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Dystonia has historically been considered a disorder of the basal ganglia, mainly affecting
planning and execution of voluntary movements. This notion comes from the observation
that most lesions responsible for secondary dystonia involve the basal ganglia. However,
what emerges from recent research is that dystonia is linked to the dysfunction of a com-
plex neural network that comprises basal ganglia—thalamic—frontal cortex, but also the
inferior parietal cortex and the cerebellum. While dystonia is clearly a motor problem, it
turned out that sensory aspects are also fundamental, especially those related to proprio-
ception. We outline experimental evidence for proprioceptive dysfunction in focal dystonia
from intrinsic sensory abnormalities to impaired sensorimotor integration, which is the
process by which sensory information is used to plan and execute volitional movements.
Particularly, we will focus on proprioceptive aspects of dystonia, including: (i) processing
of vibratory input, (ii) temporal discrimination of two passive movements, (iii) multimodal
integration of visual-tactile and proprioceptive inputs, and (iv) motor control in the absence
of visual feedback. We suggest that these investigations contribute not only to a better
understanding of dystonia pathophysiology, but also to develop rehabilitation strategies
aimed at facilitating the processing of proprioceptive input.
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Dystonia is a movement disorder characterized by sustained or
intermittent muscle contractions causing abnormal, often repeti-
tive, movements, postures, or both (Fahn, 1988). Dystonia can be
classified along two axes: clinical characteristics — including body
distribution —and etiology, which includes nervous system pathol-
ogy and inheritance (Albanese et al., 2013). Classification by body
regions identifies: focal dystonia, segmental dystonia, multifocal
dystonia, generalized dystonia, and hemi-dystonia.

Focal dystonias are usually adult-onset and affect only one body
region. Many cases of focal dystonia with onset in adulthood are
idiopathic (meaning that dystonia is the only neurological symp-
tom, presumably with a genetic component), though secondary,
acquired cases are documented. Typical examples of focal forms
are blepharospasm, oromandibular dystonia, cervical dystonia,
laryngeal dystonia, and focal hand dystonia.

SENSORY ASPECTS OF FOCAL DYSTONIA

Dystonia has been considered a “basal ganglia disorder” and attrib-
uted to a functional disturbance of the cortico-striato-thalamic-
cortical circuits. This notion comes from the observation that most
lesions responsible for unilateral secondary dystonia are usually
confined to the putamen, caudate, globus pallidus, and thalamus
(Bhatia and Marsden, 1994). The common idea is that a dysfunc-
tion of the basal ganglia and/or their connections to motor cortex
plays a major role in the pathogenesis of dystonia, by influencing
the final organization and execution of movement (Berardellietal.,
1998). This idea is supported by the clinical picture of dysto-
nia, mainly characterized by motor symptoms (Currd et al., 20005
Gregori et al., 2008). However, the pathophysiology of dystonia

has been largely re-discussed in the last years (Kanovsky and
Rosales, 2011; Avanzino and Abbruzzese, 2012; Quartarone and
Hallett, 2013). Certainly, it is now widely accepted that somatosen-
sory inputs play a substantial role in dystonia (Stamelou et al,,
2012; Patel et al., 2014).

Somatosensory inputs include touch, pain, temperature, and
proprioception. The contribution of the somatosensory system to
the mechanism of the dystonia is supported by the following clini-
cal aspects: (1) alleviation of dystonia with “sensory tricks” (Wissel
etal., 1999; Miiller et al.,2001); (2) photosensitivity and other ocu-
lar discomforts in patients with blepharospasm (Stamelou et al.,
2012); (3) neck pain that often precedes cervical dystonia (Ghika
et al., 1993; Stamelou et al., 2012); (4) improvement of dystonic
movements after administration of local anesthetic (Kaji et al,,
1995).

Apart from these symptoms and signs, patients with dystonia
present mild sensory abnormalities to special testing like heat-
evoked potentials (Suttrup et al., 2011) and cutaneous spatial and
temporal discrimination tests (Sanger et al., 2001; Fiorio et al.,
2008).

Further, in the following sections, we will focus more deeply
on the neurophysiological aspects of proprioception and on the
experimental evidence in support of proprioceptive dysfunction
in dystonia.

