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A commentary on

Music enrichment programs improve the
neural encoding of speech in at-risk
children
by Kraus, N., Slater, J., Thompson, E. C.,
Hornickel, J., Strait, D. L., Nicol, T., et al.
(2014). J. Neurosci. 34, 11913–11918. doi:
10.1523/JNEUROSCI.1881-14.2014

Speech perception problems lead to many
different forms of communication diffi-
culties, and remediation for these prob-
lems remains of critical interest. A recent
study by Kraus et al. (2014b) published in
the Journal of Neuroscience, used a ran-
domized controlled trial (RCT) approach
to identify how low intensity community-
based musical enrichment for “at-risk chil-
dren” improved neural discrimination of
“ba/ga” syllables. In the study, forty-four
children aged six to nine years from
“gang reduction zones” received 2 hours
of musical training each week arranged
in two 1 hour sessions. A control group
received a single year of training follow-
ing a one year delay, whilst the experi-
mental group received two full years of
training without delay. They found that
auditory brainstem responses (ABRs) to
the “ba/ga” syllables were changed in
the experimental group, but only after
more than one year of training. ABRs
were not changed in the control group,
either following the delay or after the
first full year of training. We endorse the
use of a randomized control trial (RCT)
to evaluate this educational programme,

but argue that several additional crite-
ria must be met before firm conclusions
can be drawn about the benefits of the
intervention.

Kraus et al. argue their results provide
evidence that “community music pro-
grams may stave off certain language-
based challenges” (Kraus et al., 2014b, p.
11915), but this claim is hard to sustain
without behavioral data (e.g., of concomi-
tant improvements in speech perception
or literacy). For the current paper, it would
be necessary to show group differences
in behavior that relate to the educational
program, and explore the ways that indi-
vidual differences in neural and behavioral
profiles vary with the speech and liter-
acy measures. This is particularly impor-
tant given that a meaningful musicianship
advantage in speech perception can be
hard to demonstrate, as the size of the
advantage shown for musicians (com-
pared to non-musicians) is small (<1 dB)
(Parbery-Clark et al., 2009) and has not
been consistently replicated (Fuller et al.,
2014; Ruggles et al., 2014). We also note a
more recent follow up study (Kraus et al.,
2014a) shows no improvement in liter-
acy skills associated with active musical
engagement.

There are other important issues: for
example, Kraus et al. presented a single
pair of synthesized “ba” and “ga” syllables
6000 times, at a rate of 4.35 repetitions
per second, to each participant. No nat-
urally occurring human speech sequences
occur like this: speech tokens are never
identical, and repetition itself is normally

avoided as it is low in informational value
(change, not repetition, conveys informa-
tion) and leads to illusory percepts (cf.
the verbal transformation effect, Pitt and
Shoaf, 2002).

In addition, these items were synthe-
sized speech tokens in which a single
acoustic cue (the trajectory of the second
format, F2) was manipulated. Notably, the
major frequency difference where the F2s
are maximally different between ba and
ga (900–2480 Hz) are not investigated as
the cross-phaseogram measurements are
restricted to 900–1500 Hz, due to a lack
of phase locking above 1500 Hz (Aiken
and Picton, 2008). This frequency “win-
dow” restricts the analysis to a range
where the whole F2 sweep for “ba” is
included, but most of that for “ga” is
excluded from the analysis (see Figure in
Supplementary Materials, Hornickel et al.,
2009). This suggests that the response is
not specifically discriminant per se, and
may be associated with detection of the
presence of “ba” stimuli. A contrast of “ba”
with “da,” which has a lower F2 sweep,
would be a way to address this. To fur-
ther develop our understanding of these
ABR effects, it is also essential to under-
stand how the measurements used in this
study relate to the auditory brain stem
and cortex measures used in other inves-
tigations, of the effects of musical train-
ing. Table 1 shows a summary of the ABR
papers on musical training in children
which illustrates the wide variety of mea-
sures used and their significance across
studies.
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Table 1 | A summary of the ABR papers on musical training in children which illustrates the wide variety of measures used and their

significance across studies.

Paper Age range Stimulus Musical training criteria Measure Finding (relative to

non-musician/control group)

Strait et al.
(2012; Brain and
Language)

School age
(7–13 years)

Synthetic 170 ms
/da/ stimulus
presented with and
without multi-talker
babble noise

Currently undergoing private
instrumental training, began
musical training by age 5 and had
practiced ≥20 min at least 5 days
weekly for last 4 years

cABR peak

timing

First peak at the start of the formant
transition (43 ms) faster in quiet and
in noise. No significant differences
between onset peak (9 ms) or
steady-state vowel peak (63 ms) in
quiet or noise

Less of a quiet-noise timing shift in
formant peak (43 ms), but not in
onset (9 ms) or steady-state (63 ms)

Fast Fourier

Transform

Stronger encoding of summed
frequencies across range of
200–800 Hz in quiet and noise
conditions. No difference in strength
of fundamental frequency encoding
in quiet or noise

Stimulus-

response

correlation

Significant difference in strength of
stimulus-response correlation in
noise for vowel region. No
significant difference in quiet.
Significant difference in quiet vs.
noise stimulus-response correlation
difference

Strait et al.
(2013;
Developmental
Cognitive
Neuroscience)

Preschoolers
(3–5 years)

Synthetic 170 ms
/da/ stimulus
presented with and
without multi-talker
babble noise

Currently undergoing private or
group music training for minimum
of 12 consecutive months before
the study. Attending weekly
classes and used materials to
practice 4 times a week at home

cABR peak

timing

Onset peak (9 ms) and formant
transition (43 ms) faster in quiet and
in noise. No significant difference in
steady-state peak (63 ms) in quiet or
noise.

