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INTRODUCTION

Neural responses demonstrate evidence of resonance, or oscillation, during the production
of periodic auditory events. Music contains periodic auditory events that give rise to
a sense of beat, which in turn generates a sense of meter on the basis of multiple
periodicities. Metrical hierarchies may aid memory for music by facilitating similarity-based
associations among sequence events at different periodic distances that unfold in longer
contexts. A fundamental question is how metrical associations arising from a musical
context influence memory during music performance. Longer contexts may facilitate
metrical associations at higher hierarchical levels more than shorter contexts, a prediction
of the range model, a formal model of planning processes in music performance (Palmer
and Pfordresher, 2003; Pfordresher et al., 2007). Serial ordering errors, in which intended
sequence events are produced in incorrect sequence positions, were measured as skilled
pianists performed musical pieces that contained excerpts embedded in long or short
musical contexts. Pitch errors arose from metrically similar positions and further sequential
distances more often when the excerpt was embedded in long contexts compared to
short contexts. Musicians' keystroke intensities and error rates also revealed influences
of metrical hierarchies, which differed for performances in long and short contexts. The
range model accounted for contextual effects and provided better fits to empirical findings
when metrical associations between sequence events were included. Longer sequence
contexts may facilitate planning during sequence production by increasing conceptual
similarity between hierarchically associated events. These findings are consistent with the
notion that neural oscillations at multiple periodicities may strengthen metrical associations
across sequence events during planning.

Keywords: memory retrieval, sequence learning, music performance, meter, planning

extends incrementally during performance to a subset of sequence

Whether dialing a telephone number, playing a musical instru-
ment, or carrying out a surgical operation, people learn and
remember the serial order of the actions they produce. Early
theoretical accounts of sequence production focused on the
role of simple event associations, which triggered the succes-
sive actions to be produced in a sequence (Watson, 1920;
Wickelgren, 1965). Sequences are often produced too quickly,
however, for individuals to rely on feedback for production
of upcoming events (Lashley, 1951). The presence of repeated
sequence elements, such as musical pitches, also requires a mech-
anism by which multiple paired associations for the same item
could be distinguished, which association theories lack (Bad-
deley, 1968; Henson et al.,, 1996). It is therefore more likely
that performance is guided by a mental plan: internal represen-
tations that specify which and when different sequence events
must be performed (Miller et al., 1960; Schank and Abelson,
1977).

Most modern theories of serial order in sequence produc-
tion propose that mental planning or preparation of events

events (Rumelhart and Norman, 1982; Dell et al., 1997; Palmer
and Pfordresher, 2003; Pfordresher et al., 2007). In incremen-
tal frameworks, producers’ access to subsets or increments of
sequence events evolves over the course of production, and
incremental planning co-occurs with execution. Retrieval of
events from memory in the correct serial order is achieved by
stepping in cascading fashion through a series of activation-
based incremental representations (Houghton, 1990; Burgess
and Hitch, 1992; Palmer and Pfordresher, 2003; Pfordresher
et al., 2007). The success of incremental models is noted in
speech and music (Dell et al., 1997; Palmer and Pfordresher,
2003), in which complex hierarchical relationships exist among
sequence events. Incremental models for planning of speech
and music are contextual; the contents of an incremental plan
are defined for events relative to the context in which they
occur.

Although contextual relationships can aid memory for
sequence events, the context can also contribute to forgetting.
As the number of elements in a list context increases, the
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accuracy with which the list is serially recalled decreases, when
list contents are ordered randomly (Miller, 1956; Crannell and
Parrish, 1957) and less so when they are structured, as in music
(Finney and Palmer, 2003). List length effects on forgetting have
been attributed to the decay of list information with the pas-
sage of time (Bjork and Whitten, 1974; Crowder, 1976; Neath,
1993; Brown et al., 2000), interference of later list items with
previous list items that are held in working memory (Nairne,
1990; Henson, 1998; Farrell and Lewandowsky, 2004), or displace-
ment of previous list items by new ones (Waugh and Norman,
1965; Cowan, 2001). Although hierarchical similarity relation-
ships among sequence events can reduce list length effects, longer
structured lists are generally more difficult to remember than
shorter lists.

