMA is
strongly embedded in motor circuits through its connections
with the primary motor cortex, premotor cortex and cingulate
cortex (Luppino et al., 1993). There are connections with the
superior parietal lobe, insula (Luppino et al., 1993), basal ganglia
(Inase et al., 1999; Lehéricy et al., 2004; Akkal et al., 2007),
thalamus (Behrens et al., 2003), cerebellum (Akkal et al., 2007)
and especially with the contralateral SMA (see Figure 1) through
the corpus callosum (Liu et al., 2002). Recently, connectivity
of the SMA has also been characterized with diffusion tensor
imaging (DTI) with post-mortem dissection as a validation
method (Vergani et al., 2014). Vergani et al. (2014) confirmed
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FIGURE 1 | 3D view of the probabilistic tractography between both
SMA’s from a single healthy subject (made with FSL). The tractography
result was transformed to Montreal Neurological Institute (MNI) space. This
figure nicely illustrates that the SMA’s are densely interconnected through
the corpus callosum.

the recent notion that the SMA is also connected with the pars
opercularis of the inferior frontal gyrus (Broca’s area) through
the frontal aslant tract (Ford et al., 2010; Catani et al., 2012).

Since its initial recognition, the SMA syndrome has remained
elusive. Although described earlier, Laplane et al. (1977) were
the first to link the symptoms to a syndrome caused specifically
by SMA removal (Laplane et al., 1977). By definition, sensory
functions remain undisturbed. Reduced spontaneous speech may
occur, predominantly described after resection of the SMA in
the dominant hemisphere, though not exclusively (Laplane et al.,
1977; Bleasel et al., 1996; Ulu et al., 2008). Most often, strict
lesions of the SMA do not result in a specific class of aphasia. Cases
have been described of patients with unilateral resections of the
SMA or an ischemic lesion that presented with mutism or reduced
speech without signs of aphasia (Bleasel et al., 1996; Krainik et al.,
2003; Mendez, 2004). Transcortical motor aphasias have been
described, but it is more plausible that these are the result of more
extensive damage to the subcortical white matter (Freedman et al.,
1984). Possibly, the frontal aslant tract is affected, which is more
lateralized to the left hemisphere (Vergani et al., 2014), explaining
the more frequent occurrence of additional linguistic deficits after
left SMA resections. Although it remains uncertain whether more
anterior SMA resections can result in a specific aphasia, we will
not further focus on that. In the weeks to months following resec-
tion of the SMA there is reduced movement and speech. This syn-
drome almost always completely resolves, although minor deficits
in alternating movements of upper and lower limbs have been
observed to remain (Laplane et al., 1977). Although a further
parcellation into SMA and pre-SMA was proposed later (Tanji,
1994), many cases of patients with a consistent symptomatology

FIGURE 2 | 3D view of the probabilistic tractography between both
SMA’s from a single healthy subject (made with FSL).1 Pre- and
postoperative MRI scan of a 64-year-old patient with a diffuse astrocytoma
(WHO grade II) in the left SMA. (A) Transversal and coronal T2-weighted
FLAIR images, with an SMA template projected on the healthy hemisphere.
The latter is freely available and derived from a large meta-analysis
describing the location of the sensorimotor areas (Mayka et al., 2006). (B)
Transversal images after gadolinium contrast from the same patient before
(left lower corner) and three months after the operation (right lower corner).
She had a complete motor loss on the right side after the operation, which
quickly recovered.

complex have been described (Rostomily et al., 1991; Bleasel
et al., 1996; Zentner et al., 1996; Bannur and Rajshekhar, 2000;
Duffau et al., 2001; Krainik et al., 2001, 2003, 2004; Fontaine
et al., 2002; Nelson et al., 2002; Peraud et al., 2002; Russell and
Kelly, 2003; Yamane et al., 2004; Ulu et al., 2008; Rosenberg
et al., 2010; Martino et al., 2011; Tate et al., 2011; Kasasbeh et al.,
2012; von Lehe et al., 2012; Kim et al., 2013; Schucht et al., 2013),
showing that 11–100% of the patients develop the SMA syndrome
after unilateral resection of the SMA. Similar cases have been
described, for example, in the context of infarction (Pai, 1999;
Kumral et al., 2002; Radman et al., 2013) or embolization of an
arteriovenous malformation (Schell et al., 1986), having SMA
involvement in common. In neurosurgical practice, presentation
of the SMA syndrome after SMA removal may cause major
concerns, due to the fear of possible corticospinal tract damage.
Although symptoms can be mild and are transient, this syndrome
is a significant burden in brain tumor patients that already
have a shortened life expectancy. Figure 2 shows a preoperative
MRI scan of a patient that developed the SMA syndrome after

