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Congenital amusia is a neurodevelopmental disorder of musical processing that also
impacts subtle aspects of speech processing. It remains debated at what stage(s) of
auditory processing deficits in amusia arise. In this study, we investigated whether
amusia originates from impaired subcortical encoding of speech (in quiet and noise) and
musical sounds in the brainstem. Fourteen Cantonese-speaking amusics and 14 matched
controls passively listened to six Cantonese lexical tones in quiet, two Cantonese tones
in noise (signal-to-noise ratios at 0 and 20 dB), and two cello tones in quiet while their
frequency-following responses (FFRs) to these tones were recorded. All participants
also completed a behavioral lexical tone identification task. The results indicated normal
brainstem encoding of pitch in speech (in quiet and noise) and musical stimuli in amusics
relative to controls, as measured by FFR pitch strength, pitch error, and stimulus-to-
response correlation. There was also no group difference in neural conduction time or
FFR amplitudes. Both groups demonstrated better FFRs to speech (in quiet and noise)
than to musical stimuli. However, a significant group difference was observed for tone
identification, with amusics showing significantly lower accuracy than controls. Analysis
of the tone confusion matrices suggested that amusics were more likely than controls to
confuse between tones that shared similar acoustic features. Interestingly, this deficit in
lexical tone identification was not coupled with brainstem abnormality for either speech or
musical stimuli. Together, our results suggest that the amusic brainstem is not functioning
abnormally, although higher-order linguistic pitch processing is impaired in amusia. This
finding has significant implications for theories of central auditory processing, requiring
further investigations into how different stages of auditory processing interact in the human
brain.
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INTRODUCTION
Congenital amusia is a neuro-genetic disorder of musical pro-
cessing (Drayna et al., 2001; Peretz et al., 2007), affecting around
4% of the general population for both tone and non-tonal lan-
guage speakers (Kalmus and Fry, 1980; Nan et al., 2010; Wong
et al., 2012; although see Henry and McAuley, 2010, 2013, for
criticisms). Impacting basic music production and perception
abilities (Ayotte et al., 2002), this disorder is also associated with
impaired fine-grained pitch discrimination (Peretz et al., 2002;
Jiang et al., 2011), elevated thresholds for pitch change detection
and pitch direction identification/discrimination (Foxton et al.,
2004; Hyde and Peretz, 2004; Liu et al., 2010, 2012b; Jiang et al.,
2013), and impaired short-term memory for pitch (Gosselin et al.,
2009; Tillmann et al., 2009; Williamson and Stewart, 2010; Albouy
et al., 2013a).

Although some early studies reported ceiling performance of
amusics on speech intonation processing, presumably due to the
coarse intonational contrasts used (Ayotte et al., 2002; Peretz et al.,
2002; Patel et al., 2005), more recent research has suggested that

amusia is a domain-general pitch processing deficit that also com-
promises subtle aspects of pitch processing in speech, including
lexical tone perception, linguistic and emotional prosody process-
ing, and speech intonation imitation (Patel et al., 2008; Hutchins
et al., 2010; Jiang et al., 2010, 2012a,b; Liu et al., 2010, 2012a, 2013;
Nan et al., 2010; Tillmann et al., 2011a,b; Thompson et al., 2012).
The non-modularity of pitch deficits in amusia has recently been
confirmed by a quantitative review through meta-analysis of the
previous studies (Vuvan et al., 2014). Furthermore, amusics also
show impaired time matching abilities in speech imitation (Liu
et al., 2013), and demonstrate reduced speech comprehension
in both quiet and noise, with either natural or flattened pitch
contours (Liu et al., 2015).

Structural neuroimaging studies suggest that the amusic brain
differs from neurotypical brains in subtle ways. For example, the
amusic brain has reduced white matter and increased gray mat-
ter in the right inferior frontal gyrus (Hyde et al., 2006; Albouy
et al., 2013a), reduced gray matter in the right superior tempo-
ral gyrus (Albouy et al., 2013a), and thicker cortex in the right
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inferior frontal gyrus and the right superior temporal gyrus (Hyde
et al., 2007). Furthermore, amusics also show reduced gray matter
in the left inferior frontal gyrus and the left superior tempo-
ral sulcus (Mandell et al., 2007), and reduced arcuate fasciculus
connectivity along the right frontotemporal pathway (Loui et al.,
2009).

Despite anatomical abnormalities of the amusic brain, most
event-related potentials (ERPs) studies have revealed near-normal
early pre-attentive brain potentials of amusics (e.g., N100, N200,
MMN, P200) in response to small pitch changes and musical
incongruities/violations (Peretz et al., 2005, 2009; Moreau et al.,
2009, 2013; Mignault Goulet et al., 2012; Omigie et al., 2013),
which they often fail to detect at the behavioral level, nor do
they respond through late brain potentials that represent atten-
tive processing (e.g., P300, P600; Peretz et al., 2009; Jiang et al.,
2012a; Mignault Goulet et al., 2012; Moreau et al., 2013). Fur-
thermore, in an functional magnetic resonance imaging (fMRI)
study, amusics demonstrated normal brain activities in both the
left and right auditory cortices when passively listening to pure-
tone sequences with varying pitch distances, although abnormal
deactivation in the right inferior frontal gyrus, decreased con-
nectivity along the right frontotemporal pathway, and abnormal
over-connectivity between the left and right auditory cortices
were also observed (Hyde et al., 2011). Together, these findings
suggest that amusics lack the ability to process subtle pitch vari-
ations and music structure consciously, albeit they can do so
pre-attentively. Therefore, it seems that the amusic deficits are
outside of the auditory cortex, which is assumed to generate early
brain potentials, but instead reside in the right inferior frontal
gyrus and the right frontotemporal pathway (Hyde et al., 2011;
Peretz, 2013).

Nevertheless, a recent magnetoencephalography (MEG) study
revealed a decreased and delayed N100m in bilateral inferior
frontal gyrus and Heschl’s gyrus/superior temporal gyrus of the
amusic brain during a melodic contour discrimination task, sug-
gesting that pitch processing deficits in amusia might start from
the auditory cortex (Albouy et al., 2013a). This is consistent with
a few other ERP studies which have also observed abnormal early
brain responses (e.g., N100, MMN) in amusia (Braun et al., 2008;
Jiang et al., 2012a; Omigie et al., 2013). Thus, it remains to be deter-
mined at what stage(s) of auditory processing deficits in amusia
arise.

At the behavioral level, amusics also demonstrate preserved
pitch and music processing abilities in an implicit manner, but
not explicitly like typical listeners do. For example, amusics
were better able to imitate than identify/discriminate pitch direc-
tion and speech intonation, presumably because of unconscious
pitch processing during imitation (Loui et al., 2008; Liu et al.,
2010; Hutchins and Peretz, 2012). In a melodic discrimination
task, amusics showed implicit processing of melodic structure in
Western tonal music through faster responses times (but not bet-
ter performance) to tonal than atonal sequences (Albouy et al.,
2013b). They also exhibited implicit processing of melodic expec-
tation (high versus low probability notes) and harmonic structure
in priming tasks (Omigie et al., 2012; Tillmann et al., 2012), but
were unable to perform as well as controls in the explicit rating task
(Omigie et al., 2012). Similarly, although amusics self-reported

to be unable to recognize melodies without lyrics, they rated
familiarity of instrumental music as well as controls, demonstrat-
ing implicit storage of familiar melodies in long-term memory
(Tillmann et al., 2014).