Contextual relationships among sequence elements are often
described in terms of hierarchies, or multi-leveled associations.
Hierarchical relationships may speed short-term recall processes
by reducing working memory demands (Houghton and Hartley,
1995; Schneider and Logan, 2007). Music performance is a classic
example of serial ordering behavior and provides a fertile testing
ground for investigations of sequential planning (Palmer, 2005).
Musical meter, in particular, may influence planning during
production. Musical meter refers to a perceived alternation of
strong and weak accents that recur at different periodicities in
musical sequences to form a metrical hierarchy (Lerdahl and
Jackendoff, 1983). Figure 1 shows the accent strength of each
event in a musical sequence, predicted from the event’s place-
ment in a metrical grid. The accent strength of each event is
indicated by the Xs above the music notation. Musical events
that possess the same metrical accent strength (i.e., belong to the
same metrical hierarchical level) are perceived as more similar
(Palmer and Krumhansl, 1990; Palmer and van de Sande, 1993).
Performers tend to mark events aligned with varying degrees
of metrical accent strength through variations in timing, inten-
sity, and articulation (Drake and Palmer, 1993), and they are
also more accurate in producing duration patterns that match

a metrical framework than those that do not match as well
(Povel, 1981; Essens and Povel, 1985). Thus, several sources
of evidence suggest that meter serves as a hierarchical frame-
work that aids the planning and execution of musical events in
performance (Palmer and Pfordresher, 2003; Pfordresher et al.,
2007).

Serial ordering errors, in which intended sequence events
are produced in an incorrect order, serve as evidence that
multiple events are simultaneously accessible in memory dur-
ing production. Serial ordering errors have been studied exten-
sively in speech (cf. Boomer and Laver, 1968; MacKay, 1970;
Garrett, 1980; Dell, 1986; Bock, 1995) and in music (cf.
Palmer and van de Sande, 1993, 1995; Palmer and Drake,
1997; Drake and Palmer, 2000; Palmer and Pfordresher, 2003;
Pfordresher et al., 2007). Errors in both domains tend to reflect
interactions among intended sequence events that are simi-
lar on structural dimensions (MacKay, 1970; Garrett, 1975;
Dell and Reich, 1981). In music performance, for example,
serial ordering errors occur often between events that have
similar amounts of metrical accent (Palmer and Pfordresher,
2003). Serial ordering errors also tend to arise from prox-
imal sequence distances; the probability of an item’s recall
in a particular serial position tends to decrease with dis-
tance from the correct position (MacKay, 1970; Healy, 1974;
Nairne, 1990). The distance between an item’s correct (intended)
position and its incorrect position in music performance
errors suggests that memory for an item is active over 3—4
sequence positions on average, with roughly equivalent pro-
portions of anticipatory and perseveratory errors (Pfordresher
et al, 2007). This span of sequence positions is referred
to as a performer’s range of planning (Palmer and van de
Sande, 1995; Palmer and Pfordresher, 2003). Proximity effects
on serial recall are attributed to both decay and interference
(MacKay, 1970; Palmer and van de Sande, 1993, 1995; Palmer
and Pfordresher, 2003; Noteboom, 2005; Pfordresher et al.,
2007).