1This is freely available on www.fmrib.ox.ac.uk/fsl
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resection of a tumor, with a template of the localization of the
SMA projected on the healthy hemisphere (Mayka et al., 2006).

In this article, we focus on the motor aspects of the SMA
syndrome and what can be learned about the motor function
of the SMA from this intriguing syndrome. We extrapolate these
findings to seemingly unrelated diseases and symptoms such as
Parkinson’s disease (PD) and tics. Combining these findings, we
propose that the SMA is involved in both the initiation and
suppression of movements, maintaining a tonic interhemispheric
balance.

CAUSE OF THE SMA SYNDROME
A hallmark of the SMA syndrome that is always described is
a severe neurological deficit of temporary nature; only subtle
deficits are permanent. Although the precise mechanisms under-
lying the recovery after the initial deficit remain obscure, the
syndrome provides useful insights in the functioning of the SMA.
The occurrence of the different deficits of the SMA syndrome
following resection is consistent with the somatotopical organi-
zation of the SMA (Fontaine et al., 2002; Krainik et al., 2004)
and the deficits are correlated with the extent of resection of
functionally active SMA (Krainik et al., 2001, 2003, 2004). There
is an association between neurological deficit and the distance
from the resected area to the SMA (Nelson et al., 2002), to the
precentral sulcus (Peraud et al., 2002; Kasasbeh et al., 2012) and
the cingulate sulcus (Kasasbeh et al., 2012; Kim et al., 2013). Also,
an increased incidence of the SMA syndrome and the severity of
symptoms is seen when the anteroposterior extent of resection is
larger (Zentner et al., 1996; Krainik et al., 2001; Ulu et al., 2008;
Kasasbeh et al., 2012). Russell and Kelly (2003) showed that both a
resection larger than 90% and the presence of a low-grade glioma
are associated with a higher incidence of the SMA syndrome
(Russell and Kelly, 2003). They argued that residual function
of the SMA is still present in patients harboring a low-grade
glioma, while it is unlikely that the SMA syndrome develops in
patients with high-grade gliomas, due to the absence of functional
neural tissue inside these tumors (Russell and Kelly, 2003). A
very intriguing finding was observed in a patient undergoing
awake surgery during which the SMA syndrome occurred with
a delay of half an hour after the resection (Duffau et al., 2001).
The authors suggested that an initial compensation of function is
possible due to parallel networks or due to residual activity of an
oscillatory loop that supports the execution of function but not
its initiation (Duffau et al., 2001). The case of Duffau et al. (2001)
provided new evidence about underlying mechanisms (Duffau
et al., 2001). They made clear that it is highly unlikely that
this syndrome is caused by venous thrombosis or postoperative
edema, because symptoms presented too early for that (Duffau
et al., 2001). A follow-up MRI showed no signs of ischemia or
venous thrombosis. Edema is also unlikely because it takes weeks
to months for the deficits to restore. Furthermore, as noted before,
the SMA syndrome has also been described to result from other
disease mechanisms such as following an infarct.