The domain-generality and the neural origin(s) of the amu-
sic deficits, together with the intriguing dissociation between
pre-attentive/implicit and attentive/explicit processing of pitch in
amusia, warrant further investigation. In particular, it is unclear
whether the cortical dysfunctions revealed by previous studies
were driven by the ascending pathway that started earlier, e.g.,
the brainstem, and if so, whether the domain-generality of pitch
processing also manifests at the brainstem level in amusia. It
has been shown that the ability to decode speech/music sounds
in a meaningful manner is a complex task involving multiple
stages of neural processing (Poeppel and Hickok, 2004; Peretz
and Zatorre, 2005; Stewart et al., 2006; Hickok and Poeppel, 2007;
Poeppel et al., 2008). Before speech/music sounds can be per-
ceived and mapped onto long-term mental representations in the
cortex, relevant acoustic properties such as temporal and spec-
tral information must be represented and transformed through
a neural code by subcortical structures, including the auditory
nerve, the brainstem, the midbrain, etc. (Eggermont, 2001). It is
well established that the auditory brainstem represents elements
of speech/music sounds, such as timing, frequency, and timbre,
with remarkable fidelity (Chandrasekaran and Kraus, 2010; Skoe
and Kraus, 2010). This representation is also influenced by lan-
guage experience (Krishnan et al., 2005, 2010b,c; Krizman et al.,
2012), musicianship (Musacchia et al., 2007; Wong et al., 2007;
Parbery-Clark et al., 2009a; Strait et al., 2012), and short-term
auditory training (Song et al., 2008; Carcagno and Plack, 2011;
Chandrasekaran et al., 2012; Anderson et al., 2013). Given the
impact of long-term experience on the brainstem, it is necessary
to examine whether amusics’ deficits start earlier at the brainstem,
rather than being confined within the cortex, for both musical and
speech stimuli.

In addition, given that musicians demonstrate enhanced brain-
stem encoding of speech and music stimuli as well as speech in
noise compared to non-musicians (Musacchia et al., 2007; Wong
et al., 2007; Parbery-Clark et al., 2009a; Strait et al., 2012), it will
be interesting to examine whether amusics would show reduced
brainstem encoding of these stimuli relative to controls. The
answer to this question would help establish whether subcortical
encoding of speech/music sounds reflects musical aptitude along
the entire spectrum from musicians to non-musician controls and
to amusics.

In order to most comprehensively interrogate whether pitch-
processing deficits in amusia originate from the brainstem, we
examined amusics’ frequency-following responses (FFRs) to an
array of stimuli in the present study, including speech-in-quiet,
speech-in-noise, and musical tones. FFR is scalp-recorded elec-
trophysiological response originated from the rostral brainstem,
reflecting phase-locked neural activity in the brainstem (Smith
et al., 1975; Sohmer et al., 1977). It is synchronized to the tem-
poral structure (and thus periodicity) of the evoking stimulus
(Chandrasekaran and Kraus, 2010; Skoe and Kraus, 2010). Thus,
FFR has the potential to reveal subtle pitch tracking problems of
amusics that cortical ERPs cannot. Apart from FFR recordings,
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we also examined whether there is a dissociation between brain-
stem representation and behavioral identification of pitch in
amusia.

In order to elicit meaningful identification of natural and
behaviorally relevant pitches, we used native speakers of Can-
tonese as participants and Cantonese tones as part of test materials.
Cantonese is a tone language with a highly complex tonal system
(Yip, 2002). There are six lexical tones in Cantonese, named Tone
1 to Tone 6. Using the scale of 1–5 (5 being the highest and 1
being the lowest tonal point; Chao, 1930), the high-level Can-
tonese Tone 1 can be transcribed as having pitch values of 55,
the high-rising Tone 2 as having 25, the mid-level Tone 3 as 33,
the low-falling Tone 4 as 21, the low-rising Tone 5 as 23, and the
low-level Tone 6 as 22 (Figure 1). The fact that there are mul-
tiple tones with similar acoustic features in Cantonese (Rising:
25/23; Level: 55/33/22; Falling: 21) makes tone perception chal-
lenging even for native speakers (Varley and So, 1995; Ciocca and
Lui, 2003; Francis and Ciocca, 2003). It has been found that tone
language speakers have enhanced brainstem encoding of native
tonal features, e.g., acceleration rates of pitch rises (Krishnan
et al., 2005, 2010b,c), presumably because of perceptual learning of
native sounds through long-term exposure to the sound environ-
ment. Whether amusic tone language speakers would demonstrate
such a brainstem-encoding enhancement like typical listeners do
is an open question. Given that lexical and non-lexical pitch
processing across different tone language speakers (e.g., Chinese
versus Thai) differentiate themselves cortically (Gandour et al.,
2002), but not subcortically (Krishnan et al., 2010b), examining
tone language speakers and lexical tone processing would enable
us to determine whether or not there is a dissociation between
brainstem representation and behavioral identification of pitch in
amusia.

To this end, we conducted a set of FFR experiments to
examine whether Cantonese-speaking amusics have deficits in

FIGURE 1 |Time-normalized F0 contours of the six Hong Kong

Cantonese tones on the syllable /ji/. T1: high-level, 55, , ‘doctor’; T2:
high-rising, 25, , ‘chair’; T3: mid-level, 33, , ‘meaning’; T4: low-falling,
21, , ‘son’; T5: mid-rising, 23, , ‘ear’; T6: low-level, 22, , ‘two.’ F0
ranges: 138–145 Hz, 107–140 Hz, 121–128 Hz, 87–99 Hz, 100–115 Hz, and
96–106 Hz, respectively.

brainstem encoding of speech (in quiet and noise) and musical
stimuli (in quiet). During the experiments, participants listened
passively to lexical and musical tones while their brain activ-
ities were recorded. From the FFR waveforms, we measured
the temporal precision, neural tuning/phase-locking, and ampli-
tude of the synchronous neural responses with respect to the
periodicity of the stimuli. Apart from FFR recordings, all par-
ticipants also completed a behavioral task, in which they were
required to identify the words that corresponded to the six
Cantonese tones. Identification accuracy and response times were
calculated.

MATERIALS AND METHODS
PARTICIPANTS
Participants (n = 14 in each group) were recruited by advertise-
ments through mass mail services at the Chinese University of
Hong Kong. All participants had normal hearing in both ears,
with pure-tone air conduction thresholds of 25 dB HL or better
at frequencies of 0.5, 1, 2, and 4 kHz. All were native speak-
ers of Hong Kong Cantonese, and none reported having speech
or hearing disorders or neurological/psychiatric impairments in
the questionnaires regarding their music, language, and medical
background. Written informed consents were obtained from all
participants prior to the experiments. The Institutional Review
Board of Northwestern University and The Joint Chinese Univer-
sity of Hong Kong – New Territories East Cluster Clinical Research
Ethics Committee approved the study.

All participants were right-handed as assessed by the Edinburgh
Handedness Inventory (Oldfield, 1971). The diagnosis of amusia
in these participants was conducted using the Montreal Battery
of Evaluation of Amusia (MBEA; Peretz et al., 2003), which con-
sists of six subtests measuring the perception of scale, contour,
interval, rhythm, and meter of Western melodies, and recogni-
tion memory of these melodies. Those who scored 65 or under
on the pitch composite score (sum of the scores on the scale, con-
tour, and interval subtests) or below 78% correct on the MBEA
global score were classified as amusic, as these scores correspond
to 2 standard deviation below the mean scores of normal con-
trols (Peretz et al., 2003; Liu et al., 2010). As shown in Table S1,
3 out of the 14 amusics (A04, A05, and A13) aged over 40 years,
while the rest were between 18 and 22 years. Given that aging has
been shown to affect auditory processing abilities (Chisolm et al.,
2003), care was taken to find age-matched controls (C07, C08,
and C10) for the three amusics in their 40s. The other controls
(18–24 years) were chosen based on their MBEA global scores (all
>90%) and musical training background (matched with the 14
amusics).