. Tierd X X X X X
Metrical Accent Tiers x X X X X X X X X
Strength Tier2 x x x x X X X X X X X X X X X X
Tierl X X XX XX XX X XXX XX X XX X X X XXX X X X XX X XX X
==p S - = =
T ) = — - !
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4 = = =
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FIGURE 1 | Sample musical excerpt (in rectangle) with its associated long and short surrounding contexts. Metrical accent strengths according to a
4-tier metrical hierarchy are depicted by Xs. Events aligned with higher tiers receive stronger accent.
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Both structural similarity and serial decay processes in mem-
ory have been described in terms of neural mechanisms. Periodic
oscillations of neural firing have been modeled with nonlinear
dynamical systems to capture listeners” attentional entrainment
to quasi-periodic metrical structure seen in music (Large and
Kolen, 1994; Large and Palmer, 2002). Different neural oscillators
can operate at different metrical periods representing hierarchical
levels, and may track or predict upcoming musical beats (Large
and Jones, 1999). Serial decay of memory has been formulated
in terms of a reduction in the activation that spreads from node
to node within a neural network (Dell, 1986; Acheson et al.,
2011). To-be-recalled memories are thought be stored diffusely
throughout cortex and function by association (Fuster, 1997).
The range model of memory retrieval (Palmer and Pfordresher,
2003; Pfordresher et al., 2007) quantifies potential mechanisms
related to metrical similarity and serial decay in item selection and
retrieval, as well as performance accuracy, and predicts both rates
and types of serial ordering errors during music performance.
The model predicts a greater role of metrical similarity in the
planning of sequence events that are embedded in longer contexts
than in shorter contexts, due to increased activation of more
events aligned with higher (more distant) hierarchical levels. This
prediction contrasts with theories proposing greater interference
for events placed in longer contexts than in shorter contexts, in
concurrence with list length effects. In the following section, we
review the range model and its assumptions. We then describe
a study that tests these assumptions using measurements of
pianists’ serial ordering errors, keystroke intensities, and error
rates in a speeded music performance task.

THE RANGE MODEL OF PLANNING

The range model (Palmer and Pfordresher, 2003; Pfordresher
et al., 2007) is a contextual planning model that describes how
musical events are retrieved from memory during performance.
It predicts the accuracy of performance, as well as types of
errors that performers occasionally produce, based on planning
processes. The range model differs from other contextual
models of memory retrieval in two key ways. First, the model
predicts increased event activation according to similarity-based
measures of metrical accent. Second, the range model specifies
the relationship between the amount of context in a sequence
and the accessibility of the current event based on a parameter
that reflects constraints on short-term memory.

Contextual event activations in the range model (Palmer and
Pfordresher, 2003) are computed with the multiplication of two
distinct model components: a serial proximity component (S)
and a metrical similarity component (M). One range model
component contributing to the strength of contextual event
activations is the serial proximity component (S). The serial
proximity component predicts a graded decrease in activation of
contextual events as the distance between the current event and
the contextual events increases. The most active contextual events
are located at positions closest to the current event and the least
active at positions furthest away. Contextual activations (Sy) are
modeled by the equation

Sy = a(xl/n (1)

where a is a free parameter that ranges from 0.8 < a < 1.0,
representing constraints on working memory that can change
with development and task-specific memory demands. The dis-
tance (x) is the number of events between the current event and
another sequence event; the contextual activations are weighted
by the serial distance between them. The ¢ parameter, limited
to durations typical of musical sequences, 0.1 < t < 2.0 s,
represents the duration of a single event and is determined by
production rate (interonset interval (IOI), in s). As the parameters
t or a decrease, the serial component predicts a faster drop-
off in activation strength with sequence distance. An important
implication is that events surrounding the current event are less
active when events are produced at faster rates (smaller values of
t) or with higher constraints on working memory (smaller values
of a). The model assumes that event activations increase as tempo
slows (larger t) because more time is available for performers to
retrieve information about the surrounding context while prepar-
ing events for production, as supported by the fact that errors tend
to arise from nearby contextual positions at faster tempi.

Another range model component contributing to the strength
of contextual event activations is the metrical similarity compo-
nent (M). Metrical similarity between the current event and each
contextual event at distance x within one metrical cycle of position
iis computed as

MGy =1— Imi = mi x| )

mi + mj«

where M is a vector of similarity relations defined between
the current event and all sequence elements (see Palmer and
Pfordresher, 2003, for further information). Metrical accent
strengths m;, represented by metrical grids proposed for Western
tonal music (Cooper and Meyer, 1960; Lerdahl and Jackendoff,
1983), are indicated by Xs in Figure 1. The more metrical levels
(7) with which an event at position i is associated, the stronger
the accent. The ratio in Equation 2 reflects a generalized form
of Weber’s law; perceptual sensitivity to a difference between any
two metrical accents depends on the absolute difference between
the two events’ metrical levels. The metrical similarity computa-
tions, when averaged across current event positions, predict an
alternation of high and low metrical similarity across sequence
positions, which matches error proportions measured in pianists’
serial ordering errors (Palmer and Pfordresher, 2003).

