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Sensitivity to temporal contingencies
appears early in life and plays a key role
in the ontogeny of socio-cognitive abili-
ties in humans (Nadel et al., 1999; Gratier
and Apter-Danon, 2009). The tendency
for rhythmic coordination, sometimes
referred to as “entrainment,” requires
sensory-motor coupling (Phillips-Silver
et al., 2010). In most of the fields of
cognitive science, action-perception and
agent-world coupling views are replacing
the classical stimulus-response dichotomy
(Marsh et al., 2009; Silberstein and
Chemero, 2012; Schilbach et al., 2013;
Novembre and Keller, 2014). Such con-
ceptual frameworks are well suited to
study coordination phenomena as they
emphasize the dynamical nature of cog-
nition (Varela et al., 1993; Kelso, 1995;
Buzsáki and Draguhn, 2004; Lehmann and
Schönwiesner, 2014). Moreover, they leave
room for the balance of autonomy, a cen-
tral feature of complex biological systems,
and interactive coupling, through which
such systems relate to—and make sense
of—their environment (Di Paolo, 2005;
Barandiaran et al., 2009; Buhrmann et al.,
2013). A naturalistic study of autonomy
and coupling requires both embracing
ecological situations and considering first-
person perspective. Furthermore, many
social coordination phenomena cannot
be observed in the laboratory without
the interaction of at least two subjects.
We propose to consider linking first- and
third-person measures, and even relate
them across multiple interacting individu-
als. We will discuss how these concepts are

intertwined in coordination phenomena,
and outline existing methods to address
those issues.

COUPLING AND AUTONOMY, THE TWO
FACES OF COORDINATION
Coordination is related to two comple-
mentary aspects: autonomy and inter-
active coupling (Clayton et al., 2004).
Autonomy refers to the intrinsic laws of
organization of a living system (Varela,
1979). In turn, such laws define the envi-
ronment to which a living system can
couple. Autonomy thus provides a system
with a dynamical background in the con-
text of which sensory perturbations occur;
it provides a perspective that shapes the
lived world. In turn, as a result of their
modulation, internal dynamics carry the
imprint of the system’s own environment.
In other words, internal dynamics depend
on agent∼world relational dynamics (i.e.,
they depend on the way the relation
between agent and world evolves). In
short, complex systems and their environ-
ment co-determine each other. Patterns
of coordination thus emerge dynami-
cally from agent∼world coupling and
are therefore both autonomous and rela-
tional. By emergence, we mean that
despite the fact that coordination is a
by-product of intra-individual processes
(Ross and Balasubramaniam, 2014), it
is not reducible to them. In this opin-
ion, we emphasize the inter-individual
dimension of coordination, especially in
the case of the human specific activi-
ties of music and dance [numerous ways

of interacting have been studied in ani-
mals and humans (Strogatz, 2003), rang-
ing from flock behavior (Okubo, 1986) to
language (Dale et al., 2013; Manson et al.,
2013)].

Rhythmic coordination of movements
emerges from the dynamics of interac-
tion between multiple component pro-
cesses (Kelso, 1995; see also Van Orden
et al., 2003); those interactions bring
forth a dynamical landscape that pre-
orients behavior and that can be mod-
ulated by intention (Kelso, 2002). For
instance, rhythmic coordination of two
limbs is driven by the dynamics of their
relation, rather than by their sole intrin-
sic properties (Kelso, 1984). Coordination
of one limb to an external pacer is gov-
erned by their relational dynamics as well
(Kelso, 1981). Such dynamical interactions
lead to coordination of activity across mul-
tiple scales of brain and behavior (Ihlen
and Vereijken, 2010; Kelso et al., 2013).
Human subjects can embody both pluri-
frequential rhythms (Toiviainen et al.,
2010) and the complexity of their fluc-
tuations (Rankin et al., 2009; Marmelat
et al., 2014). Thanks to the intrinsic com-
plexity that underlies behavioral coordi-
nation, coupling allows coordination with
the environment across scales (Laroche
et al., 2014). If relational dynamics play
a role in rhythmic coordination they
may also play a key role in social inter-
action. Indeed, interacting with others
is organized rhythmically and at multi-
ple timescales since infancy (Gratier and
Apter-Danon, 2009). The development
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of our capacity to coordinate rhythmi-
cally might lie in the dynamics of social
interactions, rather than in purely intra-
individual processes (Dumas, 2011): while
we obviously need intra-individual capac-
ities (e.g., vision) to handle social interac-
tion, the development of our coordination
capacities is shaped by those interactions
as well (De Jaegher et al., 2010; Dumas
et al., 2014b; Froese et al., 2014b)