Table 1 summarizes the characteristics of the amusic and con-
trol groups. As can be seen, amusics performed significantly worse
than controls on all MBEA subtests. While the two groups were
comparable in sex, handedness, age, and musical training back-
ground, controls received more years of education than amusics
[t(26) = 2.31, p = 0.029]. This was due to the fact that the
three older controls received more years of education than the
three older amusics [t(4) = 3.29, p = 0.030]. When the six
older participants were excluded, the difference in education back-
ground became non-significant between the two groups [amusic
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Table 1 | Characteristics of the amusic (n = 14, 4 male and 10 female, all right-handed) and control (n = 14, 5 male and 9 female, all right-handed)

groups.

Group Age Education Musical training Scale Contour Interval Rhythm Meter Memory Pitch composite MBEA global

Control

Mean 25.43 16.14 1.36 27.93 27.57 27.57 29.14 27.79 29.21 83.07 94.01

SD 9.51 2.68 1.95 1.69 1.87 1.70 1.61 3.12 0.80 3.08 3.25

Amusic

Mean 25.50 14.07 1.07 21.93 21.57 20.00 22.93 21.14 26.71 63.50 74.60

SD 11.24 2.02 1.86 2.53 2.31 2.00 2.64 4.35 2.89 4.01 5.70

t -test

t −0.02 2.31 0.40 7.39 7.55 10.80 7.51 4.65 3.12 14.48 11.07

p 0.986 0.029 0.694 <0.001 <0.001 <0.001 <0.001 <0.001 0.004 <0.001 <0.001

Age, education, and musical training are in years; scores on the six MBEA subtests (scale, contour, interval, rhythm, meter, and memory) are in number of correct
responses out of 30 (Peretz et al., 2003); the pitch composite score is the sum of the scale, contour, and interval scores; MBEA global score is the percentage of
correct responses out of the total 180 trials; t is the statistic of the Welch two sample t-test (two-tailed, df = 26).

mean (SD) = 14.36 (2.01); control mean (SD) = 15.18 (1.72);
t(20) = 1.02, p = 0.318]. In order to account for the possible con-
tribution of education to the current results, years of education
were entered as a covariate in the mixed-effects models in Section
“Results.”

STIMULI
Speech stimuli consisted of six Cantonese lexical tones spoken on
the same syllable /ji/, which led to six different words in Cantonese:
Tone 1, , ‘doctor’; Tone 2, , ‘chair’; Tone 3, , ‘meaning’; Tone 4,

, ‘son’; Tone 5, , ‘ear’; Tone 6, , ‘two.’ Using Praat (Boersma
and Weenink, 2001), a male native speaker of Hong Kong Can-
tonese recorded these tones onto a desktop PC in a soundproof
booth, using a Shure SM10A headworn microphone and a Roland
UA-55 Quad-Capture audio interface at the sampling rate of
44,100 Hz. The six original tones were then duration-normalized
to 175 ms and intensity-normalized to 74 dB using Praat, so that
F0 (fundamental frequency) was the main acoustic feature that
differed across the stimuli. Figure 1 shows time-normalized F0

contours of the six tones, ranging from 138–145 Hz, 107–140 Hz,
121–128 Hz, 87–99 Hz, 100–115 Hz, and 96–106 Hz, respectively.

Musical stimuli consisted of two cello tones at different pitches:
high (= 150 Hz) versus low (= 112 Hz). These pitches were chosen
because they approximated the highest and lowest registers of the
lexical tones we used. The two cello tones were derived from a
musical sound of a cello being bowed (recorded from a keyboard
synthesizer; Musacchia et al., 2007), but with pitches changed to
150 and 112 Hz, duration normalized to 175 ms, and intensity
normalized to 75 dB using Praat.

In the speech in noise condition, Cantonese lexical Tone 1 and
Tone 6 (the same as in the speech stimuli) were presented to the
participants again, but together with a recursive recording of 10-
min 6-talker babble noise in Cantonese at signal-to-noise ratio
(SNR) levels of 0 and 20 dB played at the background.

PROCEDURE
All participants completed three tasks for the present study:
(1) behavioral identification and (2) FFR recording of the six

Cantonese tones in quiet, and (3) FFR recording of the cello
tones in quiet and Cantonese Tone 1 and Tone 6 in babble noise.
The three tasks normally occurred on three different days, sep-
arated by several days or months depending on the participants’
availability. The order of the three tasks was different across dif-
ferent participants. Participants completed the behavioral tone
identification task together with other behavioral tasks (tone dis-
crimination, tone production, and singing) for another study,
which in total took about 1 h. The behavioral tone identification
task was presented using E-prime 2.0 (Schneider et al.,2002), deliv-
ered through Sennheiser HD 380 PRO Headphones and a Roland
UA-55 Quad-Capture audio interface at a comfortable listening
level. Before the experimental trials, participants were adminis-
tered a practice session consisting of two repetitions of each of the
six Cantonese tones at the duration of 250 ms. In the experimen-
tal session, each of the six Cantonese tones used in the FFR task
(duration = 175 ms) was presented five times in random order.
Participants were required to choose the words that corresponded
to the tones by clicking one of the six buttons on the computer
screen as quickly and accurately as possible. Their responses and
reaction times were recorded for later analysis.

Our FFR recording protocol followed closely what has been
established in past research (Wong et al., 2007; Song et al., 2008;
Skoe and Kraus, 2010), and various efforts had been made to
exclude any potential artifacts (see Figure S1 for proof of no
artifacts in a “sham” experiment). During FFR recording, par-
ticipants were encouraged to rest or fall asleep in a recliner chair
in an electromagnetically shielded booth with no light on. Stimuli
were presented to the participants’ right ear through insert ear-
phones (ER-3a, Etymotic Research, Elk Grove Village, IL, USA)
at around 80 dB SPL, using Neuroscan Stim2 (Compumedics,
El Paso, TX, USA). The order of the six lexical tones was coun-
terbalanced across participants, and that of the cello tones and
Tone 1 and Tone 6 in noise was fixed: Tone 1 at 20 dB SNR,
Tone 1 at 0 dB SNR, Tone 6 at 20 dB SNR, Tone 6 at 0 dB
SNR, cello tone at 150 Hz, and cello tone at 112 Hz. The inter-
stimulus-interval jittered between 74 and 104 ms. Responses were
collected using CURRY Scan 7 Neuroimaging Suite (Neuroscan,
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Compumedics, El Paso, TX, USA) with four Ag–AgCl scalp elec-
trodes, differentially recorded from vertex (Cz, active) to bilateral
linked mastoids (M1+M2, references), with the forehead (Fpz) as
ground. Contact impedance was less than 5 k� for all electrodes.
For each stimulus, two blocks of 1500 sweeps were collected at
each polarity with a sampling rate of 20,000 Hz, lasting around
12 min.

Filtering, artifact rejection, and averaging were performed off-
line using CURRY 7. Responses were band-pass filtered from
80 to 5000 Hz, 12 dB/octave, and trials with activity greater
than ±35 μV were considered artifacts and rejected. Waveforms
were averaged with a recording time window spanning 50 ms
prior to the onset and 50 ms after the offset of the stimu-
lus. Responses of alternating polarity were then added together
to isolate the neural response by minimizing stimulus artifact
and cochlear microphonic (Russo et al., 2004; Aiken and Picton,
2008).

DATA ANALYSIS
Percentage of correct responses and reaction time were calculated
for the behavioral tone identification task. Only trials with correct
responses were retained in the reaction time analysis.

Main FFR data were analyzed using Matlab (The Mathworks,
Natick, MA, USA) scripts adapted from the Brainstem Toolbox
(Skoe et al., 2013). Before analysis, the stimuli were resampled to
20,000 Hz, to match the sampling rate of the responses. Both the
stimuli and responses were band-pass filtered from 80 to 2500 Hz
to remove the slower cortical ERPs and attenuate EEG noise above
the limit of phase-locking (Skoe and Kraus, 2010; Bidelman et al.,
2013). The FFR was assumed to encompass the entire duration of
the stimulus (175 ms).