PROPRIOCEPTION SERVES FOR MOTOR CONTROL AND
HIGHER ORDER SENSATION

Proprioception refers to the ability to sense the position and move-
ments of our limbs and trunk (kinesthesia). The principal receptor
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involved in proprioception is the muscle spindle, which includes
the primary and secondary endings of spindles. Primary endings
respond to the size and speed of muscle length changes (Matthews,
1972). They are sub-served by Ia afferents and may contribute
both to the sense of limb position and movement (Goodwin et al.,
1972). Secondary endings do not have pronounced velocity sen-
sitivity and signal only the length change, they are sub-served by
group II afferents and may contribute to the sense of position
(Matthews, 1972). After the signals from proprioceptors enter the
central nervous system, a series of higher order neurons, in the
cerebellum and the cerebral cortex, process the stream of pro-
prioceptive information (for a review, see Proske and Gandevia,
2012).

It has been suggested that the input to the cerebellum is used
for computations of predictive information (Wolpert et al., 1998),
while that to the cerebral cortex is responsible for generating pro-
prioceptive sensations. Neuroimaging studies showed that human
kinesthesia is associated with a network of active brain areas that
consists of motor areas, cerebellum, and the right fronto-parietal
areas, including high-order somatosensory areas (Naito et al.,
2002, 2005; Hagura et al., 2009). The neuro-anatomical correlates
of kinesthesia well fit with the emerging idea that, apart from the
well-established role in motor control, proprioception is largely
involved in higher order functions, such as the construction of
the body schema and the sense of body ownership (Proske and
Gandevia, 2012).

EXPERIMENTAL EVIDENCE OF PROPRIOCEPTIVE
DYSFUNCTION IN FOCAL DYSTONIA
Among the different senses of the somatosensory system, proprio-
ception is surely the one that is more linked to motor control. Thus,
for a long time, proprioceptive dysfunction has been indicated as
a good candidate for somatosensory dysfunction in dystonia.
Proprioceptive function in dystonia was studied with different
approaches: muscle vibration of the arm and neck, temporal dis-
crimination of two passive movements, reaching movements in
absence of visual input, and the rubber hand illusion (RHI).
Muscle vibration is a suitable method to investigate propriocep-
tion. Vibration of the muscle belly or tendon at 50-120 Hz causes
a tonic vibration reflex (TVR) that is the result of the activation
of muscle spindles and y-motoneurons. Perception of the TVR
is tested by asking participants to match position and movement
of the vibrated arm with the opposite arm. While the TVR per se
is normal in different forms of focal dystonia, the perception of
arm movement during the TVR is abnormal (Kaji et al., 1995;
Griinewald et al., 1997; Yoneda et al., 2000). Abnormal perception
occurs even for illusory movements induced by vibration. More
precisely, when the vibrated arm is immobilized, an illusion of
movement is produced. Since sensory information from the joints
and the skin is reduced, a main contribution of Ia fibers can be
suggested to account for the illusion (Rome and Griinewald, 1999;
Frima and Griinewald, 2005; Frima et al., 2008). Abnormal per-
ception of Ia afferent information with a preserved TVR suggests a
central rather than a peripheral origin of the disorder. Accordingly,
Bove et al. (2004) demonstrated that Ia afferent information from
the neck is misinterpreted in patients with cervical dystonia (Bove
et al., 2004).

A psychophysical method to investigate proprioception is the
temporal discrimination of two passive movements. In this case,
stimulation with needle electrodes of the first dorsal interosseus or
the flexor carpi radialis muscles causes finger abduction or wrist
flexion, respectively (Tinazzi et al., 2005a). Pairs of stimuli sep-
arated by short time intervals are delivered and the blindfolded
subjects are asked to refer whether they perceived one or two
movements (Tinazzi et al., 2005a). The temporal discrimination
movement threshold is the shortest interval between two stimuli at
which subjects perceived two separate movements (Tinazzi et al.,
2005a). This function is preserved in patients with focal hand dys-
tonia (Tinazzi et al., 2006a). It should be noted that this task does
not necessarily require an estimation of the amount or the speed
of movement, but rather the perception of the time at which the
movement occurred. Hence, it could be assumed that while per-
ception of limb velocity (sub-served by Ia afferents) is abnormal,
as evidenced by the abovementioned studies on muscle vibration,
perception of limb position (sub-served by group II afferents) is
normal (Tinazzi et al., 2006a).

