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Spatiotemporal boundary formation (SBF) is the perception of form, global motion, and
continuous boundaries from relations of discrete changes in local texture elements
(Shipley and Kellman, 1994). In two experiments, small, circular elements underwent small
displacements whenever an edge of an invisible (virtual) object passed over them. Unlike
previous studies that examined only rigidly translating objects, we tested virtual objects
whose properties changed continuously. Experiment 1 tested rigid objects that changed in
orientation, scale, and velocity. Experiment 2 tested objects that transformed non-rigidly
taking on a series of shapes. Robust SBF occurred for all of the rigid transformations
tested, as well as for non-rigid virtual objects, producing the perception of continuously
bounded, smoothly deforming shapes. These novel illusions involve perhaps the most
extreme cases of visual perception of continuous boundaries and shape from minimal
information. They show that SBF encompasses a wider range of illusory phenomena than
previously understood, and they present substantial challenges for existing models of SBF.
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INTRODUCTION
How do we perceive the boundaries of objects? This is, first of all,
a question of what information is available in the optical input
to the eyes. Often, objects differ from their backgrounds or from
other objects in surface characteristics; these differences produce
discontinuities in luminance, color, or texture in their retinal pro-
jections. In ordinary environments (as opposed to pictures), there
also tend to be depth discontinuities at object boundaries. These
are manifest optically in stereoscopic disparities at boundaries
as well as through changes in relative motion of points along a
boundary during object or observer motion.

In many situations, however, discontinuities in these stimu-
lus properties are insufficient to reveal the complete boundaries
of objects. Most pervasive are cases of occlusion, in which parts
of an object’s boundaries do not project to the eye due to a
nearer, interposed object. Likewise, under conditions of camou-
flage, object surface properties may closely match properties of
the background. Perception of complete objects in such cases
depends on interpolation processes, as have been investigated
in the perception of partially occluded and illusory contours
and objects (e.g., Michotte et al., 1964; Kanizsa, 1974; Grossberg
and Mingolla, 1985; Kellman and Shipley, 1991 for a review,
see Shipley and Kellman, 2001). Experiments and models in this
area have revealed a great deal about how the visual system goes
beyond local visual information and uses spatial and tempo-
ral relations among physically specified edges to determine the
occurrence and positions of interpolated edges.

These processes are used pervasively to overcome complex pat-
terns of occlusion in ordinary environments; yet perceiving object

boundaries can be even more difficult. Suppose that no oriented
edge fragments are visible. This can occur in camouflage, or more
frequently, under dark viewing conditions, where a few sparse ele-
ments or features of a surface may be all that can be detected.
Gibson et al. (1969) showed that even under such impover-
ished circumstances, objects can be perceived to have continuous
boundaries. Under conditions of relative motion of objects and
observers, an object and its background undergo accretion and
deletion of texture elements. Accretion and deletion of even sparse
texture elements on a farther surface by a nearer one can give
rise to the perception of continuous boundaries, shape, and the
relative depth of the two surfaces (Gibson et al., 1969; Kaplan,
1969; Braunstein et al., 1982; Rogers and Graham, 1983; Prazdny,
1986; Yonas et al., 1987; Andersen and Cortese, 1989; Ono et al.,
1989).

Shipley and Kellman (1993, 1994, 1997) revisited accretion
and deletion of texture and showed that it is just one example of
transformations that can serve as the input to a more general pro-
cess, which they called spatiotemporal boundary formation (SBF).
They hypothesized that the crucial information for boundaries
and shape in accretion and deletion is not the gradual covering or
uncovering of texture elements, but the fact that those events are
encoded as abrupt transformations (spatiotemporal discontinu-
ities). If this more general idea is correct, then transformations of
other element properties should also be capable of producing the
perception of continuous contours, shape, and relative motion.
Their experiments revealed that discrete appearance and disap-
pearance of texture elements, not just gradual covering or uncov-
ering, produced SBF. Color change also produces SBF. Moreover,
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a whole range of ecologically bizarre transformations, including
orientation change, position change (local element motion), and
form change (of elements) also produce SBF. Figure 1 shows an
example of SBF displays. All transformations are unitary and dis-
crete, meaning that they occur instantaneously with no partial
covering of the texture elements.

SBF occurs for both unidirectional and bidirectional transfor-
mations. In unidirectional displays, elements entering a specified
virtual region all change their feature values in the same way. For
example, in a unidirectional color change display, a virtual region
moves among an array of white dots against a black background.
Dots change from white to blue upon entering the virtual region
and change back from blue to white upon exiting. Unidirectional
color change displays have been extensively studied by Cicerone,
Hoffman and colleagues, with an emphasis on perceived color
spreading within such displays (Cicerone et al., 1995; Cicerone
and Hoffman, 1997; Miyahara and Cicerone, 1997; Fidopiastis
et al., 2000; Chen and Cicerone, 2002a,b; see also, Gepshtein and
Kubovy, 2000; Cicchini and Spillmann, 2013). One feature of such
displays is that in static views, a region corresponding to the vir-
tual region (albeit with unclear boundaries) can be segregated
from the background. In bidirectional displays, all texture ele-
ments are randomly assigned one of two feature values, so no such
region is visible in any static view. Elements switch values when
entering or exiting the virtual region. In a bidirectional color

FIGURE 1 | Depiction of a square “pseudosurface” or virtual object

moving over a field of circular black elements. (A) All elements inside
the square region are in one state and all those outside are in another. Each
individual frame contains a collection of white circles in an amorphous
group. As the square moves (Frames 2 and 3), elements entering and
exiting the region change states. The resulting percept is of a moving,
colored region with crisply defined illusory contours. (B) Elements inside
and outside the figure can be in either of two states. As the square region
moves, elements entering or exiting the region change states. Figure from
Shipley and Kellman (1993).

display with blue and white dots, when the virtual region passes
over dots, the white dots turn blue and the blue dots turn white.
Bidirectional displays also support SBF, producing the perception
of continuous contours, complete shape, and global motion, but
with no color spreading. The lack of uniform color across ele-
ments within the perceived shape’s boundaries appears to prevent
perceptual surface formation. Instead, ring-like objects with an
empty interior region are seen. Besides homogeneous color, com-
mon motion of interior elements can also produce perception of a
surface (Shipley and Kellman, 1994; Cunningham et al., 1998a,b),
as in classical accretion-deletion displays.

THE APERTURE PROBLEM IN SBF
In SBF, the only information available that can be used to recover
moving contours are the positions and relative timing of abrupt
element transformations. This presents a seemingly impossible
version of the aperture problem. In the classic version (Wallach,
1935; Adelson and Movshon, 1982; Nakayama and Silverman,
1988, 1998; Shimojo et al., 1989), when an object’s boundaries are
seen through many small apertures, the visual system must deter-
mine the combined velocity structure of many spatially discrete,
oriented contour segments whose global velocity is ambiguous.
For each edge segment, its orientation and orthogonal motion
velocity is available within the aperture. In SBF, the apertures
are local elements that change discretely in some property. These
changes by themselves do not produce the perception of a moving
edge. Moreover, edge fragments seen through apertures provide
clear orientation information and constrain the directions of
its movement to a 180◦ range. Individual element changes in
SBF provide no orientation information and no usable global
motion information. Depending on the transformation used to
produce SBF, there may be local orientation changes (when ele-
ment orientation change is used) or local motions (when element
displacement is used), but these events not only provide no infor-
mation about a larger form and moving contours, they provide
what would appear to be contradictory information. This more
extreme version of the aperture problem in SBF has been referred
to as the “point-aperture problem” (Prophet et al., 2001).

One proposed solution relies on an intersection of con-
straints (Shipley and Kellman, 1994, 1997; Kellman et al., 2012).
Successive transformations of texture elements produce velocity
signals that are determined by the spatial and temporal separation
between transformation events. The velocity, orientation, and
global motion direction of a region boundary are constrained by
these signals. Consider several one-dimensional strips of evenly
spaced texture elements at different orientations. Element trans-
formations will be slowest along the strip that is orthogonal to
the boundary of a moving virtual object that passes over the
strips, revealing the boundary’s orientation. Given transforma-
tions along two strips, both the velocity of the boundary and its
orientation can be recovered (see Shipley and Kellman, 1994, 1997
for details).