Using a sliding window analysis procedure (Wong et al., 2007;
Song et al., 2008), 50-ms bins of the FFR were shifted in 1-ms
steps to produce a total of 125 (= 175–50) Hanning-windowed
overlapping bins in the frequency domain. A narrow-band spec-
trogram was calculated for each FFR bin by applying the fast
Fourier transform (FFT). To increase spectral resolution, each
time bin was zero-padded to 1 s before performing the FFT.
The spectrogram gave an estimate of spectral energy over time
and the F0 (pitch) contour was extracted from the spectrogram
by finding the spectral peak closest to the expected (stimulus)
frequency. Both F0 frequency and amplitude were recorded for
each time bin. The same short-term spectral analysis procedure
was applied to the stimulus waveforms, in order to compare the
responses with the stimuli. The following time, pitch, and ampli-
tude measurements were extracted to determine how well the
amusic brainstem encodes the timing, periodicity, and the spec-
tral envelop of the evoking stimuli compared to controls (Wong
et al., 2007; Song et al., 2008; Skoe and Kraus, 2010; Skoe et al.,
2013).

Neural lag (in ms) is the amount of time shift to achieve
the maximum positive correlation between the waveforms of the
stimulus and the response. This measure was calculated using a
cross-correlation technique that slid the stimulus and response
waveforms back and forth in time with respect to one another until
the maximum positive correlation between the two was found. It
estimated the FFR latency due to the neural conduction time of the

auditory system for each tone/participant, which was taken into
account when calculating each of the following measurements.

Pitch strength (or autocorrelation, values between –1 and 1) is a
measure of periodicity and phase locking of the response. Using
a short-time running autocorrelation technique, the response, in
50-ms time bins, was successively time-shifted in 1-ms steps with
a delayed version of itself, and a Pearson’s r was calculated at
each 1-ms interval. The maximum (peak) autocorrelation value
was recorded for each bin, with higher values indicating more
periodic time frames. Pitch strength was calculated by averaging
the autocorrelation peaks (r-values) from the 125 bins for each
tone/participant.

Pitch error (in Hz) is the average absolute Euclidian distance
between the stimulus F0 and response F0 across the total of 125
time bins analyzed. It is a measure of pitch encoding accuracy of
the FFR over the entire duration of the stimulus, shifted in time
to match with the response based on the specific neural lag value
obtained for each tone/participant.

Stimulus-to-response correlation (values between –1 and 1) is
the Pearson’s correlation coefficient (r) between the stimulus and
response F0 contours (shifted in time by neural lag). This measure
indicates both the strength and direction of the linear relationship
between the two signals.

Root mean square (RMS) amplitude (in μV) of the FFR wave-
form is the magnitude of neural activation over the entire FFR
period (neural lag, neural lag +175 ms).

Signal-to-noise ratio is the ratio of the RMS amplitude of the
response over the RMS of the pre-stimulus period (50 ms).

Mean amplitudes of the first three harmonics (in dB, indicat-
ing peak amplitudes of the power spectrum) are spectral peaks
within the frequency ranges of the fundamental frequency (F0,
first harmonic) and the next two harmonics (second and third
harmonics). They were calculated by finding the largest spectral
peaks in the frequency ranges of the first three harmonics in the
narrow-band spectrogram after applying the short-time Fourier
transform (STFT).

Statistical analyses were conducted using R (R Core Team,
2014). For parametric statistical analyses, r-values (pitch strength,
stimulus-to-response correlation) were converted to z′-scores
using Fisher’s transformation (Wong et al., 2007), percent correct
scores for tone identification was converted using rationalized arc-
sine transformation (Studebaker, 1985), and reaction times were
transformed using log transformation (Howell, 2009), since these
measures deviated from normal distributions (Shapiro–Wilk nor-
mality test: all ps < 0.05). Linear mixed-effects models were fit
on all measures using the R package ‘nlme’ (Pinheiro and Bates,
2009). Post hoc pairwise comparisons were conducted using t-tests
with p-values adjusted with the Holm (1979) method.

RESULTS
BRAINSTEM ENCODING OF SPEECH (IN QUIET AND NOISE) AND
MUSICAL STIMULI (IN QUIET)
Figure 2 shows the waveforms of the six Cantonese lexical tones,
and grand average waveforms of the FFRs to the six tones (heard
in quiet) of the amusic and control groups. Figure 3 shows
pitch tracks of the original stimuli (black lines), and those of the
responses (yellow lines) from both groups. In the pitch track plots,
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FIGURE 2 | Waveforms of the original stimuli /ji/ with six Cantonese tones (A1–F1), and those of the grand-average FFRs of amusics (A2–F2) and

controls (A3–F3).

the small red dots signify regions where the extracted F0s were
below the noise floor (i.e., SNR was less than one, reflecting the
magnitude of the response F0), and the small blue dots indicate
regions where the extracted F0s were not at the spectral maximum
(indicating weak F0 encoding strengths; Song et al., 2008; Skoe
et al., 2013).

Figure 4 shows grand average waveforms of amusics’ and con-
trols’ FFRs to Cantonese Tone 1 and Tone 6 heard in babble noise
(SNR = 0 and 20 dB), and the corresponding pitch tracks. Figure 5
shows the waveforms of the two cello tones, and grand average
waveforms of the FFRs to the cello tones (heard in quiet) of both
groups, and the corresponding pitch tracks.

Linear mixed-effects models were first fit on all FFR
measures for each experimental condition (speech-in-quiet,

speech-in-noise, music), with group (amusic, control), tone
(Tones 1–6 in the speech-in-quiet condition, Tone 1 versus Tone
6 in the speech-in-noise condition, and high versus low cello tone
in the music condition), and noise (SNR = 0 and 20 dB in the
speech-in-noise condition) as fixed effects, education (in years) as
a covariate, and participants (and tones nested in participants) as
random effects. Detailed results are shown in Tables S2–S4.

Among all measures/conditions, a significant group effect
[F(1,25) = 5.11, p = 0.033] was only observed for the ampli-
tude of the first harmonic (F0) in the speech-in-noise condition,
with controls showing larger F0 amplitudes in FFRs to tones
in noise than amusics (Table S3). Although the effects of tone
and noise were significant in many cases, no tone × noise or
tone × noise × group interaction was observed for any measures
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FIGURE 3 | Pitch tracks of the grand-average FFRs of amusics (A1–F1)

and controls (A2–F2) to the six Cantonese tones. The black and yellow
lines indicate pitch tracks of the original stimuli and those of the responses,
respectively. The small red dots signify regions where the extracted F0s were

below the noise floor (i.e., SNR was less than one, reflecting the magnitude
of the response F0), and the small blue dots indicate regions where the
extracted F0s were not at the spectral maximum (indicating weak F0
encoding strengths; Song et al., 2008; Skoe et al., 2013).
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FIGURE 4 | Grand average waveforms of amusics’ (A1–D1) and controls’ (A2–D2) FFRs to CantoneseTone 1 andTone 6 heard in babble noise (SNR = 0

and 20 dB), and the corresponding pitch tracks (A3–D3, A4–D4).

in the speech-in-noise condition (Table S3), or tone × group
interaction in the speech-in-quiet (Table S2) or music condi-
tion (Table S4). The only significant tone × group interaction
[F(1,26) = 4.65, p = 0.040] was observed for neural lag in the
speech-in-noise condition: controls showed longer neural lags
than amusics for Tone 1 in noise, t(54) = –3.09, p = 0.003,
but not for Tone 6 in noise, t(54) = 0.90, p = 0.370 (Table S3).
The only significant group × noise interaction [F(1,52) = 7.19,
p = 0.010] was observed for pitch error in the speech-in-noise
condition, as controls showed smaller pitch errors than amu-
sics when SNR = 0 dB, t(54) = 1.67, p = 0.101, but larger
pitch errors when SNR = 20 dB, t(54) = –0.53, p = 0.597
(Table S3).