Another way to study proprioception is to ask participants
to perform reaching movements with the upper limb toward a
target. In the absence of visual information, this task relies on pro-
prioception to be optimally performed. Impairments in reaching
movements were shown not only in patients with dystonia of the
upper limb (Inzelberg et al., 1995), but also with cervical dystonia
(Pelosin et al., 2009), suggesting that the proprioceptive function
can be impaired also in body parts remote from the affected dis-
trict. It was hypothesized that this deficit could be due to an error
in the spatial representation of the hand location or to a failure
in integrating proprioceptive information with the motor output
(Marinelli et al., 2011).

An original way to indirectly investigate the proprioceptive
function is the RHI paradigm. The RHI is the illusion of owing
an artificial hand and occurs after synchronous stroking (with
paintbrushes) of the subject’s own hidden hand and a fake visi-
ble hand (Botvinick and Cohen, 1998). Typically, after synchro-
nous stroking participants perceive their own hand as located
nearer to the artificial hand — proprioceptive drift (Tsakiris and
Haggard, 2005). In patients with focal hand dystonia, a dissocia-
tion was found on the affected hand between the proprioceptive
drift (reduced) and the illusory feeling of ownership (preserved),
whereas patients with cervical dystonia had a RHI similar to
healthy subjects (Fiorio et al., 2011). The selective impairment
of the proprioceptive drift in focal hand dystonia could sug-
gest a failure in integrating the synchronous visual-tactile input
with the proprioceptive location sense, because of an underlying
kinesthetic deficit (Fiorio et al., 2011).

PROPRIOCEPTIVE DYSFUNCTION IN FOCAL DYSTONIA: A
MATTER OF CENTRAL MISPROCESSING
The abovementioned experimental evidence on proprioceptive
dysfunction in focal dystonia points to an abnormality of cen-
tral processing of sensory information, rather than to a peripheral
problem.

Abnormal somatotopy at the cortical level was demonstrated
with somatosensory-evoked potential mapping with EEG (Bara-
Jimenez et al., 1998), MEG (Meunier et al., 2001), and fMRI
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(Butterworth et al., 2003; Nelson et al., 2009). The representations
of the fingers at the cortical level are not only closer together in
patients with dystonia than in healthy controls, but also in the
wrong order. These abnormalities are present, and even more
evident, on the unaffected side of patients with unilateral hand
dystonia (Meunier et al., 2001). Interestingly, all these results in
humans mimic results obtained in a primate model of dystonia, in
which a plastic reorganization of the hand area in S1 was observed
after months of repetitive hand movements (Byl et al., 1996). The
monkeys also presented abnormal hand control and performed
poorly on motor tasks, suggesting that learning-induced dediffer-
entiation of the sensory cortex may contribute to the genesis of
dystonia.

One possible explanation for the altered cortical representation
of body parts in dystonia is related to an abnormal function-
ing of the inhibitory interneurons that act on the sensory cortex.
Tamura et al. (2008), by means of paired pulse stimulation tech-
nique, showed an impaired intracortical inhibition in S1 in focal
hand dystonia. In both normal animals and humans, a condition-
ing (preceding) stimulus induces suppression of somatosensory-
evoked potential (SEP) amplitudes evoked by a following test
stimulus (Shagass and Schwartz, 1964; Angel, 1967; Wiederholt,
1978). The attenuation of the sensory evoked responses observed
in healthy subjects is not observed in patients with focal hand dys-
tonia, indicating an impaired process of “sensory gating” (Tamura
etal.,2008). In addition, patients with dystonia present abnormal-
ities in surround inhibition processes within the somatosensory
system (Tinazzi et al., 2000). Surround inhibition helps to sharpen
the borders of sensory afferent information, as to optimize object
perception. Deficits of surround inhibition in focal dystonia were
demonstrated in a SEPs study. If the median and ulnar nerves
SEPs are produced together, the combined SEP should be less than
the sum of the two individual ones because of mutual inhibition
(Okajima et al., 1991; Huttunen et al., 1992). This is true in nor-
mal subjects, but not in patients with focal hand dystonia (Tinazzi
et al., 2000).