MECHANISMS OF RECOVERY
Effort has been undertaken to understand the mechanisms
underlying the recovery. Functional reorganization due to brain

plasticity has been brought up in order to understand the
temporary deficits. A lesion in the SMA leads to more activation
of the contralateral SMA (Sailor et al., 2003). However, it is uncer-
tain whether this reflects functional compensation or is merely
the consequence of decreased transcallosal inhibition from the
damaged hemisphere (Shimizu et al., 2002). In patients with left
dominant hemisphere lesions in language areas high-frequency
repetitive transcranial magnetic stimulation (rTMS) over the
right hemisphere disturbs language function in patients with left
dominant hemisphere lesions in language areas, which shows
that activation in the contralateral hemisphere truly represents
function (Thiel et al., 2005), rather than mere loss of transcallosal
inhibition. Others have shown that a preoperative switch in
activation to the contralateral healthy SMA is not sufficient to
avoid the syndrome (Rosenberg et al., 2010), but leads to a faster
recovery (Krainik et al., 2004). This is supported by the fact that
the SMA has strong connections with its contralateral counterpart
(Rouiller et al., 1994; see also Figure 1). Others have raised
that hemispheric dominance of the SMA might be important
in predicting postoperative deficits (Nelson et al., 2002), which
could explain why not everyone develops the SMA syndrome after
unilateral resection of the SMA. However, there is no substantial
evidence that provides convincing support for this argument. A
relation between the side of the resection and incidence of the
syndrome has not been described. Postoperatively, the functional
recruitment of the healthy SMA and premotor cortex seems to
compensate for the resection of the SMA (Krainik et al., 2004).

In summary, clinical deficits after resection of the SMA may
vary from none to a global akinesia with mutism. On the one
hand, this finding emphasizes the heterogeneity associated with
lesion studies, particularly in cerebral infarcts, but also after
resection of tumors that are not always completely restricted to the
SMA. On the other hand, the heterogeneity in clinical symptoms
after resections may be caused by variability in preoperative
reorganization of function due to brain plasticity.

It is evident that preoperative reorganization of cerebral func-
tion does not completely account for the recovery, because the
reversibility of the SMA syndrome is also seen in patients with
acute lesions such as an infarct or patients that undergo surgery
for epilepsy (Yamane et al., 2004; Kasasbeh et al., 2012). It is
plausible that the patient population with slow growing lesions
and subsequent acute surgical lesion have a tendency to recover
faster due to preoperative reorganization (Desmurget et al., 2007),
although this is yet to be proven for the SMA syndrome. Another
possibility is an additional functional distortion of the SMA due
to the mass effect of tumors. A resection alleviates this com-
pression, which uncovers residual function of the affected SMA
(if any).

BIMANUAL MOVEMENT PATTERNS
It is remarkable that although the other more striking deficits of
the SMA syndrome completely resolve, difficulties in alternating
bimanual movements persist. We focus on bimanual alternating
movements here, because this impairment is well described in
patients with the SMA syndrome. Disturbed alternating move-
ments of the lower limbs have also been described (Laplane
et al., 1977), but most of the time lower limb function is not
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documented. Although SMA lesions in monkeys do not result in
the typical SMA syndrome as seen in humans (Travis, 1955), these
primates do have deficits in bimanual coordination (Brinkman,
1981). The bimanual coordination deficit after unilateral lesion-
ing of the SMA (and most likely also including the pre-SMA
at that time) was resolved after callosal sectioning, suggesting
that the intact SMA influenced the motor program for both
hands (Brinkman, 1984). Brinkman (1984) even described a
monkey that behaved as having two preferred hands after resec-
tion of the non-dominant SMA and subsequent callosal section
(Brinkman, 1984). A persistent disturbance in bimanual alternat-
ing movements has also consistently been described in patients
with the SMA syndrome (Laplane et al., 1977), during which
the hand contralateral to the lesion is the one that seems to be
at fault (Bleasel et al., 1996). This is possibly the result of the
fact that alternating bimanual movements are cognitively more
demanding than mirror movements. There is a preference for
simultaneous rather than alternating bimanual movements with
increasing frequency of movements (Kelso, 1984; Lee et al., 1996).
Such simultaneous movements are more stable and performed
more accurately (Yamanishi et al., 1980; Swinnen et al., 1997;
Stephan et al., 1999a; Meyer-Lindenberg et al., 2002). 5 Hz
rTMS of the SMA causes a disturbance in both in- and anti-
phase movements, although the latter is more evidently disturbed
(Serrien et al., 2002). There is ample evidence of enhanced SMA
activation during anti-phase movements (Sadato et al., 1997;
Goerres et al., 1998; Stephan et al., 1999b; Toyokura et al., 1999;
Immisch et al., 2001; Ehrsson et al., 2002; Meyer-Lindenberg
et al., 2002; Ullén et al., 2003; Debaere et al., 2004; Kraft et al.,
2007; Goble et al., 2010; Wu et al., 2010) and this does not
seem to be restricted to the bimanual character of anti-phase
movements (Koeneke et al., 2004). The SMA is definitely nei-
ther the sole contributor nor specific for bimanual coordina-
tion (Kazennikov et al., 1999; de Jong et al., 2002; Aramaki
et al., 2006; Grefkes et al., 2008; see also Swinnen (2002) for
a review), but the SMA syndrome provides evidence that bilat-
eral functioning of the SMA is a requirement for anti-phase
movements. Only for anti-phase movements there is a difficult
balance between initiation of the motor task and contralateral
suppression (Stephan et al., 1999a). A bilateral contribution of
the SMA to bimanual coordination has also been shown by
direct stimulation during surgery (Martino et al., 2011). It has
been hypothesized that the opposite SMA rapidly takes over
the motor function for both sides of the body (Martino et al.,
2011). However, for the execution of bimanual alternating move-
ments function of both SMA’s is necessary. In the last para-
graph we will return to the issue why particularly a disturbance
in alternating bimanual movements persists in the SMA syn-
drome.