As in the intersection of constraints solution to the typical
aperture problem, this model produces a coherent output only
when several constraints are met. The texture element transfor-
mations are assumed to come from (1) a single, rigid entity that
is (2) moving at a constant velocity. It is also assumed that the
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boundary can be decomposed into piecewise linear segments for
which the orientation and velocity can be determined locally and
independently. Such a model has been successfully implemented
for bar-like shapes whose boundaries have a single orientation
and velocity along their length (Kellman et al., 2012).

Previous work has considered these constraints only in the
case of unchanging shapes. Strong versions of the constraints
state that SBF should not occur for transforming shapes. For
example, if a shape rotates, local edge orientations change con-
tinuously. If a shape scales, it also changes the local orientation of
the contours. If a shape accelerates, the assumption of constant
velocity is violated. The intersection of constraints solution relies
on the fact that fixed edge orientations and velocities produce
specific spatiotemporal patterns of texture element transforma-
tions (i.e., which elements change and at what rate). If the pattern
is constantly changing between element transformation events
due to changes in edge orientation and velocity the model would
be unable to recover those properties. In short, existing ver-
sions of SBF models, on the simplest account of their underlying
assumptions, would work for a limited class of objects. Not coin-
cidentally, these correspond to the objects that have been used in
prior studies: rigid shapes moving with unchanging orientation
and constant velocity.

Here we explore whether these limitations on SBF or its mod-
els may be arbitrary. In the real world, object motions are not
limited to translation at constant velocity; objects rotate, acceler-
ate, and scale (at least retinally). When objects rotate in depth, the
retinal projection of their boundaries transform non-rigidly. In
structure-from-motion (SFM) displays, we can readily see these
as well as other non-rigid motions, such as the deformation
of elastic objects or biological motion, even in sparse dot dis-
plays (e.g., Jain and Zaidi, 2011). Does SBF work with shapes
whose boundaries are changing in orientation or size? If illu-
sory boundaries can be seen for SBF-defined objects that rotate,
scale, and transform non-rigidly, this may force a reexamina-
tion of SBF models. Perception of shapes and illusory contours
under these conditions would also provide the most spectac-
ular versions of this class of visual illusion. Moving, deform-
ing illusory contours would be seen between stationary texture
elements in the absence of any local orientation and motion
information.

We report two surprising visual illusions involving SBF. In
Experiment 1, SBF-defined illusory figures are seen that rotate,
scale, and change velocity. Even though the displays contain only
sparse texture elements such that no contour or shape infor-
mation is available on any given frame, robust global form and
motion is seen. In Experiment 2, observers were able to see
non-rigid illusory contours produced by continuously deform-
ing SBF-defined illusory figures. The displays demonstrate a
new, easy way to create non-rigid illusory contours of arbitrary
complexity.

EXPERIMENT 1
Experiment 1 used object transformations of rotation, scaling,
and acceleration to test core assumptions about SBF. SBF is
thought to arise from the integration of local motion signals
across space and time. Shipley and Kellman (1997) suggested

that pairs of discrete element changes proximate in space and
time provide the input to SBF. If viewed in isolation, such
pairs of element changes would produce a perception of near-
est neighbor apparent motion (Ullman, 1979). In SBF two or
more vectors produced by pairs of element changes that are
present within a certain spatiotemporal window are integrated
to produce moving, oriented contour fragments. At a higher
level, perception of object shape and continuous boundaries in
SBF appears to depend on spatiotemporal interpolation processes
that connect these edge fragments. Spatiotemporal contour inter-
polation, which has been studied in other contexts, relies on
the updating of position information of contour segments that
have disappeared based on a representation of their orientation
and velocity. This persistence and positional updating of previ-
ously seen contour fragments in a temporary visual store allows
such fragments to be integrated with contour segments that
appear at a later time (Palmer et al., 2006; Palmer and Kellman,
2014).

Existing models of SBF assume that local edge orientation
and velocity are fixed within the integration window (Shipley
and Kellman, 1994, 1997). Both the initial formation of edge
fragments, and most, but not all, studies of spatiotemporal inter-
polation between edge fragments, have used contours with fixed
orientations and velocities, and, as this would imply, rigid shapes
of unchanging size and orientation. Experiment 1 tested whether
SBF operates when these parameters change.

A secondary goal of the experiment was to determine whether
element transformations consisting of motions in random direc-
tions could support SBF (see Figure 2). In previous work, con-
sistent element motions (displacement in a uniform direction
of all elements upon entering the virtual object) produced SBF
(Shipley and Kellman, 1993, 1994). Preliminary work in our lab-
oratory suggested that random element motion (consistent in
extent but random in direction) could also support SBF, but no
prior work has used these in SBF experiments. An example is
shown in Supplementary Movie 1.

A virtue of using small, random element displacements as the
inducing events in SBF displays is that no static view contains any
information about global shape.

As in earlier research on SBF, we used a forced-choice
shape identification paradigm. The paradigm is an objective

FIGURE 2 | Example of the element transformation used in

Experiments 1 and 2. The dashed region defines a “virtual object” which
is not seen by the observer. As the virtual object moves, elements that
enter or leave the boundary of the virtual object are displaced in a random
direction.
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performance method, in that there was an objectively correct
answer (which virtual object was used in the display) on each trial.
In the absence of global shape formation, consistently accurate
shape perception is not possible (Shipley and Kellman, 1993).

MATERIALS AND METHODS
Participants
Subjects were 16 undergraduate students (3 male, mean age:
19, range: 18–21) from the University of California, Los
Angeles. All participants reported having normal or corrected-to-
normal vision. Subjects received course credit for participating.
Experiments were approved and conducted under the guidelines
of the UCLA IRB. All subjects provided informed consent to
participate.

Apparatus
All displays were created and displayed using the MATLAB pro-
gramming language and the Psychophysics Toolbox (Brainard,
1997; Pelli, 1997). Stimuli were presented on a Viewsonic G250
CRT monitor, which was powered by a MacPro 4 with a 2.66 GHz
Quad-Core Intel Xeon processor and an NVidia GeForce GT120
graphics card. The monitor was set to a resolution of 1024 × 768
pixels and a refresh rate of 60 Hz.

Displays
Small red circles (diameter = 11.9 arcmin) were shown on a
black background that filled the screen (40 × 30 cm; 25.06 ×
18.92◦). The total number of elements was either 200, 400, 600,
or 1200. Elements were pseudo-randomly arranged by creating
100 equally sized regions and placing an equal number of ele-
ments in a random position within each region (see Shipley and
Kellman, 1994). This minimized overlap between elements and

ensured a nearly uniform distribution of elements across the dis-
play thereby also avoiding large, empty regions. The four element
quantities corresponded to element densities of 0.42, 0.84, 1.27,
and 2.53 elements per square degree of visual angle respectively.
Elements covered 1.28, 2.56, 3.83, or 7.67% of the pixels in the
display area.

We defined 10 virtual objects or “pseudosurfaces” similar to
those used in Shipley and Kellman (1993)1. They are depicted
in Figure 3. We will refer to these as virtual objects or virtual
regions, while noting that they were referred to as “pseudosur-
faces” in earlier work. Either label is intended to convey that
the shapes are not physical entities; any static frame of the dis-
play is seen to contain only a field of undifferentiated texture
elements. The shapes had varying degrees of symmetry and reg-
ularity. The virtual objects were on average 5.6 degrees of visual
angle in height and width, within a range of 4.36–6.45◦ in either
dimension. When a virtual object came into contact with an
element, the element was displaced by 10 pixels (14.9 arcmin)
in a random direction (see Figure 2). The displacements were
large enough to be readily detectible (Shaffer and Wallach, 1966;
Shipley and Kellman, 1993). When the element’s original posi-
tion was no longer within the boundary of the virtual objects,
the element returned to that position. An element was defined as
inside the virtual object if its center was on or inside of the virtual
object boundary. On average, 1.74, 3.44, 5.27, and 10.51 elements
transformed from frame-to-frame for each of the four element

1In the original stimulus set, two of the “random” shapes (corresponding to
the bottom row in Figure 3) were rotated or mirror reflections of one shape.
Because shapes rotated in some conditions in this experiment, we generated
new shapes that were complex and shared several features with other shapes,
but were not confusable when rotated.