LINK BETWEEN SENSORY DEFICITS AND MOTOR
SYMPTOMS: ABNORMAL SENSORIMOTOR INTEGRATION
Abnormal processing of somatosensory information in focal dys-
tonia may play a crucial role in the development of motor symp-
toms. In this regard, it was hypothesized that in dystonia an altered
somatosensory representation at the cortical level could lead to an
abnormal process of sensorimotor integration in sensory, premo-
tor, and motor cortices and in the cerebellum, which at the end
results in a noisy output from the motor cortex (Konczak and
Abbruzzese, 2013). In humans, sensorimotor integration can be
studied at a cortical level by means of transcranial magnetic stim-
ulation (TMS). By applying a conditioning electrical stimulus to
a mixed nerve followed by a TMS stimulus on the motor cor-
tex, inhibition of motor cortex excitability can be observed. These
effects, more evident at interstimulus intervals of 20 and 200 ms,
are described as short-latency (SAI) and long-latency (LAI) affer-
ent inhibition, respectively (Tokimura et al., 2000). For SAI, it is
not clear yet if the effect is mediated directly through somatosen-
sory projections to the primary motor cortex (M1) or indirectly
through S1. LAI probably involves other pathways, such as the basal

ganglia or cortical association areas. LAI is defective in patients
with focal hand dystonia (Abbruzzese et al., 2001), while SAI is
normal (Avanzino et al., 2008), indicating abnormal central pro-
cessing of sensory inputs. Another way of studying sensorimotor
integration is to combine TMS with low amplitude muscle vibra-
tion. If the TMS pulse is delivered over M1 after 1 s of hand muscle
vibration, M1 excitability is increased in the vibrated muscle and
decreased in adjacent muscles (Rosenkranz and Rothwell, 2003).
Further, the activity of the inhibitory interneurons targeting the
vibrated muscle is reduced, and the opposite changes occur in
surrounding muscles (Rosenkranz and Rothwell, 2003). This pat-
tern of sensorimotor interaction is abnormal in patients with
focal hand dystonia, with a little effect of vibration on cortical
excitability (Rosenkranz et al., 2005).

In this scenario, it was also hypothesized an involvement of
the cerebellum (Avanzino and Abbruzzese, 2012). It is well estab-
lished that the cerebellum plays a primary role in predictive (feed-
forward) motor control (Bastian, 2006). In the “forward” model,
current body state and motor commands are combined to estimate
body state in the future (Miall et al., 1993; Wolpert et al., 1995;
Paulin, 2005). In this model, proprioception is the main source
of information that the cerebellum processes in order to depict
the current sensory state. Recent studies showed alteration in for-
ward model prediction of sensory outcome of self produced (Lee
etal., 2013) and observed (Avanzino et al., 2013) motor actions in
patients with focal dystonia. Particularly, it was shown that patients
with focal hand dystonia presented an abnormal performance on
the temporal expectation of visually perceived handwriting move-
ments, likely due to an abnormality in the integrative role of the
cerebellum over sensory and motor cortical areas (Avanzino et al.,
2013). This hypothesis finds support in the modern view of dys-
tonia pathophysiology, which suggests that focal dystonia is linked
to the dysfunction of a complex neural network comprising not
only the basal ganglia—thalamic—frontal cortex circuit, but also the
inferior parietal cortex and the cerebellum (Poston and Eidelberg,
2012; Hutchinson et al., 2014).

Finally, neuromodulation studies supported the idea that
abnormal premotor-motor interactions may also play a role in
the pathophysiology of focal dystonia (Murase et al., 2005; Huang
et al., 2012; Furuya et al., 2014).

Hence, an aberrant activity in every node of the sensorimo-
tor network (the sensory cortex, the premotor—motor cortex, and
cerebellum) may play a role in inducing dystonic symptoms.

REHABILITATION STRATEGIES BASED ON PROPRIOCEPTION
The hypothesis that focal dystonia could be a sensorimotor dis-
order lead to the suggestion that rehabilitation strategies aimed at
facilitating the processing of proprioceptive input could be bene-
ficial (Figure 1). These approaches modulate sensory processing
by means of sensory retraining and learning-based sensorimotor
re-education.