COMPARISON WITH IMPAIRED/ALTERED SMA FUNCTION IN
PARKINSON’S DISEASE AND TICS
Although PD is a chronic deteriorating disease and the SMA
syndrome is acute, some parallels can be seen between these
disorders. PD is caused by a loss of dopaminergic neurons
in the pars compacta of the substantia nigra (Gibb and Lees,
1991). At the cortical level, decreased activity of the SMA has

been well recognized (Playford et al., 1992; Eidelberg et al.,
1994; Grafton, 2004), which can be improved with deep brain
stimulation of the subthalamic nucleus (Grafton et al., 2006)
or treatment with levodopa (Haslinger et al., 2001; Buhmann
et al., 2003). Similarly, treatment with apomorphine causes an
improvement in the impaired activation of the SMA (Jenkins
et al., 1992). Thus, the reduced output from the basal ganglia
in PD most likely leads to a functionally impaired SMA that
can be improved with conventional treatment methods. This
is consistent with the observed decrease in the “Bereitshaftspo-
tential” that occurs in PD, further supporting the concept that
disturbed SMA functioning leads to a deficit in voluntary move-
ments (Nachev et al., 2008). The Bereitshafspotential has been
shown to increase prior to sequential movements (Benecke et al.,
1985).

As in the SMA syndrome, patients with PD show a disturbance
in the performance of alternating movements (Dick et al., 1986;
Benecke et al., 1987; Jones et al., 1992). Moreover, patients with
PD can perform normal in-phase movements, while they are
specifically less proficient in bimanual anti-phase movements
(Johnson et al., 1998; Serrien et al., 2000; Geuze, 2001; Almeida
et al., 2002; Ponsen et al., 2006; Wu et al., 2010), which is
accompanied by decreased SMA and basal ganglia activation
compared to healthy controls (Wu et al., 2010). Both disorders
can be characterized by akinesia (Jankovic, 2008). Patients with
the SMA syndrome are able to perform normal movements
when strongly encouraged to do so (Laplane et al., 1977). This
very interesting finding suggests that a different circuit may
take over the role of the SMA. Such circuitry might similarly
be expected to compensate for the disturbed functioning of the
SMA in patients with PD. Bilateral extirpation of the SMA in
monkeys leads to akinesia, without deficits in movement time,
reaction time, or motivation (Passingham, 1993). However,
subsequent experiments showed that the monkeys are impaired
in the execution of appropriate movements only in the absence
of external cues (Passingham, 1993). The monkeys are able to
restore from this deficit, for which the lateral premotor cortex is
possibly accountable (Passingham, 1993).