FIGURE 3 | Ten shapes used in Experiments 1 and 2. The top four shapes
are familiar, regular, and have multiple axes of symmetry. The second row
contain shapes that are more unusual, but still symmetrical. The final row
contains asymmetrical shapes. All shapes have approximately the same

horizontal and vertical extent. They are modeled after the shapes used in
Shipley and Kellman (1994). Throughout the text we refer to them as circle,
triangle, square, hexagon, tri-leaf, butterfly, four-leaf, rand1, rand2, and rand3
starting from the top-left and going to the bottom-right.
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quantities respectively. An example of a scaling and rotating shape
is shown in Supplementary Movie 2.

Virtual objects traveled on a circular path centered on the mid-
dle of the screen, with a radius of 4.97◦. The path was divided into
360 equidistant positions which the virtual object visited them
sequentially. The virtual object traveled at a rate of four posi-
tions every frame (0.35◦ per frame) and each frame was shown
for 32.2 ms. A trial was completed when the virtual object made
one complete circuit of the path. The starting position along the
path was randomized across trials. A trial lasted 3 s.

As virtual objects traveled along the path, they underwent
one of four possible transformations: scaling, rotation, rotation
and scaling, or acceleration. In the scaling and rotation and scal-
ing conditions, virtual objects increased or decreased in size at
a rate of 1% per frame. The maximum size of a virtual object
was 9.92◦ and the minimum size was 2.49◦ in any dimension.
Upon reaching the size limit, scaling direction reversed. Initial
scaling direction (shrinking or growing) was randomized across
trials. If the virtual object was rotating, it rotated at a rate of 3◦
per frame in the clockwise direction. Starting orientation of the
shape was always upright. In the scaling and rotation condition,
both of the transformations were applied simultaneously. In the
acceleration condition, on each frame, there was a 30% proba-
bility of the velocity increasing, a 30% probability of the velocity
decreasing and a 40% of the velocity remaining constant. Velocity
changes affected which of the 360 positions along the path the
virtual object would visit. Minimum velocity was two positions
per frame (compared to a base velocity of four) and maximum
velocity was seven positions per frame.

Design
On each trial, participants performed a forced choice identifi-
cation of the shape in the displays from among a fixed set of
10 alternatives. The four texture element quantities, the four
shape transformation conditions, and the 10 shapes were coun-
terbalanced in a 4 × 4 × 10 design. Each trial was repeated
twice, resulting in a total of 320 trials. Trial order was ran-
domized. Prior to the experimental trials, there were 10 prac-
tice trials. Each practice trial had the highest density of ele-
ments and no shape transformation. Each of the 10 shapes was
shown once, in random order. The entire experiment lasted
approximately 40 min.

Procedure
Subjects sat in a dark room at a distance of 90 cm from the
computer monitor, with the only illumination coming from the
monitor. They were given verbal and written instructions explain-
ing that they were going to see a black screen with red dots in
which an illusory shape would appear to move. Their task was
to identify the shape that they had seen out of a set of 10 possi-
ble shapes. Subjects then began the practice trials. At the start of
each trial, a white fixation cross appeared in the middle of a black
screen for 1 s. Then, the cross disappeared and the red texture
elements were shown. The virtual object began to move as soon
as the elements appeared. Once the object completed a full path
around the screen, a new display with an image of the 10 shapes
was shown. Subjects made a response by clicking on one of the ten

shapes with the mouse. A red, rectangular box appeared around
the answer choice for 1.5 s to indicate the subject’s response. For
practice trials, feedback was provided by showing a green, rectan-
gular, box around the correct choice. If the subject had selected
the correct response, the green box surrounded the red one. In
addition, the word “Correct” or “Incorrect” appeared in the top-
left corner of the screen. Subjects had unlimited time to make a
response. Once the practice trials were over, a message appeared
on the screen, instructing subjects that the practice trials were
over and that they would no longer receive any feedback.

RESULTS
Mean accuracy data for Experiment 1 are shown in Figure 4.
Highly accurate shape perception was possible under some of the
conditions of the experiment, especially at the highest element
density, and all conditions appeared to exceed chance accuracy.
These observations were confirmed by the analyses. Accuracy data
were collapsed across shapes and submitted to a 4 × 4 within-
subjects ANOVA. There was a main effect of transformation type
[F(3, 45) = 90.18, p < 0.001, η2

p = 0.86], with highest accuracy
for scaling shapes, followed by scaling and rotating shapes, rotat-
ing shapes, and accelerating shapes across most element quanti-
ties. There was a main effect of number of elements [F(3, 45) =
349.36, p < 0.001, η2

p = 0.959], with accuracy improving with
an increasing number of elements. There was also a significant
interaction [F(9, 135) = 2.70, p = 0.006, η2

p = 0.15].
The highest accuracy was observed for the scaling condition

with the largest element quantity (88.13%). Performance for this
shape transformation at this number of elements was greater
than all of the other transformation conditions [rotation: 65.31%,
t(15) = 6.80, p < 0.0001; scaling + rotation: 80.31%, t(15) = 2.74,
p = 0.015; acceleration: 72.19%, t(15) = 5.08, p < 0.001]. For the

FIGURE 4 | Average accuracy data from Experiment 1 as a function of

number of texture elements in the display. Data are averaged across
subjects and shapes. All transformation conditions were within-subject.
Error bars indicate 95% confidence intervals. The gray, dashed line
indicates chance performance (10%).
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lowest number of elements tested (200), performance in all con-
ditions was above chance (10%) [scaling: 34.69%, t(15) = 9.64,
p < 0.0001; rotation: 18.12%, t(15) = 3.64, p < 0.005; rotation +
scaling: 28.13%, t(15) = 7.15, p < 0.0001; acceleration: 18.12%,
t(15) = 5.17, p < 0.001].

DISCUSSION
The results of Experiment 1 show that boundaries and shape
can be perceived from SBF displays in which the virtual objects
change orientation, scale, and velocity. Moreover, these illusory
figures were seen despite the transformations being displacements
of individual texture elements in random directions, thereby
producing incoherent local motion signals. Accurate perception
of shape and the subjective appearance of continuous illusory
contours bounding shapes illustrates the extreme nature of inter-
polation processes in SBF. Texture element transformations were
spatiotemporally quite sparse in this study. There were on average
1.7, 3.4, 5.2, and 10.5 element transformations per frame, for each
of the four element densities respectively. These were spread along
an average shape boundary length of 17.6◦. Shapes and illusory
contours perceived in SBF, including the transforming shapes in
this study, therefore represent perhaps the most extreme illusion
involving illusory contours in terms of spatial support. Even when
a number of accumulated frames are considered together, the
amount of total boundary specified by local stimulus information
is a very small percentage. Displays perceived in SBF represent, in
an important sense, the most boundary and shape information
perceived from the least stimulus input.

It is surprising that transforming virtual objects produced such
robust SBF, given that changing orientation of edges in a neigh-
borhood, changing stimulus velocity, and the changing size of
virtual objects should all complicate recovery of the local edge
fragments. Transforming virtual objects create two confounding
problems for SBF models. First, in between successive transfor-
mations of local texture elements, the edges that caused those
transformations are changing not only in their position, but also
in their orientation and velocity. Since several transformation
events are needed constrain the orientation and velocity of an
edge, it is unclear how the visual system can relate two or more
events caused by, essentially, two different edges. Second, once
local edge segments are recovered, they must be interpolated in
different positions along the virtual object boundary and at dif-
ferent times. We return to these issues in the General Discussion.