There is emerging evidence that vibration induces sensory reor-
ganization at a central level (Avanzino et al., 2014) and may help
to reduce involuntary muscle activity. Rosenkranz et al. (2008)
adopted a proprioceptive training consisting in the vibration of the
abductor pollicis brevis muscle at a frequency of 80 Hz for 15 min.
This procedure reversed the abnormal sensorimotor organization
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FIGURE 1 | Simplified schema of proprioceptive dysfunction and
rehabilitation strategies aimed at facilitating the proprioceptive
processing in focal dystonia. (A) After the proprioceptive signals from
muscle spindles enter the central nervous system, a series of higher order
neurons located in the cortex and in subcortical structures process this
information. (B) Experimental evidence on proprioceptive dysfunction in focal
dystonia points to an abnormality of central processing of sensory information
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at different levels of the central nervous system: the sensory cortex
(abnormal somatotopy and inhibitory mechanisms), the premotor~motor
cortex (malfunctioning sensorimotor integration process), and the cerebellum
(altered feed-forward motor control). (C) The hypothesis that dystonia could
be primarily a sensorimotor disorder has led the suggestion that rehabilitation
strategies may target the abnormal sensory processing of proprioceptive
information.

of the hand area in patients with focal dystonia (Rosenkranz
et al., 2008). Most importantly, this intervention had a benefi-
cial impact on the patients’ hand motor functions (Rosenkranz
etal., 2009). It is important to mention that also in a single case of
cervical dystonia long-term neck muscle vibration was associated
with improvements in head and trunk position (Karnath et al.,
2000).

Also transcutaneous electrical nerve stimulation (TENS) and
kinesio-taping were used for sensory retraining. Improvement
of dystonic symptoms in patients with focal hand dystonia was
observed after 2 weeks of TENS of the forearm flexor muscle and
lasted for 3 weeks after intervention (Tinazzi et al., 2005b, 2006b).
Likely, TENS re-established a balanced activation between agonist
and antagonist muscles (Tinazzi et al., 2005b). In a recent pilot
study, kinesio-taping was used as a means of inducing muscle-
stretching and promoting better sensory processing in patients
with focal hand and cervical dystonia (Pelosin et al., 2013).

An opposite approach is sensory deprivation by means
of immobilization. In patients with focal hand dystonia,

immobilization of the upper limb with orthesis re-established the
cortical map topography (Lissck et al.,, 2009; Roll et al., 2012).
Selective immobilization can be applied together with motor train-
ing (Candia et al., 2005; Zeuner et al., 2005). A study in 10 patients
with focal hand dystonia applied motor exercise of one finger
while the other four were immobilized by a splint, for a period
of 4-12 weeks (Zeuner et al., 2005). A highly variable subjective
improvement, assessed by a self-rating scale, was observed.

Learning-based sensorimotor re-education can be achieved in
cervical dystonia with visual or auditory EMG biofeedback tech-
niques (Cleeland, 1973; Korein et al., 1976; Leplow, 1990). The
underlying principle is to gain more volitional control over the
abnormally active muscles. In patients with focal hand dystonia,
instead, sensorimotor re-education has been based on a relearn-
ing process where the goal is to learn a new way of writing. In a
relatively large and controlled study of 50 patients, Schenk et al.
(2004) found an improvement of various writing performance
components by applying individually tailored writing exercises
one session per week for 4 months.
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Finally, a recent study exploited neuromodulation in cervi-
cal dystonia with the aim of targeting the abnormal cerebellar
function (Koch et al., 2014). Cerebellar continuous theta burst
stimulation for 2 weeks induced a small but significant clinical
improvement and a modification of the connectivity between the
cerebellum and M1, suggesting that the cerebello-thalamo-cortical
circuit could be a potential target to partially reduce some dystonic
symptoms and deserves further in-depth studies.

CONCLUDING REMARKS

The study of proprioceptive function in focal dystonia could help
not only to clarify the pathophysiology, but also to highlight
new rehabilitation strategies that positively impact on the motor
symptoms.
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