The SMA has been shown to be active during the selection
of movements and word generation when there are no external
cues, while the lateral premotor cortex is activated when there
are cues (Passingham, 1993; Crosson et al., 2001). On the other
hand, neurons in the lateral premotor cortex can also respond
to self-initiated tasks without external cues (Romo and Schultz,
1987; Kurata and Wise, 1988). For patients with PD, akinetic
starting difficulties can be resolved with external cues (kinesia
paradoxa; Jankovic, 2008). Furthermore, micrographia in patients
with PD can be temporarily improved upon encouragement
(McLennan et al., 1972; Oliveira et al., 1997). Equivalent to the
SMA syndrome, PD patients do not seem to have dysfunction
of the lateral premotor cortex (Playford et al., 1992; Jahanshahi
et al., 1995). Patients with PD showed relatively decreased SMA
activity during a sequential finger movement task, while there
was increased activity in the lateral premotor cortex in both
hemispheres (Samuel et al., 1997). Analogously, as mentioned
in a previous paragraph, recruitment of the lateral premotor
cortex was seen in the healthy hemisphere in patients after
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unilateral resection of the SMA. Such recruitment increased with
the extent of tumor infiltration in the SMA (Krainik et al.,
2004).

Indeed, the pathophysiology underlying the SMA syndrome
and PD are completely different. Nevertheless, the phenomenol-
ogy can help in understanding the function of the SMA. For
example, a patient has been described with a low-grade glioma in
the left SMA that caused a Parkinsonian syndrome, characterized
by akinesia, rigidity, a resting tremor and micrographia (Straube
and Sigel, 1988). This lesion extended more inferiorly in the
corpus callosum, but it does illustrate a common denominator
in the SMA syndrome and PD (Dick et al., 1986).

Direct electrical stimulation of the SMA can lead to inhibition
of movement or speech arrest, while it can also evoke movements,
the urge to move or vocalizations (Penfield and Welch, 1951; Fried
et al., 1991; Chauvel et al., 1996). Similarly, ictal speech arrest and
vocalizations were seen in patients with SMA lesions (Ackermann
et al., 1996; Wieshmann et al., 1997). From this perspective of
opposite effects it is interesting to compare findings from the SMA
syndrome with tics. Although the underlying pathophysiology is
far from restricted to the SMA in patients with tics (Ganos et al.,
2013), there are some interesting similarities with the SMA syn-
drome. Tics, as part of the Tourette syndrome, can be considered
as movements that escape voluntary control (Jankovic, 1997).
Typically they are preceded by a feeling of urge (Leckman et al.,
1993) and can be voluntarily suppressed to some extent. Patients
with Tourette syndrome show an increased resting state activity
in the SMA compared to healthy subjects (Pourfar et al., 2011).
There is a strong correlation in activation between the SMA and
primary motor cortex during tics (Hampson et al., 2009), while
activation of the SMA is positively correlated with tic severity
(Wang et al., 2011; Ganos et al., 2014). Moreover, the SMA is
active before tic onset (Bohlhalter et al., 2006). On the other
hand, it is unclear whether the activity in the SMA is involved in
tic generation or that it represents the effort of suppression of a
tic. The SMA, together with a wider frontal network, is activated
during the suppression of tics and is also more active during
suppression of voluntary movements in patients with Tourette
syndrome compared to healthy controls (Serrien et al., 2005). It
thus seems from functional MRI studies (fMRI) that the normal
system of inhibition, in which the SMA is involved, has adapted
in order to suppress tics (Serrien et al., 2005). Inconsistent with
this assumption, low-frequency (inhibitory) rTMS over the SMA
leads to a reduction of tics (Chae et al., 2004; Mantovani et al.,
2006, 2007; Kwon et al., 2011). Apart from tics, patients with
Tourette syndrome frequently show echophenomena (Finis et al.,
2012); automatic imitations that are presumed to be normal in
the first year of life, but are considered as a complex tic when they
reappear (Ganos et al., 2012). Interestingly, high-frequency rTMS
of the SMA in healthy people can also induce echophenomena
(Finis et al., 2013). An important remark concerns the idea
that activation of the SMA as seen in fMRI studies can imply
both positive and negative modulation, favoring the idea that
the SMA has a causative role in the generation of tics instead
of suppression of tics. While disturbed SMA activity in patients
with the SMA syndrome and PD results in a lack of movements,
changed/increased activity of the SMA in patients with tics is

