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INTRODUCTION

A key feature of normal neonatal EEG at term age is interhemispheric synchrony (IHS),
which refers to the temporal co-incidence of bursting across hemispheres during trace
alternant EEG activity. The assessment of IHS in both clinical and scientific work
relies on visual, qualitative EEG assessment without clearly quantifiable definitions. A
guantitative measure, activation synchrony index (ASl), was recently shown to perform
well as compared to visual assessments. The present study was set out to test whether
IHS is stable enough for clinical use, and whether it could be an objective feature
of EEG normality. We analyzed 31 neonatal EEG recordings that had been clinically
classified as normal (n = 14) or abnormal (n = 17) using holistic, conventional visual criteria
including amplitude, focal differences, qualitative synchrony, and focal abnormalities. We
selected 20-min epochs of discontinuous background pattern. ASI values were computed
separately for different channel pair combinations and window lengths to define them
for the optimal ASI intraindividual stability. Finally, ROC curves were computed to find
trade-offs related to compromised data lengths, a common challenge in neonatal EEG
studies. Using the average of four consecutive 2.5-min epochs in the centro-occipital
bipolar derivations gave ASI| estimates that very accurately distinguished babies clinically
classified as normal vs. abnormal. It was even possible to draw a cut-off limit (ASI~3.6)
which correctly classified the EEGs in 97% of all cases. Finally, we showed that
compromising the length of EEG segments from 20 to 5 min leads to increased variability
in ASl-based classification. Our findings support the prior literature that IHS is an important
feature of normal neonatal brain function. We show that ASI may provide diagnostic value
even at individual level, which strongly supports its use in prospective clinical studies on
neonatal EEG as well as in the feature set of upcoming EEG classifiers.

Keywords: interhemispheric synchrony, biomarker, preterm infant, brain monitoring, neonatal EEG

function since the seminal studies in the late 1970s (Lombroso,

Recent progress in basic neuroscience, neuroimaging, and neona-
tal care has raised interest in the understanding of physiological
and pathological processes in the preterm and neonatal brain.
Electroencephalography (EEG) is a non-invasive and sensitive
tool for evaluating brain function in the neonatal period. A
key component in early brain functional development is the
emergence of functional networks, the long range connectivity
between and within brain hemispheres, which lay the basis for
the development of neurocognitive capabilities (Uhlhaas et al.,
2010; Lubsen et al., 2011; Omidvarnia et al., 2014). In this con-
text, it is intriguing that synchrony between hemispheres has been
considered as an important feature of normal neonatal brain

1979).

Clinical classification of spontaneous neonatal EEG is
traditionally based on visual assessment of multiple features:
continuity, quality of sleep wake organization, interhemispheric
synchrony (IHS), symmetry and amplitude. However, visual
EEG interpretation requires expertise, and there are no objec-
tive standards for classification schemes, nor any other established
method to yield appropriate diagnostic accuracy to support mod-
ern neuroscience or evidence based medicine. This has greatly
compromised comparisons of results between different stud-
ies. A quantitative analysis of EEG activity, including automated
analysis of selected features of cortical function, could create
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an objective and appropriate classification scheme for neonatal
EEG. Moreover, it could also support and accelerate visual EEG
analyses in medical centers without access to highly skilled EEG
interpretation.

Visual estimation of IHS is based on observation of co-
incidence of bursts in spontaneous background EEG activity dur-
ing tracé alternant/discontinue (Holmes and Lombroso, 1993).
IHS is interpreted as a sign of connectivity or functional interac-
tion between hemispheres and is hence considered an important
feature of normal brain function, resulting from the development
of callosal connections (Kostovic and Jovanov-Milosevic, 2006;
Dudink et al., 2008).

Despite the long and widespread clinical use of IHS, there is no
physiologically plausible definition of IHS for visual EEG reading
(for more details, please see Risinen et al., 2013). A quantita-
tive measure for IHS, the activation synchrony index (ASI), was
recently developed by Risinen et al. (2013). The ASI is based
on statistically measuring the temporal delay between two sig-
nal energies, and was shown to correlate with visually rated IHS
grades. It was also shown to clearly outperform other methods
proposed for the same purpose in the recent literature (Réisinen
etal., 2013).