Together, these results suggest that amusics and controls
showed largely comparable FFRs under different tone and noise
conditions. The significant group difference in F0 amplitude
(p = 0.033) and tone × group interaction on neural lag (p = 0.040)
and group × noise interaction on pitch error (p = 0.010) in
the speech-in-noise condition were likely due to familywise Type
I errors (false positives) from multiple comparisons, as these
effects would become non-significant if using Bonferroni correc-
tion to adjust for the significance level [p = 0.05/(9 measures × 3
conditions) = 0.0019]. Furthermore, the uneven experimen-
tal design of the tone (six levels in speech-in-quiet, two levels
in speech-in-noise, and two levels in the music condition) and
noise factors (two levels in speech-in-noise) gave rise to different
numbers of multiple observations (replications) for each partici-
pant in each experimental condition, which would make unequal

contributions to the comparison of treatments applied to differ-
ent conditions (Mead, 1990). Thus, for statistical analysis and in
the interest of space, FFR measures from different tones in the
three experimental conditions and different noise levels in the
speech-in-noise condition were pooled and averaged for each par-
ticipant in the following analyses, in order to examine the overall
effects of group (amusic, control) and condition (speech-in-quiet,
speech-in-noise, music) on each FFR measure.

Table 2 lists the results from the linear mixed-effects mod-
els on each FFR measure (averaged across different tones in each
condition, and across the two noise levels in the speech-in-noise
condition), with group (amusic, control) and condition (speech-
in-quiet, speech-in-noise, music) as fixed effects, education (in
years) as a covariate, and participants (and conditions nested in
participants) as random effects. No significant effect of group or
condition × group interaction was observed for any measures. The
effect of condition (speech-in-quiet, speech-in-noise, music) was
significant for all measures, and participants’ years of education
negatively affected pitch strengths and SNRs of their FFRs. These
significant effects are discussed in detail below (Figures 6–9).
In the interest of space, non-significant effects are omitted from
discussion.

Figure 6A shows mean neural lags (in ms) of FFRs under the
three experimental conditions (speech-in-quiet, speech-in-noise,
music) for amusics and controls. There was a significant effect of
condition (Table 2), as both groups exhibited longer neural lags
for musical than speech-in-noise (p < 0.001) and speech in-quiet
stimuli (p < 0.001).

Frontiers in Human Neuroscience www.frontiersin.org January 2015 | Volume 8 | Article 1029 | 8

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Liu et al. FFR in congenital amusia

FIGURE 5 | Waveforms of the original two cello tones (A1,B1), and grand average waveforms of the FFRs to the cello tones (heard in quiet) of the

amusic (A2,B2) and control (A3,B3) groups, and the corresponding pitch tracks (C1,C2,D1,D2).

Figure 6B shows mean pitch strengths (autocorrelations)
of FFRs under the three experimental conditions for the two
groups. The linear mixed-effects model on Fisher-transformed
z′-scores revealed a main effect of condition (Table 2), as pitch
strengths of both groups were the highest in the speech-in-quiet
condition and the lowest in the music condition, with those
of the speech-in-noise condition in between (all ps < 0.001).
The effect of education on pitch strength was also significant
(Table 2): the more education participants received, the lower
their pitch strengths. This was confirmed by the negative cor-
relation between participants’ education background (in years)
and their pitch strengths across all conditions [r(82) = –0.19,
p = 0.079].

Given that neural pitch strength of the FFR varies dramat-
ically between steady-state and dynamic segments of the tones
(Krishnan et al., 2010b; Bidelman et al., 2011a), we divided each
of the tones into seven 25-ms sections and calculated mean pitch
strengths of amusics and controls for each section using Krishnan
et al. (2010b) and Bidelman et al. (2011a) methods. As can be seen
from Table 3, among the total 84 (7 sections × 12 tones) pairwise
comparisons, only 2 (section 1 of Tone 1 in quiet, section 3 of
Tone 1 at 0 SNR) demonstrated significant group differences in
pitch strength. These differences would become non-significant
if using Bonferroni correction to adjust for the significance level
(p = 0.05/84 = 0.0006) in order to prevent familywise Type I errors
(false positives). In general, these results suggest that amusics did
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Table 2 | Results from the mixed-effects models on the effects of Condition [speech-in-quiet, speech-in-noise, music, F (2,52)], Group [amusic

versus control, F(1,25)], Education [F (1,25)], and Condition × Group interaction [F (2,52)] on measures of FFRs.

Effects Condition Group Education Condition × Group

Neural lag F 32.52 1.15 0.86 0.16

p <0.001 0.294 0.363 0.855

Pitch strength F 85.50 0.40 7.08 0.96

p <0.001 0.533 0.013 0.388

Pitch error F 61.29 0.10 0.54 0.28

p <0.001 0.758 0.468 0.753

Stimulus-to-response correlation F 32.98 0.47 1.69 0.07

p <0.001 0.500 0.205 0.932

Signal-to-noise ratio (SNR) F 56.14 0.90 4.96 0.76

p <0.001 0.352 0.035 0.473

Root mean square (RMS) amplitude F 39.39 2.44 1.34 1.10

p <0.001 0.131 0.257 0.340

F 0 (first harmonic) amplitude F 39.34 0.70 2.07 0.78

p <0.001 0.411 0.163 0.463

Second harmonic amplitude F 102.20 0.01 0.50 2.55

p <0.001 0.946 0.487 0.088

Third harmonic amplitude F 21.43 0.84 1.38 1.51

p <0.001 0.368 0.251 0.231

Significant effects are highlighted in boldface.

FIGURE 6 | Frequency-following response (FFR) neural lags (A; in ms) and pitch strengths (B; autocorrelations) of amusics and controls under the

three experimental conditions (music, speech-in-noise, speech-in-quiet).

not differ from controls in FFR pitch strength across different
sections of the tones in speech-in-quiet, speech-in-noise, or music
conditions.

Figure 7A shows mean pitch errors (in Hz) of FFRs under the
three experimental conditions for amusics and controls. There
was a significant effect of condition (Table 2), as both groups
showed larger pitch errors for musical than speech-in-noise and
speech-in-quiet stimuli (both ps < 0.001).

Figure 7B shows mean stimulus-to-response correlations of the
three types of stimuli for the two groups. The linear mixed-effects

model on Fisher-transformed z′-scores revealed a main effect of
condition (Table 2), as both groups demonstrated lower stimulus-
to-response correlations for musical than speech-in-noise and
speech-in-quiet stimuli (both ps < 0.001), and lower stimulus-
to-response correlations for speech-in-noise than speech-in-quiet
stimuli (p = 0.048).

Figure 8A shows mean SNRs of FFRs under the three
experimental conditions for amusics and controls. SNR differed
significantly across different experimental conditions (Table 2),
in the order of music < speech-in-noise < speech-in-quiet for
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Table 3 | Mean pitch strengths of amusics and controls over seven 25-ms sections of the six Cantonese tones heard in quiet, CantoneseTone 1

andTone 6 heard in noise (SNR = 0 and 20 dB), and cello tones at 150 and 112 Hz.