Shape identification was affected predictably by the manipula-
tion of element quantity, improving as a function of the number
of elements. Performance was best for scaling and the combina-
tion of scaling and rotation shape transformations. Accuracy may
have been better in those conditions because as objects become
larger, more texture element transformation events occur along
the virtual object boundary. For the highest density, there were,
on average, 4.64 transformations per frame when a virtual object
reached its smallest size (compared to an average 10.51 trans-
formations per frame for rotating objects that did not change
size) and 18.68 transformations per frame when the virtual object
was largest. However, this increase in the number of element
changes scales directly with figure size, so that the number of
element changes per unit of perimeter remains constant. Perhaps

a more plausible account of improved performance with larger
sized objects is that size may make differences between similar
shapes larger and more discriminable. For example, at the high-
est density in the scaling condition, circles were never confused
for hexagons or vice versa, but they were confused 17 times across
all subjects at that element density when the objects were rotating
without scaling.

The pattern of results in this experiment, with element posi-
tion changes in random directions, was similar to experiments in
which element transformations were position shifts in only one
or two directions and when virtual objects were rigid and not
transforming (Shipley and Kellman, 1993, 1994). In those stud-
ies, performance also increased as a function of element quantity.
Since different numbers of elements were used across studies,
converting the independent variable to element density per degree
of visual angle allows a standard metric for comparison. We take
up these comparisons after considering the results of Experiment
2 below.

EXPERIMENT 2
Experiment 1 showed that shapes that rotate, scale, and accel-
erate can be accurately perceived in SBF. In Experiment 2, we
further examined the types of global shape transformations that
are supported by SBF. Changes in orientation, scale, and velocity
are rigid transformations of the virtual object. Perhaps non-
rigid transformations can also be perceived. In these displays,
virtual objects smoothly morphed from one of the ten shapes
used in Experiment 1 into another. Morphing continued from
shape to shape until all shapes were seen. Subjects were instructed
to look for a target shape (say, the triangle) in the morph-
ing sequence and to indicate when they saw that shape (see
Supplementary Movie 3).

If non-rigid illusory contours are seen in these displays, this
presents a much more confounding problem for spatiotemporal
interpolation. In addition to the difficulty in matching texture
element transformation events with contours that are changing
in position and orientation, the visual system must now deal
with changes in contour curvature as the shape is morphing.
Supposing that local edge segments can be somehow recovered
even though the curvature of those segments changes in between
transformation events, the segments must then still be interpo-
lated. While it has been demonstrated that contour fragments that
change in orientation under occlusion can be interpolated with
visible ones, it is not known whether contour segments, real or
illusory, can undergo changes in curvature while not visible and
still be interpolated with other contour segments that are later
revealed.

MATERIALS AND METHODS
Participants
The participant group was composed of 12 University of
California, Los Angeles undergraduate students (10 female, mean
age = 22.75). All participants reported having either normal
or corrected-to-normal vision. Participants were awarded course
credit for their participation. Experiments were approved and
conducted under the guidelines of the UCLA IRB. All subjects
provided informed consent to participate.
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Displays and apparatus
Since the lowest element densities in Experiment 1 made shape
identification difficult when the shape was not changing, higher
element quantities were used to ensure that performance was not
at floor. The three element quantities used were 529, 900, and
1600. In order to accommodate the larger number of elements
on the screen, texture element diameter was reduced to 7 arcmin
for a viewing distance of 134.5 cm. The element quantities corre-
sponded to densities of 2.46, 4.18, and 7.43 elements per square
degree of visual angle. Elements covered 2.62, 4.47, and 7.95% of
the total display area.

The same shapes were used as in the first experiment. Average
virtual object diameter was 4.45◦. The smallest size was 3.35◦ and
largest was 5.03◦. On average, there were 3.8, 6.47, and 11.47 ele-
ment transformations per frame for each of the three element
quantities respectively. As in Experiment 1, the virtual object trav-
eled along a circular path centered on the middle of the display.
The radius of the path was 3.33◦. The path was divided into 120
equidistant positions. The distance between each position was
0.17◦. The virtual object visited one position per frame. Each
frame lasted for 33.2 ms. It took an object 4 s to make a full rev-
olution. Starting position along the path was randomized across
trials.

On each trial, the virtual object began as one of the ten shapes
and smoothly morphed from one shape to another until it had
become each of the 10 shapes once. Shape morphing was per-
formed by selecting 120 equally spaced points along the contour
of each shape to use as reference points. A morphing algorithm
generated 99 intermediate shapes between every pairing of shapes
by creating matches between the nearest contour points of the two
shapes and interpolating intermediate locations. In total, there
were 90 such morphing sequences, one between each pair of
shapes. The first and last steps of the morphing sequence were
the original, un-morphed shapes. Each intermediate morphing
step therefore reflected the relative proportion of the two shapes
that were being morphed. For example, on the 31st step in the
morphing sequence between shapes A and B, the displayed shape
was 69% shape A and 31% shape B. The entire transformation
sequence from one shape to another took approximately 3.3 s.

The transformation sequences on each trial involved nine
transformations between the 10 shapes. The order of shapes
in the transformation sequence was randomized on each trial
with the constraint that the first and last shapes could not be
the target shape. Each trial lasted a maximum of 30 s. Each
shape served as the target shape twice for each density, result-
ing in a total of 60 trials. Trial order was randomized. As in
Experiment 1, there were 10 practice trials to help familiarize the
participants with the task. Each of the 10 shapes was the target
for one of the practice trials. The highest density backgrounds
were used for all practice trials. The entire experiment lasted
approximately 30 min.

Design and procedure
Participants were informed that the purpose of the study was to
examine the perception of changing visual illusions. The stimu-
lus was described as a morphing shape that would result from a
pattern of flickering dots on the screen. At the beginning of each

trial, the participant was presented with a target shape selected
from one of the ten possible shapes. After a key press, the textured
background appeared and the animation began. The participant
was instructed to press a key when they believed the virtual object
on the screen most closely resembled the target shape. The dis-
play was terminated immediately once the participant pressed the
key. If no response was given during the course of the animation
sequence, the trial was repeated (same target shape), but with a
different shape transformation sequence. Subjects were instructed
to try to make a response on the second or third viewing of a trial,
and to avoid repeating a trial more often.

The first 10 trials of the experiment were practice trials at the
highest density. Each of the 10 shapes was the target shape on one
of the ten trials. Feedback was provided on the screen after every
practice trial (“Correct” or “Incorrect”). Once the practice trials
were over, the subject was informed via instructions on the screen
that they would no longer receive feedback and that the number
of texture elements would vary across trials.

Dependent measures and data analysis
A response was scored as correct if it was made while the virtual
object on the screen was a morph of 50% or more of the target
shape. This occurred as one shape morphed into the target shape
or as the target shape began morphing into another. Since each
frame corresponded to a 1% morphing of the virtual object, the
range within which a response was scored as correct was 50 frames
on either side of the frame that contained a 100% morph (i.e.
un-morphed) of target shape.

The exact frame on which a response was recorded presumably
includes time for response initiation and execution (i.e., response
time). We applied a correction to account for the delay between
when a relevant perceptual event caused an observer to initi-
ate a response and when a subsequent key press was recorded.
For example, a response time correction that corresponded to
30 frames would mean that if an observer initiated a response
when the virtual object was a 50% morph of the target shape,
then the recorded response would occur 30 frames later, when the
object was an 80% morph. Likewise, a recorded response when
the object was a 60% morph of the target shape would actually
correspond to a response initiation 30 frames earlier, when the
object was only a 30% morph.

We defined the frame that contained the 100% morph of the
target shape as the target frame, the frame on which a key press
was recorded as the response frame, and the frame on which the
response was initiated as the decision frame. The response time
was defined as the difference between the response frame and the
decision frame. Applying a response time correction shifted the
center of the window within which a response was considered cor-
rect forward in time. With no correction, the window would be
centered on the target frame and would span 50 frames on either
side. A 30-frame correction would shift the window forward by 30
frames so that correct responses would be those response frames
that occur between 20 frames before or 80 frames after the target
frame.