FIGURE 3 | Proposed mechanisms of modulation of the SMA in normal
subjects, SMA syndrome, PD and tics. The SMA can both positively and
negatively modulate the contralateral SMA (Grefkes et al., 2008). In normal
conditions this tonic interhemispheric balance may result in both initiation
and inhibition of movements. In the SMA syndrome this balance is
disturbed, leading to temporary lack of movements (akinesia) of the
contralateral limbs and irreversible deficits of bimanual alternating
movements. In PD, activity of both SMA’s is reduced, leading to akinesia
and disturbances in bimanual alternating movements. Tics, however, result
from bilaterally increased SMA activity. A disturbed interhemispheric
balance may either aid in the suppression of tics or mediate the generation
of tics. The functional schemes are projected on a coronal MNI brain
section. = denotes unchanged modulation, < denotes decreased
modulation, > denotes increased modulation.

involved in the generation of movements. In the next paragraph
an integrative explanation is proposed for this seemingly dualistic
or “thermostatic” role of the SMA in initiation and inhibition
upon direct electrical stimulation, in epilepsy and in tics and
echophenomena. Figure 3 summarizes the proposed modulatory
effects of both SMA’s in the SMA syndrome, PD and tics.

INSIGHT IN SMA FUNCTIONING
How should this apparent discrepancy between lack of movement
initiation after lesions of the SMA and inhibition of movements
due to an increased activity in the SMA be integrated? We recog-
nize that any explanation remains hypothetical, but it may offer
grip for further understanding. Lesions of the SMA are sometimes
accompanied by temporary grasp reflexes or even an alien hand
syndrome (Goldberg et al., 1981; Gelmers, 1983; McNabb et al.,
1988; Rostomily et al., 1991; Zentner et al., 1996; Krainik et al.,
2001), although this is accompanied by damage to the anterior
cingulate cortex and anterior corpus callosum respectively (De
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Renzi and Barbieri, 1992; Doody and Jankovic, 1992; Feinberg
et al., 1992; Scepkowski and Cronin-Golomb, 2003).

As previously mentioned, stimulation of the SMA can evoke
movement initiation as well as an arrest in movements. Moreover,
the SMA is active during the sight of a graspable object (Grèzes
and Decety, 2002). While electrical stimulation of the primary
motor cortex not only leads to muscle twitches but can evoke
complex, coordinated movements of multiple joints (Graziano
et al., 2002), the SMA seems to have a different role in more
complex motor planning. Previously, a leading opinion was that
activity in the SMA was related to volitional, internal generation
of movements, but it has more recently been shown that the SMA
has a function in both internally and externally generated move-
ments (Tanji et al., 1985; Cunnington et al., 2002). Currently,
activation in the pre-SMA has been related to volition (Nachev
et al., 2005). Sumner et al. nicely demonstrated that the SMA is in
fact implicated in automatic effector-specific inhibition of motor
plans (Sumner et al., 2007; Boy et al., 2010). This is substantiated
by the connections of the SMA with the subthalamic nucleus
forming a hyperdirect pathway that suppresses thalamocortical
circuits, which leads to a cessation of movement (Nambu et al.,
1996). In the light of the akinetic deficits following resection of the
SMA, but also in PD, this does not provide a full explanation. Pos-
sibly, the strong interconnection between the two SMA’s (Rouiller
et al., 1994; Wiesendanger et al., 1996) enables the maintenance of
a tonic interhemispheric balance involved in the initiation but also
inhibition of movements. This balance can lead to both excitatory
and inhibitory activity upon cortical and subcortical stimulation,
with a preponderance for inhibition (Mikuni et al., 2006; Schucht
et al., 2013). Regions that lead to cessation of movement after
stimulation have been called negative motor areas (NMA; Lüders
et al., 1995). There seems to be a remarkable lower incidence of
the motor SMA syndrome and disturbance of bimanual function
when leaving subcortical white matter NMAs originating from
the SMA intact during resection of tumors in this area (Schucht
et al., 2013; Rech et al., 2014). As seen from the localization of
the stimulation sites it is probable that the NMA’s include both
white matter tracts that connect the two opposite SMA’s as well as
other tracts originating from the SMA. For example, transiently
disturbed motor initiation has been correlated with a resection
close to the fronto-striatal tract (also called subcallosal fasciculus)
that connects the SMA with the caudate nucleus (Kinoshita et al.,
2014), providing evidence that this is an important outflow tract
of this network. Moreover, direct stimulation of this tract also
induces initiation disorders (Duffau et al., 2002).