Tone Group Section (each 25 ms)

1 2 3 4 5 6 7

T1 in quiet Amusic 0.09 0.44 0.45 0.54 0.51 0.57 0.43

Control 0.27 0.46 0.37 0.50 0.56 0.54 0.43

p 0.0047 0.75 0.31 0.56 0.40 0.55 0.94

T2 in quiet Amusic 0.39 0.52 0.51 0.57 0.57 0.59 0.17

Control 0.32 0.52 0.46 0.54 0.56 0.57 0.21

p 0.24 0.98 0.21 0.40 0.69 0.62 0.59

T3 in quiet Amusic 0.34 0.52 0.55 0.58 0.58 0.51 0.43

Control 0.28 0.51 0.58 0.56 0.56 0.52 0.48

p 0.39 0.89 0.49 0.80 0.66 0.84 0.31

T4 in quiet Amusic 0.44 0.51 0.48 0.49 0.47 0.43 0.35

Control 0.40 0.46 0.48 0.49 0.49 0.40 0.33

p 0.45 0.30 0.88 0.93 0.67 0.48 0.51

T5 in quiet Amusic 0.41 0.45 0.48 0.49 0.49 0.55 0.51

Control 0.38 0.52 0.50 0.55 0.51 0.54 0.57

p 0.50 0.17 0.73 0.08 0.67 0.70 0.18

T6 in quiet Amusic 0.15 0.38 0.52 0.57 0.52 0.52 0.39

Control 0.19 0.41 0.54 0.54 0.51 0.49 0.35

p 0.54 0.55 0.70 0.45 0.64 0.50 0.37

T1 at 0 SNR Amusic 0.13 0.32 0.42 0.51 0.52 0.45 0.28

Control 0.14 0.37 0.53 0.57 0.56 0.52 0.33

p 0.76 0.37 0.0499 0.34 0.50 0.21 0.39

T1 at 20 SNR Amusic 0.24 0.46 0.46 0.51 0.51 0.51 0.46

Control 0.16 0.44 0.45 0.51 0.53 0.58 0.47

p 0.21 0.67 0.83 0.93 0.77 0.17 0.74

T6 at 0 SNR Amusic 0.18 0.39 0.49 0.52 0.49 0.42 0.22

Control 0.19 0.38 0.52 0.53 0.51 0.46 0.30

p 0.85 0.89 0.46 0.69 0.28 0.31 0.07

T6 at 20 SNR Amusic 0.13 0.37 0.51 0.56 0.50 0.47 0.39

Control 0.13 0.32 0.54 0.52 0.50 0.47 0.33

p 0.97 0.30 0.26 0.22 0.93 0.88 0.08

Cello tone at 150 Hz Amusic 0.14 0.38 0.18 0.31 0.26 0.31 0.10

Control 0.13 0.36 0.30 0.27 0.17 0.28 0.19

p 0.81 0.78 0.14 0.65 0.20 0.67 0.16

Cello tone at 112 Hz Amusic 0.13 0.38 0.36 0.44 0.37 0.38 0.14

Control 0.18 0.30 0.32 0.35 0.31 0.33 0.15

p 0.41 0.24 0.53 0.16 0.28 0.51 0.79

The p-values were obtained from Welch two sample t-tests (two-tailed, df = 26). Sections with significant group differences are highlighted in boldface. Note that the
pitch strength values in this table are different from those in Figure 6B due to different calculation methods used (Krishnan et al., 2010b; Bidelman et al., 2011a; Skoe
et al., 2013).

both groups (all ps < 0.05). There was also a significant effect
of education on SNR (Table 2): the more education partici-
pants received, the lower their SNRs. This was confirmed by the
negative correlation between participants’ education background

(in years) and their SNRs across all conditions [r(82) = –0.20,
p = 0.075].

Figure 8B shows mean RMS amplitudes (in μV) of the
FFR waveforms under the three experimental conditions for
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FIGURE 7 | Frequency-following response pitch errors (A; in Hz) and stimulus-to-response correlations (B) of amusics and controls under the three

experimental conditions.

FIGURE 8 | Frequency-following response signal-to-noise ratios (A; SNRs) and root-mean-square (B; RMS) amplitudes (in μV) of amusics and controls

under the three experimental conditions.

amusics and controls. RMS amplitudes differed significantly across
different experimental conditions (Table 2), in the order of
music < speech-in-noise < speech-in-quiet for both groups (all
ps < 0.01).

Figure 9 shows mean amplitudes of spectral peaks within
the frequency ranges of the fundamental frequency (F0, first
harmonic) and the next two harmonics (second and third har-
monics) under the three experimental conditions for amusics
and controls. Mean amplitudes of these harmonics were signif-
icantly affected by different experimental conditions (Table 2), as
both groups showed lower harmonic amplitudes for music than
speech-in-noise/speech-in-quiet stimuli (all ps < 0.01).

BEHAVIORAL IDENTIFICATION OF THE SIX CANTONESE LEXICAL TONES
Figure 10A shows percent-correct scores of amusics and controls
for the behavioral tone identification task. A linear mixed-
effects model was fit on rationalized arcsine transformed scores,

with group (amusic, control) and tone (Tones 1–6) as fixed
effects, education (in years) as a covariate, and participants
(and tones nested in participants) as random effects. Tone
identification scores differed significantly across different tones
[F(5,130) = 4.64, p = 0.002 with the Greenhouse–Geisser cor-
rection], with Tone 5 receiving significantly worse identification
than Tone 1 (p = 0.025). There was a significant main effect
of group [F(1,25) = 4.81, p = 0.038], as controls achieved
better tone identification performance than amusics. A signifi-
cant effect of education was also observed for tone identification
[F(1,25) = 4.73, p = 0.039]: the more education participants
received, the worse their tone identification. This was confirmed
by the negative correlation between participants’ education back-
ground (in years) and their mean tone identification scores
across the six tones [r(26) = –0.18, p = 0.351]. No significant
tone × group interaction was observed [F(5,130) = 1.15, p = 0.337
with the Greenhouse–Geisser correction].
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FIGURE 9 | Frequency-following response first (A), second (B), and third (C) harmonic amplitudes (in dB) of amusics and controls under the three

experimental conditions.

FIGURE 10 | Percent-correct scores (A) and reaction times (B; in ms) of amusics and controls for the behavioral tone identification task.

Figure 10B shows reaction times of amusics and controls on
the correct trials for the identification of the six tones. Among
the 28 participants, five participants (four amusics and one
control) scored 0% correct on some tones (Tones 3–5), thus
leading to missing data. The linear mixed-effects model on log-
transformed reaction times indicated that reaction times differed
significantly across different tones [F(5,123) = 3.77, p = 0.003;
or F(5,105) = 3.01, p = 0.016 with the Greenhouse–Geisser cor-
rection and when participants with missing data were removed],
as Tone 1 elicited significantly shorter reaction times than Tones
3–5 (all ps < 0.05). The other effects were non-significant [Group:
F(1,25) = 1.52, p = 0.229; Education: F(1,25) = 0.03, p = 0.856;
Tone × Group: F(5,123) = 1.00, p = 0.423; or F(5,105) = 0.83,
p = 0.522 with the Greenhouse–Geisser correction and when
participants with missing data were removed].

Table 4 shows confusion matrices of tone identification of
the two groups. Fisher’s Exact Test for Count Data (two-tailed)
revealed significant differences in confusion patterns between
amusics and controls for Tone 4 (p = 0.006), Tone 5 (p < 0.001),
and Tone 6 (p = 0.012). Amusics were more likely than controls to

confuse between tones that shared similar acoustic features, e.g.,
Tones 2 and 5 (two rising tones), Tones 3 and 6 (two level tones),
and Tones 4 and 6 (two low tones).

CORRELATION ANALYSES
Correlation analyses were conducted between brainstem encod-
ing and behavioral identification of the six Cantonese lexical tones
heard in quiet in order to examine whether there was any asso-
ciation between neural and cognitive processing of lexical tones
in the current participants. Results revealed no significant corre-
lation between FFR pitch measures (pitch strength, pitch error,
stimulus-to-response correlation) and tone identification accu-
racy, or between FFR neural lag and tone identification response
time when all participants were analyzed together or for each group
alone (all ps > 0.05).