We considered all integer response time corrections between 0
and 50 frames. For each correction, we determined the window
within which responses were correct and computed the average
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accuracy across all subjects and conditions. The response time
correction that resulted in highest average accuracy was 12–15
frames (all times in that range produced the same accuracy).
Those numbers of frames corresponded to times of 398.4–498 ms,
which roughly agree with response times from object priming
studies (Vorberg et al., 2003), recognition memory (Sternberg,
1969), and RSVP paradigms (Botella, 1992). The difference in
average accuracy with and without the correction was less than
1% and all subsequent analyses were no different whether the
correction was applied or not.

RESULTS
Mean accuracy data for Experiment 2 are shown in Figure 5.
It can be seen that successful shape identification occurred well
above chance performance throughout, reaching very high accu-
racies at the highest element density. Accuracy data were col-
lapsed across shapes and submitted to a One-Way, within-subjects
ANOVA. There was a significant main effect of density [F(2, 22) =
19.38, p < 0.001, η2

p = 0.64]. Pairwise comparisons between the
three densities revealed that accuracy at the highest density was
greater than at the other two densities [high vs. medium: t(11) =
2.55, p = 0.027; high vs. low: t(11) = 5.43, p < 0.001] and that
accuracy at the medium density was greater than at lowest density
[medium vs. low: t(11) = 4.31, p = 0.001]. These and the results
that follow were the same for analyses without the response time
correction.

Accuracy data were also examined separately for each shape
across the three element quantities (Figure 7). Data were col-
lapsed across subjects since each target shape was repeated only
twice per subject. Low, medium, and high in the figure legend
correspond to the three element quantities (529, 900, and 1600
elements). Identification accuracy was perfect for triangles and

FIGURE 5 | Average accuracy data from Experiment 2 as a function of

number of texture elements in the display. Data are averaged across
subjects and shapes. Error bars indicate 95% confidence intervals. The
dotted gray bar indicates chance performance (10%).

hexagons for the largest element quantities and exceeded 90% for
squares, the quad-leaf shape, and the shape Rand3 (see Figure 3
for naming conventions). Worst performance for any element
quantity was for the shape Rand1 (25%). Worst performance at
the largest quantity was for shape Rand2 (41.67%). Chance per-
formance was 10%. Sensitivity (d′) for each shape is shown in
Figure 8. False alarms were counted as those trials in which a
subject responded with any shape other than the target shape. As
with accuracy, sensitivity was computed from data collected from
all subjects. Sensitivity was highest for triangles (4.65), squares
(3.82), and hexagons (4.68) for the highest density, and was rela-
tively high for circles (3.15), quad-leaf (3.11), and Rand3 (3.35).
Sensitivity decreased with decreasing element density.

A secondary analysis examined the degree to which the virtual
object on the screen resembled the target shape on the deci-
sion frame (response time corrected). Recall that subjects were
instructed to respond as close as possible to the target frame (the
frame containing the 100% morph of the target shape). Looking
only at trials in which subjects made a correct response, the num-
ber of frames between the target frame and the decision frame is
a measure of the extent to which the virtual object resembled the
target shape. Because there were 100 frames between the target
shape and the subsequent shape in the transformation sequence,
a decision on the 16th frame after the target frame would indi-
cate that the shape on the screen was an 84% (100-16) morph
of the target shape. Likewise, a decision 16 frames before the
target frame would also contain an 84% morph of the virtual
object. Results were not significantly different if the response time
correction was not applied.

Figure 9 shows the percentage of target shape on the decision
frame (response frame-15 frames) averaged across subjects as a
function of element quantity. A one-way, within-subjects ANOVA
found a significant main effect of density [F(2, 22) = 5.65,
p = 0.010, η2

p = 0.34]. Post-hoc, between-density comparisons
revealed that the percentage of target shape on the decision frame
for the highest density (84.96% target shape) was significantly
greater than the percentage for the lowest density [79.31%; t(11) =
3.17, p = 0.009]. No other differences were significant. As before,
these results were the same when the response time correction was
not applied.

We further explored the data by distinguishing between deci-
sions that came before the target frame and those that came
after. The data are shown in Figure 10. A 2 × 3, within-subjects
ANOVA found a significant main effect of decision time (before
vs. after), [F(1,10) = 10.20, p = 0.010, η2

p = 0.50] and of element

quantity [F(2, 20) = 10.79, p = 0.001, η2
p = 0.52]. There was also

a significant interaction [F(2, 20) = 4.52, p = 0.024, η2
p = 0.31].

Post-hoc paired comparisons for percentage of target shape before
and after the target frame revealed a difference for displays
that contained the largest number of elements [t(11) = 4.17, p =
0.002]. There were no significant differences for the two other
element quantities.

DISCUSSION
The results of Experiment 2 demonstrate that illusory contours
can be accurately perceived in SBF displays even when those
boundaries are smoothly deforming. As in Experiment 1, this
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has two implications for the visual processes involved in perceiv-
ing boundaries in these displays. First, local boundary segments
can change not only in orientation and velocity, but also in
curvature in between the texture element transformation events
that define them. Second, interpolation between boundary seg-
ments occurs even when one segment continues to deform after
becoming invisible. Since events do not occur continuously along
the entire boundary of the virtual object, they reveal only parts
of the boundary at any given time. As transformation events
reveal parts of the boundary, those newly visible regions inter-
polate with previously seen, but now invisible ones. This process
suggests a form of representation that encodes constructed edge
fragments as well as their continuing trajectories and deforma-
tions, allowing such information to be preserved and updated
for combination with other fragments that appear at later times
(c.f. Palmer et al., 2006; Palmer and Kellman, 2014). With the
virtual object morphing from frame-to-frame, the boundary is
deforming non-rigidly. If the visual system encodes an orien-
tation, velocity, and curvature of a boundary segment at one
moment as fixed values, those features may not align with a seg-
ment recovered at a later time. We return to this possibility in the
General Discussion.

Comparing the two experiments, the best performance (across
all shapes) in Experiment 2 (79.58%) was within the range of best
performances from the four conditions in Experiment 1 (65.31–
88.13%). However, element density had to be doubled to 4.18
elements per square degree of visual angle before this level of
performance was achieved. One reason for this difference could
be because virtual objects were smaller in Experiment 2 (average
diameter of 4.45◦) than in Experiment 1 (diameter 5.6◦). Because
element size was also smaller in Experiment 2, the total number of
element transformations per frame was similar for the two largest
densities in each experiment (12.85 in Experiment 1 and 11.47 in
Experiment 2). Alternatively, a greater element density may have
been needed in Experiment 2 to reach comparable performance
because the task was harder. Responses were marked as correct
only if they fell within 1.66 s of the target frame, whereas there
was no response time limit in Experiment 1. In addition, some
intermediate morphing stages may have appeared to be similar
to other shapes. For example, morphing between a square and a
circle may have resulted in intermediate morphs that resembled
hexagons.

With the results of Experiment 2 in hand, we compared shape
identification accuracy with the transforming and non-rigid vir-
tual objects in Experiments 1 and 2 with shape identification
accuracy in earlier work. Shipley and Kellman (1994, Experiment
3) used rigid, non-transforming shapes and local motion as the
element transformation in a 10-AFC task. There were some dif-
ferences from the present experiments. As mentioned earlier, we
used a somewhat revised set of shapes. Moreover, we used ran-
dom directions of element motion, whereas the earlier study used
consistent vertical displacements. The virtual objects used in the
current experiment were also larger (4.45◦ in diameter vs. 2◦).
Although comparisons are inexact, they may be informative with
regard to the primary purpose of the present work: to determine
whether SBF occurs robustly for transforming shapes. The data
are clear in showing the SBF occurs with transforming objects,

but if SBF occurs with transforming objects but is notably weaker
than in non-transforming shapes at comparable element densi-
ties, it would suggest that changing orientation, shape, or velocity
do impact the recovery of shape in SBF.