Two-body approaches—at least two
participants interacting in real-time—
demonstrate that interactive contexts
bring forth different qualities of coordi-
nation, in comparison with perceptive
contexts in which participants’ behav-
iors do not have any impact on their
environment. Indeed, mutual interac-
tion allows for more accurate/stable
coordination than unilateral situations
where only one partner is responsive to
the other (Cummins, 2009; Konvalinka
et al., 2010; Noy et al., 2011). Dynamics
that are properly collective thus arise in
mutual interaction, and they can attract
and coordinate individual behaviors (De
Jaegher and Di Paolo, 2007; Auvray et al.,
2009; Lenay and Stewart, 2012; Laroche
and Kaddouch, 2014). Such dynamics
are therefore irreducible to purely intra-
individual processes. Interacting subjects
can yet rely on those relational dynamics;
they can jointly regulate them. Overall,
neither the dynamics of the interaction
process nor their co-regulation can be
observed when subjects are isolated from
each other. It is thus important to study
the dynamical properties of the interaction
process itself in order to understand how
we co-regulate them. More individually-
centered processes of coordination might
derive from recurrent social interactions.
Recent methodological and technological
advances make this change of paradigm
possible.

DECIPHERING FACTORS ENABLING
COORDINATION THROUGH AN
ECOLOGICAL AND DYNAMICAL
APPROACH
Recent technological improvements made
the continuous tracking of complex move-
ments possible. For instance, whole-body
motion capture through multi-camera set-
tings showed that subjects can coor-
dinate their movements simultaneously
to multiple timescales of musical events

(Toiviainen et al., 2010). Low-cost motion
capture devices such as wireless accelerom-
eters from video-game devices have been
used to ecologically investigate inter-
personal coordination between listeners
dancing to music (De Bruyn et al.,
2009). Recent analytical tools can deal
with non-linear dynamics of movements
and interpersonal coordination across
multiple timescales [e.g., windowed-cross
correlation (Boker et al., 2002); cross-
wavelet transform (Issartel et al., 2007);
frame-differencing methods (Paxton and
Dale, 2013); cross-recurrence quantifi-
cation analysis (Coco and Dale, 2014;
Demos et al., 2014); detrended cross-
correlation analysis (Hennig, 2014); mul-
tifractal detrended fluctuation analysis
(Bedia et al., 2014)]. Such behavioral mea-
sures can discriminate between roles (i.e.,
leader/follower, Sacheli et al., 2013), indi-
vidual strategies of regulation of coupling
(Fairhurst et al., 2014), types of personal-
ity (Schmidt et al., 1994) or can identify
signatures of social disorders (Varlet et al.,
2014). With tools grasping the complex-
ity of movements, more ecological exper-
iments are within reach.

Several innovations in brain-imaging
methods can be readily applied to the
study of rhythmic coordination in music
and dance contexts. Through a careful
design of control conditions, the use of
ecological musical stimuli is possible in
fMRI (Blood and Zatorre, 2001) as well
as in EEG with the Steady-States Evoked
Potential (SS-EP) technique. Traditional
event-related potential approaches require
numerous stimuli repetitions; hence stim-
uli durations are usually kept to a
minimum. With the SS-EP technique, a
continuous stimulus such as music that
has a periodic structure (or is frequency-
tagged) can be presented and requires very
few repetitions. It has been used success-
fully to demonstrate neural oscillations
underlying listening and tapping to syn-
thetic beats (Nozaradan et al., 2011, 2012,
2013) and could be extended to study eco-
logical musical beats. Adequately studying
natural cognition may require the inte-
gration of multiple modality and sensing
techniques, while participants move freely
(Makeig et al., 2009; Gramann et al., 2014).
The recent years have seen the develop-
ment of wearable devices for electrophys-
iological (Codrons et al., 2014), as well

as EEG recordings (Debener et al., 2012;
De Vos et al., 2014), allowing to exper-
iment in contexts more ecological than
the laboratory (e.g., a concert venue). As
smartphones get powerful enough to pro-
cess brain signals in real-time, conduct-
ing in-field or at-home EEG protocols
is becoming feasible (Stopczynski et al.,
2014). Because those systems are low-cost
and yet can provide research-grade quality
signals (Badcock et al., 2013), they can eas-
ily scale up to record multiple participants.