Our ultimate aim is to use ASI more widely as a clinical
biomarker or as a feature in EEG classifiers, which poses special
requirements for individual stability. In addition, the analysis set-
tings such as the epoch lengths need to be practical with respect
to clinical reality, where obtaining longer high quality epochs is
often challenging due to intermittent, trivial artifacts. The aim of
this study was to test the ability of the ASI to distinguish nor-
mal and abnormal neonatal EEG recordings. Therefore, we first
defined the optimal ASI parameters to maximize its intraindivid-
ual and technical stability, and then tested ASI as an input for a
classifier to identify abnormal EEG activity.

MATERIALS AND METHODS

The present study consisted of two discrete phases (see Figure 1).
First, we optimized the intraindividual stability of ASI. The ear-
lier development of AST had aimed to optimize parameter settings
for maximal distinction between asynchrony grades as well as
robustness against artifacts. Our present study continued ASI
optimization by searching for EEG epoch lengths and channel
derivations that would strike a balance between technical reli-
ability and clinical practice. For clinical practice, an important
consideration is that the algorithm should work equally well on
EEG samples either with longer continuous epochs or with mul-
tiple shorter epochs. In addition, we tested our optimized ASI
protocol on a new EEG dataset that had been classified using con-
ventional clinical criteria, with the aim of seeing how well ASI
alone is able to distinguish normal and abnormal EEG record-
ings. This latter aim is also a rigorous test of the conventional,
albeit quantitatively untested assumption, that interhemispheric
asynchrony would be an essential property in the abnormal EEG
near term age.

SUBJECTS AND EEG RECORDINGS
A total of 31 neonatal EEG traces [postmenstrual age (PMA)
36-42 weeks], were retrospectively selected by an expert (A.D.)

to assess the spontaneous background EEG activity. These EEG
recordings were collected from a larger EEG dataset, recorded
for clinical purposes. All EEG data were recorded at 256 Hz with
a video-synchronized EEG device (BRAIN RT, OSG equipment,
Mechelen, Belgium). After skin preparation (Nuprep Gel), 10-17
Ag/AgCl cup electrodes were placed according to the interna-
tional 10-20 standard locations. The reference electrode was Cz.
Electrode impedance was below 10 k2 at the start, and the sig-
nal quality was monitored visually throughout the recording. The
minimum recording time was 4h to record multiple vigilance
states. The protocol was reviewed and approved by the relevant
Ethics Committee of the University Hospitals of Leuven, Belgium.

The EEG records were reviewed for clinical purposes by two
independent raters (A.D. and K.J.) who were not aware of the
later use of the EEG for this study. Hence, they were fully blinded
to both the overall design as well as the numerical ASI results.
The clinical assessment is based on holistic, conventional visual
criteria (see Table 1 in Supplementary Material). If there was
any difference in the interpretation of an EEG, a consensus was
reached after re-evaluation (2 patients, Table 1 in Supplementary
Material). The following parameters were assessed on the whole
measurement, according to standard developmental features in
preterm and term EEG (Scher et al., 2005; André et al., 2010;
Shellhaas et al., 2011; Hayashi-Kurahashi et al., 2012): (1) brain
activity cycling as being normal or abnormal for the age; (2)
grade of continuity; (3) age-specific landmarks: amplitude, dis-
organization, and dysmaturation patterns; and (4) qualitative
synchrony in quiet sleep. The overall clinical classification of the
EEG recording as normal (n = 14) vs. abnormal (n = 17) was
based on observing at least two features that were not appropriate
for age.

ACTIVATION SYNCHRONY INDEX

The ASI algorithm implemented in Matlab is described in full
detail in the original publication (Risinen et al., 2013). It takes
two EEG-signals (e.g., bipolar derivations in left and right hemi-
spheres, respectively) as inputs to be processed through four main
stages (Figure 1C): (1) preprocessing; (2) computation of signal
amplitude envelope; (3) quantization of the amplitude envelope;
and (4) calculation of the ASI value, a single scalar value, from
the temporal relationship of the two quantized signals. Technical
details of the algorithm can be found in the Supplementary
Material. For as long as the peaks in energy envelopes are tem-
porally co-incident (clinically perceived as “synchronized”), their
dependency is highest at zero lag and diminishes with increasing
relative lag between the two channels, thereby leading to a high
ASI value. On the other hand, lack of temporal co-incidence, the
signature of low-synchrony, will result in low ASI (for example
signals, see Figure 1B or Risinen et al., 2013).