Correlation analyses were conducted between MBEA global
scores and FFR/behavioral measures of lexical tone processing
in quiet in order to examine whether there was any associa-
tion between music perception and lexical tone processing in
the current participants. A significant positive correlation was
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Table 4 | Confusion matrices of tone identification of amusics and

controls.

T1_55 T2_25 T3_33 T4_21 T5_23 T6_22

Amusic

T1_55 90.00 0.00 7.14 0.00 0.00 0.00

T2_25 1.43 87.14 4.29 2.86 40.00 4.29

T3_33 4.29 0.00 75.71 7.14 2.86 7.14

T4_21 0.00 1.43 0.00 70.00 1.43 7.14

T5_23 1.43 10.00 4.29 2.86 54.29 0.00

T6_22 0.00 1.43 7.14 17.14 1.43 78.57

No response 2.86 0.00 1.43 0.00 0.00 2.86

Control

T1_55 95.71 0.00 7.14 7.14 0.00 0.00

T2_25 0.00 91.43 1.43 0.00 12.86 0.00

T3_33 4.29 0.00 88.57 1.43 0.00 1.43

T4_21 0.00 0.00 0.00 82.86 0.00 1.43

T5_23 0.00 8.57 0.00 0.00 85.71 0.00

T6_22 0.00 0.00 1.43 8.57 1.43 97.14

No response 0.00 0.00 1.43 0.00 0.00 0.00

observed between MBEA global scores and mean rationalized
arcsine transformed tone identification scores when both groups
were combined [r(26) = 0.56, p = 0.002] and for the control
group [amusics: r(12) = 0.53, p = 0.051; controls: r(12) = 0.71,
p = 0.005]: the better the music perception, the better the lexical
tone identification. There was also a significant negative cor-
relation between MBEA global scores and mean amplitudes of
the third harmonic of FFRs to the speech-in-quiet stimuli (aver-
aged across the six tones) for the control group [r(12) = –0.63,
p = 0.016): the better the music perception, the smaller the
amplitude of the third harmonic of FFRs to the speech-in-quiet
stimuli.

Correlation analyses between MBEA global scores and FFR
measures of speech-in-noise stimuli revealed significant correla-
tions in several cases for the control group only. First, significant
correlations were observed between MBEA global scores and pitch
strengths [r(12) = 0.77, p = 0.001], pitch errors [r(12) = –0.60,
p = 0.021], SNRs [r(12) = 0.66, p = 0.010], and RMS ampli-
tudes [r(12) = 0.58, p = 0.030] of FFRs to speech-in-noise stimuli
in controls. Second, there was also a significant positive corre-
lation between MBEA global scores and mean amplitudes of the
first harmonic of the speech-in-noise stimuli for the control group
[r(12) = 0.61, p = 0.020].

Correlation analyses between MBEA global scores and FFR
measures of cello tones revealed significant correlations in sev-
eral cases for the control group only. First, positive correlations
were observed between MBEA global scores and pitch strengths
[r(12) = 0.57, p = 0.032] and SNRs [r(12) = 0.63, p = 0.015]
of FFRs to cello tones in controls. Second, there was also a sig-
nificant negative correlation between MBEA global scores and
mean amplitudes of the third harmonic of the cello stimuli for
the control group [r(12) = –0.81, p < 0.001].

POWER ANALYSIS
Power analysis was conducted in order to examine whether the
current non-significant group differences in brainstem encod-
ing of speech (in quiet and noise) and musical stimuli were due
to sample size or the power of this study. According to Cohen
(1988), a study should have at least 80% power to be worth doing.
Suppose we wanted to achieve a medium effect size (Cohen’s
d = 0.5) with significance level at p < 0.05, having n = 28 par-
ticipants would give us a power of 84% to find amusics being
worse than controls in the tasks. Indeed, the significant group
difference in behavioral identification of the six Cantonese tones
showed a medium effect size (Cohen’s d = 0.508, on rational-
ized arcsine transformed scores) in the current study. Therefore,
the current finding of intact brainstem encoding of speech (in
quiet and noise) and musical stimuli in amusia is unlikely to be
inconclusive.

DISCUSSION
This study investigated the relationship between brainstem rep-
resentation and behavioral identification of lexical tones as well
as brainstem encoding of speech-in-noise and musical stimuli in
Cantonese-speaking individuals with congenital amusia, a dis-
order of pitch processing in music and speech. Measurements
of the FFR waveforms revealed no evidence of abnormal brain-
stem encoding of speech (in quiet and noise) or musical stimuli
for amusics relative to controls, in terms of timing, frequency,
and amplitude. However, amusics performed significantly worse
than controls on identification of lexical tones. The dissociation
between brainstem representation and behavioral identification
of lexical tones was further confirmed by the lack of correlation
between FFR and behavioral pitch and timing measures. No corre-
lation was observed between amusics’ music perception scores and
FFR measures of speech-in-noise/musical stimuli, either. These
findings suggest that amusics’ subcortical neural responses sim-
ply represent acoustic/sensory properties of the speech or musical
stimuli, rather than reflecting their higher-level pitch-processing
deficits.

Brainstem responses to speech/music sounds have been con-
sidered as biological markers of individuals’ auditory, music, and
language processing abilities (Chandrasekaran and Kraus, 2010;
Skoe and Kraus, 2010). Previous neuroimaging and neurophysio-
logical studies of amusia suggest that amusics’ pitch processing
deficits may or may not start in the auditory cortex (Albouy
et al., 2013a; Peretz, 2013). Given the positive association between
the quality of brainstem representation of speech/music sounds
and musical expertise (Musacchia et al., 2007; Wong et al., 2007;
Parbery-Clark et al., 2009a; Strait et al., 2012), it would be worth
exploring whether disordered musical functioning in amusia is
related to impaired subcortical representation of pitch-bearing
information. Our results revealed no evidence of abnormal brain-
stem representation of speech (in quiet and noise) or musical
stimuli in amusia, across all FFR measures in terms of timing,
frequency, and amplitude, suggesting that amusics’ pitch process-
ing deficits are unlikely to originate from the auditory brainstem. It
has been proposed that the top–down corticofugal pathway may be
a potential mechanism for explaining brainstem encoding advan-
tage in tone language speakers and musicians (Chandrasekaran
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and Kraus, 2010). Our current results indicate that if in fact the
previous studies can be explained by the corticofugal system, it is
not in play in amusics, which suggests that amusics may have a
very high level of deficits that are confined within the cortex.

Compared to non-musicians, musicians have been shown
to have enhanced brainstem encoding of speech and musical
stimuli in a quiet setting (Musacchia et al., 2007). If subcorti-
cal encoding of speech/music sounds reflected musical aptitude
along the entire spectrum from musicians to non-musician con-
trols and to amusics, we would expect amusics to show impaired
brainstem encoding of speech and musical stimuli compared
to controls. However, our results indicate normal brainstem
encoding of speech and musical stimuli in quiet in Cantonese-
speaking amusics, across six different lexical tones and two
cello tones (Figures 2–3 and 5; Tables S2 and S4). This sug-
gests that amusics’ speech and musical processing deficits are
not due to reduced brainstem encoding of speech and musical
sounds.