Over the last decade, social neuro-
science took an interactive turn. Two-body
and second-person neuroscience have
especially been supporting the use of eco-
logical paradigms for understanding the
neural underpinning of social interac-
tion (Schilbach et al., 2013). This ongoing
interactive turn relies on the develop-
ment of new methods. Hyperscanning, for
instance, allows recording the brain activ-
ity of multiple individuals engaged in an
interaction. This approach already demon-
strated differential effects of social context
(e.g., induced/spontaneous, see Dumas
et al., 2012a) and role (e.g., leader/follower,
see Dumas et al., 2012a; Sänger et al.,
2013; Konvalinka et al., 2014) during
interpersonal coordination. Music is an
ideal ecological context for the study of
coordination and has been used in the
burgeoning field of social interaction
neuroscience. The work of Lindenberger
and colleagues has for instance revealed
the inter-individual brain dynamics of
joint improvisation (Müller et al., 2013)
and how the global system should be
described through both intra- and inter-
individual processes (Sänger et al., 2012).
An open question is how much does the
observed inter-brain relationships rely
on shared biological structure (Dumas
et al., 2012b), task and environment
(Burgess, 2013), or even cultural back-
ground (Vogeley and Roepstorff, 2009;
Kitayama and Park, 2010). For instance,
heart rate coordination can be induced
by a common task (e.g., singing the same
song in Vickhoff et al., 2013) or socially
modulated coupling (Konvalinka et al.,
2011). Neurocomputational modeling has
already helped to measure the potential
contribution of similarity at both anatom-
ical and dynamical levels to our propensity
to coordinate with others (Dumas et al.,
2012b). Such empirically grounded
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models can moreover be combined with
experiments through human-machine
interaction (Dumas et al., 2014a). This is
especially interesting for operationalizing
real time and reciprocal social interactions
while keeping a rigorous experimental
control (e.g., parametrically manipulate
coupling).

While at the objective level, many
approaches have been proposed to relate
intra- and inter-individual dynamics
(Hasson et al., 2012; Konvalinka and
Roepstorff, 2012; Dumas et al., 2014b),
the link between the third (objective) and
first person (subjective) accounts remains
unclear. How can interaction help escap-
ing this dichotomy? We argue that closing
this gap requires a joint study of intrinsic
and relational dynamics. Introspection
in experimental psychology has been
heavily criticized in the past decades, but
more rigorous approaches are now being
designed to study subjective experience
while overcoming previous limitations
(Bockelman et al., 2013; Petitmengin and
Lachaux, 2013). Recent work has managed
to question the lived experience of the
intersubjective dimension of coordination
(Froese et al., 2014a). The neurophe-
nomenological approach demonstrates the
feasibility of integrating first-person data
with objective measures from cognitive
neuroscience (Lutz et al., 2002; Fox et al.,
2013). Despite those promising advances,
the joint study of first and third person
perspectives remains underrepresented in
the literature. Music can provide a nice
entry point to bridge the gap between
the intimate subjective experience and
objective brain∼body processes (Flaig and
Large, 2014). For instance, listeners experi-
ence modulates both emotional and neural
responses (Chapin et al., 2010) and expert
dancers display greater coherence between
their subjective and physiological aspects
of emotion (Sze et al., 2010).

CONCLUSION
We have seen how rhythmic and social
coordination rely on both intrinsic and
relational dynamics, namely autonomy
and coupling. The complementarity of
those two aspects of coordination has
been empirically demonstrated, but many
challenges remain. Two issues appear at
reach with available methodologies: (1)
quantifying how interactions with the

environment and others have a causal
role at the intra-individual level and
non-additive consequences at the inter-
individual level, and (2) deciphering the
different factors of coupling across neural,
behavioral and cultural scales. A last chal-
lenge is to embrace the ongoing change of
paradigm that shall bridge the gap between
the lived and the observed experience of
social coordination in ecological contexts.
Taken together, integrating first-, second-
and third-person perspectives is a required
move to accurately study natural human
coordination phenomena.
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