PARAMETER OPTIMIZATION

The prior work on ASI development defined the main param-
eter settings, the most important of which appeared to be the
definition of the frequency band, and the weighting of higher
frequencies (a.k.a. “pre-emphasis”). These yielded an ASI that
can discriminate between different visually rated IHS grades, and
which clearly outperforms the other methods proposed earlier in
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FIGURE 1| (A) Schematic overview of the presented method. (B) quiet sleep epochs are subdivided into shorter epochs of 2.5, 5,
EEG tracks with Normal and Abnormal synchrony. (C) Schematic and 10 min for analysis, which gives respectively AS/2.5, ASI5, and
view of the ASI algorithm (Résdnen et al, 2013). (D) Two 10-min ASI10 values.

the literature (Risinen et al., 2013). However, it was not shown
(1) how stable the ASI is technically and physiologically within an
individual; (2) what window length would allow the most practi-
cal setting in clinical practice where selecting longer data epochs
is always challenged by the intermittent, trivial artifacts; and (3)
which of the bipolar EEG derivations would produce the best
results.

Stability over time

It is commonly assumed by clinicians that IHS is a fairly stable
property of a given brain function, at least at the scale of multi-
ple hours. Thus, the IHS measure should be comparable between
successive sleep cycles, and at least between few-minute epochs
within a given QS period. Theoretically and physiologically think-
ing, it is also possible, and may even be more likely, that subtle
fluctuations occur in the IHS over time. The clinically required
intraindividual stability of our measure by a test-retest paradigm
is technically straightforward, but the differences to be seen in
repeated measures are affected by multiple factors. First, there is a
numerical uncertainty in the measure itself when recorded from
typically noisy neonatal recordings. Second, the feature quanti-
fied by ASI may change due to subtle fluctuations in brain state

at multi-minute scale. The former possibility is typically tackled
by using longer data epochs, while the latter possibility is better
assessed by looking at multiple shorter data epochs. Hence, we
decided to study the whole range of epoch lengths and numbers
that we felt could be practical in future clinical implementations.

To this end, we divided the original 10-min data epochs into
10, 5, and 2.5-min epochs, and examined ASI in each. The aim
was to define the epoch length with the smallest possible intra-
patient deviations. This was assessed by searching for the lowest
mean-squared difference (MSD) between the (average) ASI value
of the first 10-min epoch (ASI;) and the (average) ASI value
of the second 10-min epoch (ASL). In formula 1 this differ-
ence is squared, summed and averaged over all patients, with n
representing the number of patients.

1 n
MSD = ;Z(ASIL,- — ASI ;) (1)

i=1

MSD measures the difference between the different ASI values
within an individual. The optimal ASI parameters were expected
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to give the lowest MSD. In this way, a MSD minimization prob-
lem is solved as a function of different channel pair combinations
and different ASI window lengths.

A further issue to investigate was the stability of ASI between
different quiet sleep epochs. In clinical practice, it may not always
be possible to find long epochs of undisturbed and good sig-
nal quality epochs of quiet sleep. Therefore, more data could be
readily gathered from successive sleep cycles. Hence, we analyzed
either continuous 20-min epochs from one cycle or two 10-min
epochs from successive cycles.

ASI window length

ASI is a statistical estimate of synchrony, and its numerical
accuracy (“technical reliability”) will increase when the analysis
epochs get longer. Our earlier work showed that an ASI estimate
becomes more stable when the epochs grow longer than about
2min (Rdsdnen et al., 2013). Longer EEG epochs are needed to
statistically quantify temporal co-incidence of pseudoperiodic,
intermittent cortical activity. In this work, we searched for the
optimal window by calculating the ASI feature for window lengths
of 2.5, 5, and 10 min. To have a fair comparison between differ-
ent window lengths, we studied two manually-selected epochs of
10 min. First, we divided each epoch into 4 equal parts of 2.5 min
from which we separately computed the ASI value (ASI2.5), and
then averaged them (Figure 1D upper part). Similarly, the 10-min
epoch was split into two equal parts of 5min and the ASI val-
ues (ASI5) were estimated and averaged (Figure 1D middle part).
These average ASI values were compared to the single ASI value
from the 10-min analysis (ASI10) (Figure 1D lower part).

Channel pair combination

IHS is traditionally analyzed from bipolar derivations (Lombroso,
1979) rather than from individual EEG signals (Omidvarnia et al.,
2014). To comply with this idea, we also analyzed ASI from
symmetric bipolar derivations. We wanted to define the deriva-
tion with least intraindividual variability. Hence, we computed
ASI from the following symmetric combinations; Fp; C3-Fp,Cy,
C301 —C402, Fp1 01 —szOz, Fp1T3—Fp2T4, T301 —T402.