Less of a quiet-to-noise timing shift
for formant transition peak (43 ms),
but no significant differences in
quiet-noise timing shifts for onset
(9 ms) or steady-state vowel (63 ms)
peaks

cABR peak
amplitude

No absolute amplitude differences in
quiet or noise conditions, nor a
difference in quiet-noise amplitude
reductions for onset (9 ms), formant
(43 ms) or steady-state (63 ms)
peaks

Stimulus-
response
correlation

No differences in stimulus-response
correlation strength across vowel
region in quiet or noise. No
significant difference in quiet vs.
noise stimulus-response correlation
difference

Fast Fourier
Transform

No differences in strength of
encoding at fundamental frequency
or for frequencies summed across
200–800 Hz in either quiet or noise
conditions

(Continued)
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Table 1 | Continued

Paper Age range Stimulus Musical training criteria Measure Finding (relative to

non-musician/control group)

Strait et al.
(2014; Cerebral
Cortex)

Preschoolers
(3–5 years)
and school
age (7–13
years)

170 ms synthetic
/ba/ and /ga/ stimuli

Preschoolers: Currently
undergoing private or group
music training for minimum of 12
consecutive months before the
study. Attending weekly classes
and used materials to practice 4
times a week at home.
School age: Currently receiving
private lessons, started music
training by or before age 6, and
had consistently practiced for a
minimum of 3 years for ≥20 min
for at least 5 days weekly

Cross-

phaseogram*

Better phase differentiation between
/ba/ and /ga/ stimuli from 15 to
45 ms post-stimulus onset,
(corresponding to formant transition)
across frequency range
900–1250 Hz in preschoolers and to
900–1500 Hz in school-aged
children. No phase differences in
control vowel region (60–170 ms)

Kraus et al.
(2014a; Frontiers
in Neuroscience)

School-age
(7–10 years)

40 ms
consonant-formant
transition /d/
(perceived as /da/)

Harmony Project music
appreciation: 1 h twice per week
pitch, rhythm, vocal performance,
improvisation, composition,
musical styles and notation, basic
recorder training. Some subjects
progressed to 2 h/week of other
instrumental training, ensemble
practice and performance

Peak

latencies,

VA slope

(stop burst),

Earlier latencies for peaks V (onset),
E, and F (consonant transition
period) in second year of training
relative to group with no
instrumental training. No significant
differences in latencies of peaks A,
C, D, O, or slope of VA complex
(onset peak-trough)

Fast Fourier
Transform

No significant differences between
summed energy across (“middle
harmonics”) 455–720 Hz, or across
720–1154 Hz (“high harmonics”)

Strait et al.
(2011; Behavioral
and Brain
Functions)

School-age
(8–13 years)
classified as
“good” and
“poor”
readers

Repeated /da/
(predictable
context) vs.
standard /da/
interspersed with
/ba/, /ga/, /du/, /ta/,
shorter /da/,
higher-pitched /da/,
dipping pitch /da/
(variable context)

This was not a training study.
Measured at only one time point,
music aptitude was an aggregate
score that measured the ability to
compare melodies and rhythms

Fast Fourier

Transform

Stronger frequency encoding of 200
and 400 Hz frequency components
in predictable vs. variable stimulus
contexts in good readers relative to
poor readers. Reading ability and
music aptitude scores correlated
with strength of encoding at both
200 and 400 Hz. No significant
differences in strength of
fundamental frequency encoding or
at any other harmonic frequencies

Bold indicates a significant difference between the musicians and non-musicians/control group in at least one measure.

*Indicates the same ABR measurement used in Kraus et al. (2014b).

RCTs involve certain design features,
which Kraus et al. do not always fully
exploit: for example, the difference in
the size between the control (n = 18)
and the experimental (n = 26) groups
is unexplained, and may require a differ-
ent statistical approach (Keselman and
Keselman, 1990). The lack of an active
control group prevents us from under-
standing whether the reported neural
changes could be induced by an alternative
enrichment activity (which is acknowl-
edged by the authors), or whether a more
focused language or literacy intervention

would have yielded more effective results.
It is also important to stress that while the
paper makes specific claims about treat-
ment effects for “impoverished brains”
(e.g., individuals from low socio-economic
backgrounds), no direct evidence of this
impoverishment is provided, nor evidence
that the effects on “impoverished” brains
are any different to the effects on non-
impoverished brains, e.g., by including
another control group. RCT methodol-
ogy requires the reporting of the system
used to generate the random alloca-
tion sequence, as well as mentioning

participant drop-out rates, means, SDs,
effect sizes and associated confidence
intervals. Although an important first step,
this paper falls some way short of sug-
gested recommendations for the reporting
of RCTs (Schulz et al., 2010).

To conclude, we have critiqued a recent
high impact intervention study examin-
ing the effect of musical training on
neural responses. Ineffective interventions
provide false hope and waste financial
resources (Strong et al., 2011) and there-
fore intervention programmes need to be
evaluated rigorously. It is admirable to
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investigate the potential of community
based musical training to improve neu-
ral coding of speech, but we argue that a
stronger standard of evidence is required
before concluding that musical enrich-
ment enhances speech, language and liter-
acy skills.
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