Figure 6 plots the data from the two current experiments along
with the earlier experiment with all conditions being displayed in
terms of element density (elements/deg2). As can be seen, perfor-
mance at similar densities for deforming shapes in Experiment
2 was comparable to that of rigid, non-transforming shapes in
Experiment 3 of Shipley and Kellman (1994). The four densi-
ties used in Shipley and Kellman (1994) were 1.61, 3.21, 6.42,
and 12.85 elements per degree of visual angle. (Performance was
not significantly different for the two largest densities and den-
sity did not exceed 6.42 in the current experiment, so accuracy
for only the first three densities is shown). The densities used in
the present Experiment 2 were 2.46, 4.18, and 7.43 elements per
square degree of visual angle.

Figure 6 also plots the results of the transforming, rigid shapes
of Experiment 1 as a function of element density. Remarkably, all
of these conditions produced better shape identification perfor-
mance than occurred with non-transforming shapes in the earlier
work. The densities used in our Experiment 1 were 0.42, 0.84,
1.27, and 2.53 elements per square degree of visual angle.

For all comparable element densities, accuracy was higher in
the current experiment with transforming rigid shapes than for
non-transforming ones in earlier work. Even when densities were
three times larger than those used in the current study, identifica-
tion performance for non-transforming virtual objects was 80%,
while identification accuracy for scaling virtual objects reached
88%. This difference may be because virtual objects in the current
study were more than twice as large (average diameter = 5.6◦) as
those used previously (2.0◦). That larger shapes produce better
shape identification is not entirely intuitive. For displays with the

FIGURE 6 | Average shape identification accuracy from Experiments 1

(black, red, green, and blue lines) and 2 (purple line, “non-rigid”)

plotted as a function of element density. Also plotted are reproduced
data from Experiment 3 from Shipley and Kellman (1994) in gray.
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same density, the number of element changes in a unit of time
per unit of perimeter remains constant for a large and small dis-
play of the same shape. Also, larger shapes would tend to involve
more of the retina outside of the fovea, with some attendant loss
of visual acuity. It may, however, be the case that larger shapes
make clearer a shape’s parts and relations. We noted in the dis-
cussion of Experiment 1 that best performance observed in that
study occurred in the scaling conditions, which included presen-
tation of the largest shapes in the experiment. As suggested, the
exact reason for better performance with larger shapes in SBF
is not entirely clear, but one plausible hypothesis is that larger
visual angles allow better definition of shape parts, resulting in
improved discrimination.

It is clear from the data that identification accuracy varied
depending on shape complexity and confusability (Figure 7).
Sensitivity was greatest for triangles, squares, hexagons, quad-
leafs, and shape Rand3 than for other shapes (Figure 8). Shape
Rand2 appeared to be difficult to identify irrespective of the
number of elements. For the lowest and intermediate element
quantities, sensitivity was lowest for the shapes tri-leaf, butter-
fly, quad-leaf, Rand1 and Rand2. These shapes share in common
regions of high curvature. Such regions require a larger number
of proximal events to clearly specify the boundary. For a long, low
curvature segment of a boundary, two edge fragments that are
far apart would still be relatable (Kellman and Shipley, 1991). For
high curvature regions, the segments would need to be from rel-
atively nearby positions on the boundary to be relatable. Sparse
texture displays would yield few recovered boundary segments.

In addition to improving accuracy, element density (or quan-
tity, as these covaried in this study) was directly proportional to
response precision. Subjects tended to respond on frames closer
to the target frame (the one which contained the target shape)
as texture element quantity increased (Figure 9). Since the task
instructions specified that subjects should respond as close as pos-
sible to the target frame, responses frames that contained shapes
more closely morphed to the target shapes can be interpreted

FIGURE 7 | Shape identification accuracy in Experiment 2 separated by

shape and element quantity (low = 529, medium = 900, and high =
1600 elements) and collapsed across subjects. The dashed gray line
indicates chance performance. Shape names correspond to the shapes
shown in Figure 3 starting at the top-left corner of the figure and
proceeding left-to-right and top-to-bottom.

as more precise responses. Precision may have improved as a
function of element quantity because subjects could more read-
ily predict when the morphing sequence was approaching the
target shape, or it could have improved because once the target
frame was reached, subjects were quicker to identify the shape
and respond. In order to distinguish between these two possibili-
ties, data were split by whether responses came before or after the
target frame (Figure 10). Responses after the target frame did not
depend on element quantity. However, the more elements there
were on the screen, the more precisely subjects could anticipate
when the target frame was approaching.

FIGURE 8 | Shape identification sensitivity (d ′) in Experiment 2

separated by shape and density (low = 529, medium = 900, and

high = 1600 elements) and collapsed across subjects.

FIGURE 9 | Percentage of morph between target shape and another

shape when subjects initiated a response (response time corrected,

see text) as a function of element quantity. Subjects were instructed to
make a response when the figure on the screen matched as closely as
possible the target shape. Values closer to 100% indicate greater response
precision. Data are shown for correct trials only.
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FIGURE 10 | Percentage of morph between target shape and another

shape separated by whether the response came before or after the

frame on which the pure target shape was presented (response time

corrected, see text). Data are for correct trials only.

GENERAL DISCUSSION
SBF is known to produce perceived form, continuous bound-
aries, and global motion from discrete transformations of sparse
textural elements. The use of spatially separated, sequential
changes of small, sparse elements to produce these percep-
tual outcomes comprises an amazing spatiotemporal integration
capacity of the visual system.

As with many illusions, SBF presents dual implications regard-
ing the utility and function of perceptual processes. The events
most likely to trigger SBF in real world situations are motions
of objects that are poorly specified, either because of matching
object and background surfaces (camouflage) or because an
object is seen through multiple apertures. In these situations, SBF
recovers whole objects accurately from minute bits of informa-
tion spread across time. As Gibson et al. suggested in describing
accretion and deletion of texture elements (the best known case of
SBF), transformations produced by the relative motion of objects
and surfaces carry important information deeply rooted in the
optics of opaque objects, depth order, and motion. In the ways
we are most likely to encounter SBF in ordinary viewing environ-
ments, SBF is a highly ecological and sophisticated mechanism for
detecting what is really occurring in the environment.

But as with the processes underlying many other illusions, SBF
turns out to accomplish its ecologically relevant tasks by means
of mechanisms that in other cases produce ecologically imperti-
nent outcomes. Accretion and deletion is a fact about ecological
optics, but when we ask how the visual system accesses that fact, it
turns out to use discrete changes in local elements—virtually any
detectable discrete changes. This is both more and less than the
original idea that the visual system detects accretion and deletion.
It is much more because virtually any element transformation can
provide an input into SBF, even ecologically bizarre ones such as
orientation change or local displacement of an element. It is less
than accretion and deletion because elements need not be gradu-
ally covered nor must there be any array of texture elements that

move together (as will always be present during relative motion in
accretion and deletion displays).

When non-ecological element transformations are used, illu-
sory contours and shapes are perceived that cannot arise from
any known physics (apart from CRT displays and clever pro-
grammers). When for example, white and blue texture elements
on a black background switch values upon entering or leaving a
defined, moving, virtual region, the array of changes could not
be caused by any moving translucent filter nor any movement
of an object seen through apertures in an occluder. The fact of
a bizarre illusion, here as in other illusion contexts, lays bare the
functioning of the visual processes involved. The visual process-
ing that apprehends objects passing in front of each other from
sparse information also puts together illusory shapes from abrupt
changes of other kinds, such as the objects formed from local,
random direction element displacements in the experiments here.

In Experiment 1, we found that the orientations, sizes, and
velocities of virtual object boundaries can change between suc-
cessive transformation events and still be continuously seen. In
Experiment 2, SBF was also found to support changes in bound-
ary curvature, giving rise to robust percepts of non-rigid, illusory
contours. Both experiments used displays in which boundaries
were perceived without accompanying filling-in or surface com-
pletion suggesting that the two processes are separable and can
be studied independently. The methods described can be readily
adapted to generate dynamic, non-rigid, illusory contours with
arbitrary form and complexity.

IMPLICATIONS FOR MODELS OF SBF
Perception of continuous boundaries and shape in SBF appears
to depend on two processing stages. The first is to recover local
edge segments from sparse texture transformation events and
the second is to interpolate (connect) these segments to produce
a representation of continuous contours and object shape. We
consider each problem in turn.