CLASSIFICATION

After optimization of the ASI parameters, we examined the abil-
ity of ASI to distinguish normal and abnormal EEG recordings
classified by clinical criteria. To this end, we used 20 min of data,
channel pair combination C30;-C40;, and 2.5-min ASI analysis
windows (ASI2.5). This gave us two average ASI estimates in each
patient, derived from the two 10-min epochs (Figure 1D upper
part). The lower of these was used to represent the lowest possible
synchrony level in the given patient (ASI juss)-

ASI s = minimum (mean; ASI2.5, meany ASI2.5)  (2)

Next, we searched for a threshold that could distinguish normal
and abnormal EEG records. The optimal ASI settings were found
to yield nearly non-overlapping distributions of ASI values in the
two groups, so the ASI threshold can be readily drawn between
the distributions. However, we then wanted to see how much ASI-
based classification would be compromised if the user has only a

limited amount of data available for the ASI computation. In this
situation, distributions between ASI values in the two groups are
overlapping. Hence, all thresholds will have their own classifier
performance, i.e., levels sensitivity and specificity. Their depen-
dence on the threshold can be readily visualized using receiver
operating characteristic (ROC) curves that were computed to
assess the classifier performance as a function of thresholds.

AGE DEPENDENCE OF ASI

Finally, we studied the dependence of ASI on PMA to know
whether it should be taken as a confounder in babies near term
age. It is known that both anatomical and electrical cortico-
cortical connectivity increases toward term age (Kostovic and
Judas, 2010; Omidvarnia et al., 2014). The previous study with
ASI showed a modest age-dependence in a much younger group
of preterm babies compared to our present group of fullterm
newborns (Risidnen et al., 2013). This could be a biologi-
cal confounder when using ASI on babies with a wider age
range.

RESULTS

OPTIMAL PARAMETERS FOR ASI STABILIZATION

In Figure 2, we show the ASI comparison of 10-min epochs for
two clinically relevant channel pair combinations (Fp; C3-Fp,Cy
and C30,-C40,). Visual inspection of the scatter plots shows that
least scatter is found for C30;-C40; in combination with smaller
ASI windows (2.5 min). Quantitation of the scatter with MSD
is summarized in Table 1 for all channel pair combinations and
ASI window lengths. Out of all channel pairs tested, C30,-C40;
yielded the lowest MSD values. Out of all combinations of ASI
windows tested, the average over 4 windows of 2.5 min led to the
lowest MSD.

Next, we tested how stable the ASI value is for different selec-
tions of epochs in the whole EEG recording. We could find
uninterrupted 20-min epochs of “artifact-free” quiet sleep in only
a few patients, while in most of them the EEG was interrupted
by arousals, movements or care procedures. Therefore, a scatter
plot is shown for the analysis of an epoch of the same quiet sleep
period (20 min) and of two epochs of different quiet sleep peri-
ods (2 x 10 min) (Figure 3). There is no significant difference in
the MSDs between the epochs taken from the same vs. different
quiet sleep epochs (mean MSD_subsequent = 1.061 and mean
MSD_separated = 1.066, respectively; p = 0.12; Mann—Whittney
U-test).

CLASSIFICATION

Using the two epochs of 10min, we plotted the ASI values
using the best channel pair (C301-C402) and window lengths
(4 x 2.5min), and labeled them according to clinical EEG judg-
ments. As shown in Figure 4, the distributions of ASI values in
the two groups are distinct. Comparison of the smaller of the
two ASI values in each baby shows that the difference is highly
significant (p < 0.001, t-test). A tentative cut-off set at ASI =
3.6 gives only one misclassified normal baby (pt #28) having an
ASI below that limit, yielding a very high classification accuracy
(96.77%). This patient was clinically classified as normal due to
age-specific transients interpreted as “borderline” for the PMA
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age of 37.6 weeks (i.e., “immaturity”), which as a clinical finding
does not need to be associated with globally abnormal function
detected by ASL