Furthermore, our hypothesis is consistent with the fact that
the SMA can both initiate and suppress movement after a sensory
instruction (Kurata and Tanji, 1985; Tanji and Kurata, 1985). The
SMA is able to achieve this by both promoting and suppressing
primary motor cortex activity (Grefkes et al., 2008), through
activity prior to activation of the primary motor cortex (Vidal
et al., 2003). This explanation seems also consistent with the role
of the SMA and pre-SMA in linking conditional rules to actions
(Nachev et al., 2008) and the role of the SMA in the temporal
organization of movements (Shima and Tanji, 1998, 2000).
Unilateral lesioning shifts this balance towards a lack of initiation,
which can be restored once a new balance has been created. The

fact that patients with the SMA syndrome can move upon strong
encouragement is likely to be the result of compensatory circuits.

This tonic regulation can also explain the deficit in bilateral
alternating movement patterns following unilateral lesioning of
the SMA, while mirror movements are preserved (Bleasel et al.,
1996). It has been shown that integrity of the parts of the
corpus callosum that connect both SMA’s correlates with bet-
ter asynchronous bimanual finger-thumb opposition (Johansen-
Berg et al., 2007). Alternating movements require a difficult
balance between inhibition of movement followed by initiation
of movement, especially when this has to be done rapidly with
two hands. Anti-phase movements require effective contralateral
suppression, which is disturbed after resection of the SMA, but
also in PD. Apparently, both SMA’s are necessary to perform
alternating movements.

The tonic interhemispheric balance could also be an explana-
tion for the above-mentioned apparent disparity between activa-
tion of the SMA that leads to suppression of tics, while inhibition
of the SMA reduces tic frequency and activation of the SMA in
healthy controls can lead to echophenomena.

Our model has a focus on the initiation and inhibition of
movements with a special interest in bimanual alternating move-
ments. It has been shown that there are more NMAs, for example
in/near other premotor areas (Mikuni et al., 2006). It is unclear
whether the outflow of these areas projects to the SMA or that
this is a separate system. It would be interesting to see if the
SMA’s are the final node in determining initiation or inhibition
of movement. In this, alternating movements are apparently most
demanding, requiring both SMA’s. Our model is restricted to
the interaction between the SMA’s. Evidently, the SMA is part
of a larger network, with rich connections to other cortical and
subcortical areas.

CONCLUSION
The SMA syndrome is an intriguing syndrome, characterized by
temporary dysfunction, that helps to obtain useful insights in the
function of the SMA and its embedment in neuronal circuits. The
main aim of this article was not to write a comprehensive review
on the function of the SMA, as these are available. Here we sum-
marized the findings from previous studies regarding the SMA
syndrome and showed that there are analogs with seemingly very
different disorders such as PD and tics. Combining these findings,
we propose that the SMA is involved in both the initiation and
suppression of movements, maintaining a tonic interhemispheric
balance. In this physiological context, the presentation of tem-
porary deficits of the SMA syndrome supports the view that
the healthy SMA can compensate for the functional impairment
inflicted by the affected SMA. This concept is further supported
by the persistent impairment of performing bimanual anti-phase
movements, a motor condition in which such compensation
apparently fails due to a strong simultaneous demand on both
SMA’s.
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