The recovery of edges from transformation events is a difficult
version of the aperture problem. Typically, local edge orienta-
tions and velocities are available in many small apertures, and the
problem is to determine how they are connected and what is the
global motion signal. In SBF, there is no local orientation infor-
mation available since the apertures are points (the elements).
The difficulty is compounded by the fact that in the displays used
in these experiments, texture element transformations were ele-
ment displacements in random directions, generating irrelevant
and incoherent local apparent motion signals that were com-
pletely independent from the global motion of the virtual object.
The relevant information for defining the virtual object bound-
ary was solely the position and timing of transformation events.
Despite these difficulties, it is possible to solve this point-aperture
problem by assuming that contour segments of the virtual object
boundary are rigid, moving at a constant velocity and not chang-
ing their orientation (Shipley and Kellman, 1994, 1997).

Experiments 1 and 2 demonstrated that contours can change
in these properties and still support the perception of global shape
and motion. Does this invalidate existing models? The answer is
that models may need to be modified, but that the underlying
concepts may survive. Theoretically, a local edge orientation in
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SBF can be recovered from three non-collinear element trans-
formations in some local neighborhood (Shipley and Kellman,
1997). The aperture problem in SBF may get solved many times,
relatively quickly, and in relatively small regions. Thus, an object
may not have to be rigid or otherwise unchanging for initial edge
segments to be constructed.

If the texture is sufficiently dense, the aperture problem can be
solved multiple times in a small spatiotemporal window, result-
ing in several oriented edge representations over time. These will
be small illusory contour segments. Straight or curved apparent
motion might then be seen between successively recovered illu-
sory segments that are proximal in space and time. In effect, once
the aperture problem is solved for a local segment, the problem
becomes a matter of detecting correspondences between sequen-
tially recovered segments. There is no reason to suspect that this
would be any different for real or illusory contours: whatever the
solution to the correspondence problem that allows the matching
of real contours across success frames can be applied to rotating
illusory contours in SBF.

Difficulty will arise when texture displays are very sparse. In
order to solve the aperture problem, multiple transformation
events are needed; if the contour transforms too much between
the events, then the solution might not be correct. This could
explain why SBF deteriorates with decreasing element density.

Once the aperture problem is solved locally in order to recover
a segment of the boundary, these boundary segments must be
interpolated to produce a representation of the global shape.
Since element transformation events are spatiotemporally sparse,
boundary segments are recovered piecemeal, in different regions
and times. This leads to the second level of processing in SBF:
interpolation connecting basic contour fragments that have been
formed. Because these do not appear simultaneously, the visual
system needs a way of encoding recovered segments and stor-
ing and updating their representations to be interpolated with
segments that are recovered at a later time. Such spatiotemporal
interpolation has been found with real edge fragments in rigidly
translating (Palmer et al., 2006; Palmer and Kellman, 2014) and
rotating, luminance-defined edges (Kellman and Cohen, 1984),
but not yet for illusory contours and not for non-rigidly deform-
ing shapes.

According to models of spatiotemporal interpolation, when a
part of an object becomes occluded, a visual, iconic representa-
tion of that surface continuous to persist for a brief time (Palmer
et al., 2006). That icon is an encoding of the position, orientation,
and velocity of the surface contours. If another part of the object
is revealed (appears from occlusion), the visual system interpo-
lates the relatable contours of the visual icon with those of the
newly revealed object part. Interpolation is possible because the
representation of the position of the now-occluded segment (the
visual icon) is updated under occlusion (for a short time).

The visual system faces the same problem in SBF displays: since
the aperture problem is solved locally for different areas along the
virtual object boundary, edges are not recovered all at once. It
is as if parts of the boundary become disoccluded whenever the
problem is solved, and are occluded otherwise. The visual system
must then interpolate between recovered edge segments that are
visible only for short periods of time. One possibility is that the

representation of occluded edges is very flexible and capable of
both first- and second-order deformations. For rotating shapes,
for example, when transformations along one part of the virtual
object boundary reveal an edge segment, the representation of
the position and orientation of that segment continues to change
even when there are no further transformations to support its
perception. When the aperture problem is then solved again in
a nearby position, the resulting segment is interpolated with the
shifted and rotated representation of the past segment if the two
are relatable. A second possibility is that the representation of the
segment remains fixed in terms of orientation and curvature at
the moment of occlusion. A snapshot is taken, and it can only be
minimally manipulated. When the next segment is recovered, the
two segments must fall within the range of relatability (Kellman
and Shipley, 1991) in order to be interpolated. Further studies are
needed to distinguish between these two possibilities.

The present studies show that SBF encompasses a wider range
of illusory phenomena than previously realized. Scaling and rotat-
ing, even accelerating rigid shapes can be recovered in SBF. Even
more remarkable, deforming shapes can be perceived, and recog-
nition of a shape is possible even when it is part of a rapidly
changing series of shapes. These phenomena clearly expand the
envelope beyond what previous models anticipate or explain.
Although we sketched an outline of how more advanced models
might encompass these perceptual illusions, the current results
raise more questions than they answer, and further research will
be required to achieve a detailed understanding of these amazing
phenomena in which the visual system does so much with so little.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fnhum.

2014.00978/abstract

Supplementary Movie 1 | An SBF-defined hexagon moving along a

circular path with no global shape transformation. Texture element

transformations are position changes in random directions.

Supplementary Movie 2 | A scaling and rotating SBF-defined square.

Texture element transformations are position changes in random

directions.

Supplementary Movie 3 | A sample of the stimulus sequence from

Experiment 2. The virtual object transforms smoothly between some of

the shapes in Figure 3. Texture element transformations are position

changes in random directions. A complete transformation sequence

would show transformations between each of the shapes in Figure 3.

REFERENCES
Adelson, E. H., and Movshon, J. T. (1982). Phenomenal coherence of moving visual

patterns. Nature 300, 523–525. doi: 10.1038/300523a0
Andersen, G. J., and Cortese, J. M. (1989). 2-D contour perception from kinematic

occlusion. Percept. Psychophys. 46, 49–55. doi: 10.3758/BF03208073
Botella, J. (1992). Target-specific and target-categorized conditions in RSVP

tasks as reflected by detection time. Bull. Psychon. Soc. 30, 197–200. doi:
10.3758/BF03330440

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vis. 10, 433–436. doi:
10.1163/156856897X00357

Braunstein, M. L., Andersen, G. J., and Riefer, D. M. (1982). The use of occlusion to
resolve ambiguity in parallel projections. Percept. Psychophys. 31, 261–267. doi:
10.3758/BF03202532

Frontiers in Human Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 978 | 12

http://www.frontiersin.org/journal/10.3389/fnhum.2014.00978/abstract
http://www.frontiersin.org/journal/10.3389/fnhum.2014.00978/abstract
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Erlikhman et al. Shape transforms in SBF

Chen, V. J., and Cicerone, C. M. (2002a). Subjective color from apparent motion.
J. Vision 2, 424–437. doi: 10.1167/2.6.1

Chen, V. J., and Cicerone, C. M. (2002b). Depth from subjective color and apparent
motion. Vision Res. 42, 2131–2135. doi: 10.1016/S0042-6989(02)00133-5

Cicchini, M., and Spillmann, L. (2013). Neon color spreading in dynamic displays:
temporal factors. J. Vision 13, 1–9. doi: 10.1167/13.12.2

Cicerone, C. M., and Hoffman, D. D. (1997). Color from motion: dichoptic activa-
tion and a possible role in breaking camouflage. Perception 26, 1367–1380. doi:
10.1068/p261367

Cicerone, C. M., Hoffman, D. D., Gowdy, P. D., and Kim, J. S. (1995). The
perception of color from motion. Percept. Psychophys. 57, 761–777. doi:
10.3758/BF03206792

Cunningham, D. W., Shipley, T. F., and Kellman, P. J. (1998a). The dynamic
specification of surfaces and boundaries. Perception 27, 403–415. doi:
10.1068/p270403