After observing such high classification accuracy using 2 x
10 min EEG epochs, we finally wanted to do a post-hoc analysis
to see how the classification accuracy is affected by reduction in
EEG data. This is important for clinical studies where the ideal
20 min of good quality EEG from quiet sleep is usually not avail-
able. Hence, we systematically examined a range of EEG lengths
(5, 10 or 20 min), ASI window lengths (2.5, 5, and 10 min), as
well as the way of combining the ASI values from multiple win-
dows. Instead of attempting formal statistical comparisons, we
aimed to provide useful practical answers by visually analyz-
ing how the ROC curves change when the underlying data and

analysis settings are changed. As an expected finding in the visual
comparison of ROC curves, using more EEG data led to a gen-
erally better overall classification (Figure5). We also observed
that the length of the ASI window made a difference such that
shorter ASI windows tended to yield higher classification accu-
racy. Moreover, the way of combining ASI estimates of multiple
windows (mean vs. minimum vs. maximum) also appeared to
affect the classification accuracy. Taking the mean ASI value from
several windows seemed to produce more accurate classifications.
However, qualitative comparison of ROC curves based on subse-
quent 5-min epochs showed that the classification accuracy varies
considerably.

AGE DEPENDENCE OF ASI
ASI was not found to significantly correlate with PMA in infants
near term age (PMA >36 weeks) (Figure 6), and the slopes of the
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Table 1 | Mean squared difference (MSD) for different channel pairs and different ASI analyzing window lengths shown as an average for all 31

patients.
Fp1C3-szC4 C301 -C402 Fp101-Fp202 Fp1T3-Fp2T4 T301 -T402 Mean MSD_ch

ASI_10min 4.84 3.58 6.05 4.76 5.22 4.89

ASl avg_4 x 2.5min 2.99 1.06 1.63 1.15 2.02 177

ASl avg_2 x 5min 9.90 4.23 8.60 5.51 5.25 6.70
ASlavg_2 x 2.5min 3.21 2.22 3.82 2.91 3.74 3.18
ASI_5min 759 4.71 5.71 5.38 9.05 6.49
Mean_MSD ASIwindows 5.71 316 5.16 3.94 5.06

Grand averages of the MSD values over all channel pair combinations and window lengths are shown as well. Examples shown in Figure 2 are underlined in this

table.
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be applied to distinguish normal and abnormal EEG throughout
this age range, and no correction for PMA is needed.

DISCUSSION

Our study shows that THS is a very robust feature of normal
neonatal EEG, and that it can be readily quantified by using the
novel metric ASI. We further show that ASI is able to reach the
same classification that has been traditionally reached by a skilled
EEG clinician when combining multiple visually-identified signal
features. To the best of our knowledge, this study provides the first
quantitative evidence in support of the old clinical thinking that
disturbance of neonatal brain function is readily reflected in the
interaction between hemispheres. We extend the earlier work with
ASI by providing detailed assessment of how ASI performance is
affected by variations in data length or analysis settings. As a con-
clusion, the results provide guidance for future employment of
ASI in clinical work and research as well as in the development of
automated EEG classifiers.

INTRAINDIVIDUAL STABILITY AND MEASUREMENT STABILITY:
SELECTION OF SMALL EPOCHS

We found that the most stable ASI value was obtained by using
the mean of multiple short-term ASI values, each estimated from
a 2.5-min epoch. Physiologically, this observation suggests that
long-range temporal correlations in the IHS are limited over time.
Temporal correlations in amplitude fluctuations over several min-
utes have been shown in the adult brain (Linkenkaer-Hansen
et al., 2001). Our recent observations in neonatal EEG datasets
suggest, however, that only limited temporal correlations can be
seen in the neonatal EEG signals (Matic et al., submitted), indi-
rectly supporting the idea that ASI analyses may also best operate
when using limited window lengths. Clinically and methodolog-
ically, using short segments offers several advantages in future
studies and for possible implementation in brain monitoring

algorithms. It is relatively easy to find several 2.5-min long undis-
turbed and sufficiently high quality (cf. Risinen et al., 2013) EEG
segments from neonatal recordings, while requesting longer (e.g.,
10 min) continuous and undisturbed EEG epochs would pose a
serious limitation in the future use of ASI. We suggest that the
minimum duration of the recordings should be long enough to
improve the statistical value and to overcome technical artifacts
and subtle fluctuations in brain state at the multi-minute level.
To this end, one should aim to collect a total of up to 20 min of
quiet sleep data, which may come from successive sleep cycles.
Reduction of the total data to 10 min will compromise indi-
vidual diagnostic accuracy; however, it would only moderately
decrease the utility of ASI at group level analyses (e.g., as an early
biomarker).