Previous research also suggests that musicians have enhanced
brainstem encoding of speech in noise, which is coupled with
perceptual enhancement in hearing speech in noise (Parbery-
Clark et al., 2009a; Strait et al., 2012). The strong association
between brainstem representation of F0 in noise and percep-
tual performance on speech-in-noise has also been observed in
English-speaking non-musicians (Song et al., 2011). While it is a
matter of debate whether musicians indeed have enhanced abil-
ity to understand speech in noise compared to non-musicians
(Parbery-Clark et al., 2009b; Ruggles et al., 2014), Mandarin-
speaking amusics have shown reduced speech intelligibility in both
quiet and noise, with natural or flattened F0, relative to normal
controls (Liu et al., 2015). Although our current study did not
measure participants’ behavioral performance on understanding
speech in noise, our brainstem data (Figure 4; Table S3) revealed
largely normal FFRs to speech in noise in Cantonese-speaking
amusics as compared to controls, but with two exceptions. First,
controls showed larger first harmonic (F0) amplitudes in FFRs to
speech in noise than amusics [F(1,25) = 5.11, p = 0.033; Table
S3], indicating stronger subcortical spectral encoding of speech in
noise in controls relative to amusics. However, amusics demon-
strated shorter neural lags than controls in FFRs to Tone 1 in
noise [t(54) = –3.09, p = 0.003; Table S3], suggesting shorter
neural conduction time for speech in noise in amusics versus con-
trols. These mixed results, although interesting, may be due to
familywise Type I errors (false positives) from multiple compar-
isons, as no significant group difference was observed in the overall
ANOVAs using measures averaged across different tone and noise
conditions (Table 2). Further studies are required to examine the
relationship between amusics’ speech comprehension deficits in
quiet and noise and their subcortical and cortical representation
of speech in quiet and noise.

Despite demonstrating largely normal brainstem encoding of
speech and musical stimuli, a deficit in lexical tone identification
was observed for the current sample of amusics. This is consis-
tent with previous findings of impaired lexical tone processing in
Mandarin-speaking amusics (Nan et al., 2010; Jiang et al., 2012b;
Liu et al., 2012a). For Cantonese, it has been suggested that tones
with similar acoustic features, e.g., Tones 2 and 5 (two rising tones),

Tones 3 and 6 (two level tones), and Tones 4 and 6 (two low tones),
are in the process of merging into one single category due to the
ongoing sound change (Mok and Zuo, 2012; Law et al., 2013;
Mok et al., 2013). In our current tone identification task, con-
fusion matrices of amusics and controls suggested that amusics
were more likely than controls to confuse between these acousti-
cally similar tones, presumably due to their pitch discrimination
difficulty.

In line with previous findings of different performance of amu-
sics on implicit/pre-attentive versus explicit/attentive tasks and
conditions (Loui et al., 2008; Peretz et al., 2009; Liu et al., 2010;
Hutchins and Peretz, 2012; Mignault Goulet et al., 2012; Omigie
et al., 2012; Moreau et al., 2013), the current study observed a
dissociation between pre-attentive subcortical representation and
perceptual identification of lexical tones in amusia. This suggests
that amusics have difficulty mapping tonal patterns onto long-
time stored linguistic categories, despite having received sufficient
acoustic input of these tones at the brainstem level. This dis-
sociation suggests that amusia is a higher-level pitch-processing
disorder. It has been shown that higher-level processing of internal
representations of linguistic tones is implicated in the left inferior
frontal gyrus (Hsieh et al., 2001). Thus, amusics’ tone identifica-
tion deficits may be related to their structural abnormality in this
brain region (Mandell et al., 2007). Further studies are required
to examine how amusic tone-language speakers map tonal pat-
terns onto internalized linguistic representations during speech
comprehension.

Previous research has led to mixed results regarding the rela-
tionship between neurophysiological and behavioral processing
of complex sounds. In Bidelman et al. (2011b), Chinese listen-
ers demonstrated musician-like, enhanced brainstem encoding of
musical pitch compared to non-musicians, but similar to non-
musicians, they did not achieve musician-level performance on
musical pitch discrimination. Similarly, compared to English
musicians and non-musicians, Chinese listeners showed larger
MMN (mismatch negativity) responses to the within-category
difference between their native curvi-linear rising tone and a
strictly linear rising pitch, although they were not as accurate as
those non-native listeners in discriminating these within-category
tones (Chandrasekaran et al., 2009). Nevertheless, several other
studies have reported significant correlations between brainstem
responses and behavioral measures such as frequency discrim-
ination (Bidelman and Krishnan, 2010; Krishnan et al., 2010a,
2012; Carcagno and Plack, 2011; Marmel et al., 2013) and hear-
ing speech in noise (Parbery-Clark et al., 2009a; Song et al., 2011;
Strait et al., 2012). It is possible that the dissociation between neu-
ral and behavioral pitch processing in Chinese listeners observed in
previous studies was due to the nature of the stimuli used: unfamil-
iar musical pitches (Bidelman et al., 2011b) and within-category
tones (Chandrasekaran et al., 2009), which would naturally lead
to inferior performance of Chinese listeners (non-musicians)
as compared to musicians and non-native listeners. Using nat-
ural and behaviorally relevant lexical tones as stimuli, which
were neither unfamiliar nor within-category for native Can-
tonese listeners, the current study excluded the confounding factor
of stimuli but reached similar findings as in previous studies
(Chandrasekaran et al., 2009; Bidelman et al., 2011b). Our finding
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of the brain-behavior dissociation in the processing of lexical
tones in amusia requires further investigations into the interplay
between subcortical and cortical structures along the auditory
pathway, as our current results seem to suggest that, although
the amusic brainstem maintains detailed representations of lexical
tones, it does not lead to perceptual recognition of these tones at
the normal level.

A growing number of reports have suggested that FFR is not a
direct correlate of the pitch percept itself, but only reflects exoge-
nous stimulus properties, e.g., temporal information originated
from the auditory periphery (Bidelman et al., 2011b, 2013; Gockel
et al., 2011; Plack et al., 2014). On the other hand, the human
“pitch center,” which is located in lateral Heschl’s gyrus (HG) and
anterolateral PT (planum temporale) of the auditory cortex, has
been proposed to represent the percept of pitch (Bendor, 2012;
Griffiths and Hall, 2012; Plack et al., 2014). Our findings seem
to agree with these proposals, as amusics’ pitch-processing deficits
were not reflected in the brainstem, but were present at the percep-
tual/behavioral level in acoustic-to-phonetic mapping of lexical
tones. A recent study examining categorical perception of vowels
also showed that cortical but not brainstem speech representations
accounted for the acoustic-to-phonetic mapping of speech sounds
(Bidelman et al., 2013).

Finally, it is worth mentioning that the current amusics, being
exposed to six lexical tones in Cantonese, which is rare in the
world’s tone languages (Yip, 2002), may have developed a protec-
tive mechanism against brainstem deficits through development,
especially in terms of pitch encoding. Although subtle spec-
tral encoding deficits (F0 amplitude) for speech in noise were
observed for the current Cantonese-speaking amusics (but note
amusics’ quicker neural conduction time than controls for Tone
1 in noise; Table S3), it is possible that if we examined amu-
sics from non-tonal language backgrounds (e.g., English, French),
we would see salient pitch-encoding deficits in the amusic brain-
stem. However, a recent poster investigating brainstem responses
to dissonance in musical stimuli in French-speaking amusics
(Cousineau et al., 2014) also observed a trend for normal brain-
stem encoding of musical dissonance in amusia. Furthermore, a
recent psychoacoustic study reported that amusics showed normal
spectral and temporal coding of pitch in the auditory periphery
(Cousineau et al., 2015). Further studies are required to con-
firm these observations, and explore how the amusic brainstem
encodes more complex musical stimuli compared to normal con-
trols, using participants from both tone and non-tonal language
backgrounds.

In summary, the current study revealed a dissociation between
subcortical representation (normal) and behavioral identifica-
tion (impaired) of lexical tones as well as intact brainstem
encoding of speech (in quiet and noise) and musical stim-
uli in Cantonese-speaking individuals with congenital amu-
sia, a disorder of musical and linguistic pitch processing.
Future studies are required to investigate how and where
along the auditory pathway acoustic features of speech/music
sounds start to transform into internalized linguistic/musical
percepts in the amusic brain, and how the amusic brainstem
encodes more complex musical stimuli compared to normal
controls.
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