Cunningham, D. W., Shipley, T. F., and Kellman, P. J. (1998b). Interactions between
spatial and spatiotemporal information in spatiotemporal boundary formation.
Percept. Psychophys. 60, 839–851. doi: 10.3758/BF03206067

Fidopiastis, C., Hoffman, D. D., Prophet, W. D., and Singh, M. (2000). Constructing
surfaces and contours in displays of color from motion: the role of nearest
neighbors and maximal disks. Perception 29, 567–580. doi: 10.1068/p2824

Gepshtein, S., and Kubovy, M. (2000). The emergence of visual objects in space-
time. Proc. Natl. Acad. Sci. U.S.A. 97, 8186–8191. doi: 10.1073/pnas.97.14.8186

Gibson, J. J., Kaplan, G. A., Reynolds, H. N., and Wheeler, K. (1969). The change
from visible to invisible: a study of optical transitions. Percept. Psychophys. 3,
113–116. doi: 10.3758/BF03210533

Grossberg, S., and Mingolla, E. (1985). Neural dynamics of form perception:
boundary completion, illusory figures, and neon color spreading. Psychol. Rev.
92, 173–211. doi: 10.1037/0033-295X.92.2.173

Jain, A., and Zaidi, Q. (2011). Discerning nonrigid 3D shapes from motion cues.
Proc. Nat. Acad. Sci. 108, 1663–1668. doi: 10.1073/pnas.1016211108

Kanizsa, G. (1974). Organization in vision. New York, NY: Praeger.
Kaplan, G. A. (1969). Kinetic disruption of optical texture: the perception of depth

at an edge. Percept. Psychophys. 6, 193–198. doi: 10.3758/BF03207015
Kellman, P. J., and Cohen, M. H. (1984). Kinetic subjective contours. Percept.

Psychophys. 35, 237–244. doi: 10.3758/BF03205937
Kellman, P. J., Erlikhman, G., Mansolf, M., Fillinich, R., and Iancu, A.

(2012). Modeling spatiotemporal boundary formation. J. Vision 12:881. doi:
10.1167/12.9.881

Kellman, P. J., and Shipley, T. F. (1991). A theory of visual interpolation in object
perception. Cogn. Psychol. 23, 141–221. doi: 10.1016/0010-0285(91)90009-D

Michotte, A., Thines, G., and Crabbe, G. (1964). Les complements amodaux
des structures perspectives [Amodal completion and perceptual organization].
Studia Psycologia. Louvain: Publications Universitaires de Louvain.

Miyahara, E., and Cicerone, C. M. (1997). Color from motion: separate con-
tributions of chromaticity and luminance. Perception 26, 1381–1396. doi:
10.1068/p261381

Nakayama, K., and Silverman, G. H. (1988). The aperture problem I: perception of
non-rigidity and motion direction in translating sinusoidal lines. Vision Res. 28,
739–746. doi: 10.1016/0042-6989(88)90052-1

Nakayama, K., and Silverman, G. H. (1998). The aperture problem II: spatial
integration of velocity information along contours. Vision Res. 28, 747–753.

Ono, H., Rogers, B. J., Ohmi, M., and Ono, M. (1989). Dynamic occlu-
sion and motion parallax in depth perception. Perception 17, 255–266. doi:
10.1068/p170255

Palmer, E. M., and Kellman, P. J. (2014). The aperture capture illusion: mis-
perceived forms in dynamic occlusion displays. J. Exp. Psychol. Hum. Percept.
Perform. 40, 502–524. doi: 10.1037/a0035245

Palmer, E. M., Kellman, P. J., and Shipley, T. F. (2006). A theory of dynamic
occluded and illusory object perception. J. Exp. Psychol. Gen. 135, 513–541. doi:
10.1037/0096-3445.135.4.513

Pelli, D. G. (1997). The videotoolbox software for visual psychophysics: trans-
forming numbers into movies. Spatial Vis. 10, 437–442. doi: 10.1163/15685689
7X00366

Prazdny, K. (1986). Illusory contours from inducers defined solely by spa-
tiotemporal correlation. Percept. Psychophys. 39, 175–178. doi: 10.3758/BF03
212488

Prophet, W. D., Hoffman, D. D., and Cicerone, C. M. (2001). “Contours
from apparent motion: a computational theory,” in From Fragments to
Objects: Segmentation and Grouping in Vision, eds P. Kellman and T. Shipley
(Amsterdam: Elsevier Science Press), 509–530.

Rogers, B. J., and Graham, M. E. (1983). Dynamic occlusion in the perception of
depth structure. Perception 12, A15.

Shaffer, O., and Wallach, H. (1966). Extent-of-motion thresholds under subject-
relative and object-relative conditions. Percept. Psychophys. 1, 447–451. doi:
10.3758/BF03215822

Shimojo, S., Silverman, G. H., and Nakayama, K. (1989). Occlusion and the
solution to the aperture problem for motion. Vision Res. 29, 619–626. doi:
10.1016/0042-6989(89)90047-3

Shipley, T. F., and Kellman, P. J. (1993). Optical tearing in spatiotemporal
boundary formation: when do local element motions produce boundaries,
form, and global motion? Spatial Vis. 7, 323–339. doi: 10.1163/15685689
3X00478

Shipley, T. F., and Kellman, P. J. (1994). Spatiotemporal boundary forma-
tion: boundary, form, and motion perception from transformations of sur-
face elements. J. Exp. Psychol. Gen. 123, 3–20. doi: 10.1037/0096-3445.
123.1.3

Shipley, T. F., and Kellman, P. J. (1997). Spatiotemporal boundary formation: the
role of local motion signals in boundary perception. Vision Res. 27, 1281–1293.
doi: 10.1016/S0042-6989(96)00272-6

Shipley, T. F., and Kellman, P. J. (Eds.). (2001). From Fragments to Objects:
Segmentation and Grouping in Vision. Amsterdam: Elsevier Science Press.

Sternberg, S. (1969). Memory-scanning: mental processes revealed by reaction-
time experiments. Am. Sci. 57, 421–457.

Ullman, S. (1979). The interpretation of structure from motion. Proc. Roy. Soc.
Lond. B. Bio. 203, 405–426.

Vorberg, D., Mattler, U., Heinecke, A., Schmidt, T., and Schwarzbach, J. (2003).
Different time courses for visual perception and action priming. Proc. Natl.
Acad. Sci. U.S.A. 100, 6275–7280. doi: 10.1073/pnas.0931489100

Wallach, H. (1935). Ueber visuell wahrgenommene Bewegungsrichtung.
Psychologische Forschung, 20, 325–380. doi: 10.1007/BF02409790

Yonas, A., Craton, L. G., and Thompson, W. B. (1987). Relative motion: kinetic
information for the order of depth at an edge. Percept. Psychophys. 41, 53–59.
doi: 10.3758/BF03208213

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 02 August 2014; accepted: 16 November 2014; published online: 16        December
2014.
Citation: Erlikhman G, Xing YZ and Kellman PJ (2014) Non-rigid illusory contours
and global shape transformations defined by spatiotemporal boundary formation.
Front. Hum. Neurosci. 8:978. doi: 10.3389/fnhum.2014.00978
This article was submitted to the journal Frontiers in Human Neuroscience.
Copyright © 2014 Erlikhman, Xing and Kellman. This is an open-access arti-
cle distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, pro-
vided the original author(s) or licensor are credited and that the original publi-
cation in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Human Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 978 | 13

http://dx.doi.org/10.3389/fnhum.2014.00978
http://dx.doi.org/10.3389/fnhum.2014.00978
http://dx.doi.org/10.3389/fnhum.2014.00978
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

	Non-rigid illusory contours and global shape transformations defined by spatiotemporal boundary formation
	Introduction
	The Aperture Problem in SBF

	Experiment 1
	Materials and Methods
	Participants
	Apparatus
	Displays
	Design
	Procedure

	Results
	Discussion

	Experiment 2
	Materials and Methods
	Participants
	Displays and apparatus
	Design and procedure
	Dependent measures and data analysis

	Results
	Discussion

	General Discussion
	Implications for Models of SBF

	Supplementary Material
	References