CHANNEL PAIR COMBINATION AND CUT-OFF VALUE

We found that the best intraindividual stability is obtained from
using central-occipital derivation. Despite decades of clinical
visual assessment of THS, there are no established practices as
to which derivations should be used. A common clinical expe-
rience is that temporal co-incidence of activity bursts varies
between brain areas, especially when the IHS is decreased in
sick babies. It is also common to have disturbing movement
and muscle artifacts in the frontal and temporal channels. Our
finding suggests that ASI is optimally measured from a deriva-
tion that, by co-incidence, also happens to be usually clean of
artifacts. This helps implementation of ASI in future studies.
Physiologically, this finding is compatible with current knowl-
edge of neonatal brain networks. It is well established that
anatomical neonatal networks grow first in post-central regions
(Kostovic and Judas, 2010), and that neonatal EEG activity mostly
occurs in posterior regions (André et al., 2010). It was also
shown recently that there is a prominent posterior-parietal net-
work in the newborn brain created by long-range amplitude
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correlations (Omidvarnia et al., 2014), which as a coupling
mechanism comes close to what is measured by ASI. Taking
these together, our observations suggest that the post-central
networks may be the key driver of interhemispheric connectiv-
ity, and the traditionally observed loss of IHS in sick babies is
probably due to changes in these posterior networks. Further
studies are warranted to study whether different structural
pathologies could give rise to altered IHS in a spatially selective
manner.

AGE INDEPENDENCY OF ASI

We found a clear cut-off across the whole age range of babies,
which suggests that future ASI implementation can disregard
PMA when studying babies near term age. The younger infants
in our group (PMA 36-38 weeks) showed more interindividual
variability, which may reflect the as yet poorly established brain

networks at that age. It has been shown that both the anatom-
ical growth of callosal connections (Kostovic and Judas, 2010)
and the appearance of visually observed IHS (Tharp et al., 1989;
André et al., 2010) take place only a few weeks earlier, up to
the 35th week of gestation. It is commonly seen in the clinic
in these younger babies (data not shown) that the onset of
quiet sleep may be markedly asynchronous and that synchrony
increases within the quiet sleep period. Such dynamics could
arise from functional instability in the young networks, which
would readily explain a larger variability both within and between
individuals.

FUTURE DIRECTIONS

Finding a high correlation between ASI and the traditional
clinical visual EEG classification suggests that ASI may pro-
vide an objective and quantified global biomarker for neonatal

Frontiers in Human Neuroscience

www.frontiersin.org

December 2014 | Volume 8 | Article 1030 | 7


http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

Koolen et al.

Activation synchrony index as classifier

5.5 ¢ a slope = 0.09
¢ e p=0087
5 L
¢ s ¢
S5 ¢ .
= 45 . S
o L 4
Qg *
o
n
<35
=
<
5] ~—
g 3 a, slope =-0.11
=0.249
2.5 P
2
36 38 40 42 44
PMA
FIGURE 6 | ASl value is independent of postmenstrual age of the term
infant (PMA >36 weeks). Black labels represent healthy patients with
synchronous patterns; gray labels are patients with asynchronous patterns.
The mean ASI value is calculated for manually-selected 20-min periods
(8 x 2.5min).

brain function. Its design makes it physiologically reasoned; our
current work makes it clinically benchmarked; and its technical
properties make it transparent and straightforward to imple-
ment. Hence, it holds promise for becoming a useful feature in
future clinical work and research, as well as in the construc-
tion of automated classifiers of neonatal EEG. In this context,
finding quiet sleep periods in an automated way would be
beneficial.

This research has potential value, as prematurity-associated
injury of the subplate, early extrauterine environmental stim-
ulation, and acquired brain lesions may induce a structural
adaptation of synapses and, consequently, alter the normal dif-
ferentiation of cortical connectivity or even disruption of the
cortical network development. These altered brain functions,
expressed as levels of inter- and intrahemisperic synchrony, may
reflect transiently or permanently disturbed connectivity of the
cortico-cortical and cortico-basal ganglia connections, even in
the absence of standard neuroimaging abnormalities. Further
work for clinical research may include ASI as an outcome
parameter in standardized neurodevelopment follow-up data and
may also include quantitative analyses of synchrony in preterm
and term infants, to identify normative and altered patterns of
development.
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