There is often one metrical level that is more salient than
other metrical levels; this level is referred to as the tactus, and
is usually the level at which people clap or tap to the beat
(Lerdahl and Jackendoff, 1983). The range model’s metrical com-
ponent introduces a second free parameter, wj, that is applied
to the tactus and enhances the strength of accents at that par-
ticular level. The metrical weighting of all levels is computed
as a proportion that sums to 1 across levels. Therefore, if 4
levels were weighted equally, w; would take the value 0.25. If a
performance is judged to have a tactus, as is usually the case,
wj for that level is assumed to exceed 0.25. If the tactus were
metrical level 2 (j = 2), for example, the weights applied to
the levels 1, 3, and 4 would equal ((1—w,)/(k—1)), where k
represents the total number of metrical levels, to ensure that
weights across all levels sum to 1. The metrical accent strength
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of each event in a musical sequence, m;, is therefore determined
by multiplying the sum of the metrical accents present at each
position i and metrical level j, gj, with the weight, w;, at each
level:

k
m; = Z wj * gjj (3)
=1

The values of m; are shown in Figure 1 above a sample musical
piece from the current study, which were structured with 4
metrical levels in which the lowest level was the sixteenth-note
level, similar to previous studies (Palmer and Pfordresher, 2003;
Pfordresher et al., 2007).

Absolute activations of sequence events are computed by
multiplying the range model’s serial component (S) by the
metrical component (M). The nonlinear (multiplicative) rela-
tionship between serial and metrical components, shown in
Equation 4, describes serial ordering error patterns in music
performance better than other models, including an addi-
tive model (for further model comparisons see Palmer and
Pfordresher, 2003). Absolute activation values are assumed to be
updated in working memory for each event as the sequence is
produced.

Equations 1 to 3 predict the conditional probability that errors
arise from a given source, assuming that an error has occurred. In
order to model the probability of making an error, the absolute
activation of sequence events was defined in an extended version
of the range model (Pfordresher et al., 2007), which proposed
that the activation of the current event grows in proportion to
the squared sum of the contextual events’ activations:

Event gy = So * My = Z Sy * My (4)
x#0

This equation is based on the model’s theoretical assumption
that performers use information about the surrounding context
while retrieving the current event; the activation of the current
event is defined by the activations of surrounding events. Event )
refers to the current event, for which distance x = 0. Contextual
events (all events other than the current event) are specified by
x #% 0. On average, the model predicts equivalent activation for
contextual events before and after the current event, due to the
symmetrical relationship of the serial component.

The range model also makes predictions related to the length
of a sequence context that we test here. Figure 2 shows the
model’s predictions for the activation of the current event and its
surrounding events within a long context (left panel) and within
a short context (right panel) as a function of production rate. As
shown, the current event’s activation increases exponentially as
the production rate slows down (increased 101), and the increased
activation is steeper for long contexts than for short contexts.
Thus, longer contexts, which contain more metrically similar
events than shorter contexts, facilitate retrieval of the current
event.

RANGE MODEL PREDICTIONS

The assumptions of the range model yield several predictions
regarding the relative importance of highly accented metrical
events in longer musical contexts. First, longer sequence contexts
yield greater memory activation for the event currently being
produced and its contextual sequence events, resulting in a larger
range of planning for longer contexts. This prediction is shown in
Figure 2; as the sequence context grows, the activation of the cur-
rent event exceeds that of other context events. Second, increased
numbers of highly accented metrical events in longer contexts
lead to the prediction of greater metrical similarity overall, as a
function of the Weber’s law relationship in Equation 2. Third,
increased numbers of highly accented metrical events should
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FIGURE 2 | Range model predictions of absolute activation of the current
event and surrounding events by production rate (interonset interval
(I0l), in s) in a long sequence context (left panel: 33 events) and short
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sequence context (right panel: 17 events). Current and surrounding event
activations are based on averages across all excerpt positions. Model
parameters fixed for these predictions: a = 0.85, B =1, w; = 0.25.
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reduce error rates for events placed in longer contexts compared
to shorter contexts, due to increased metrical similarity.

We tested these predictions by manipulating the size of
sequence context available to performers as they produced musi-
cal sequences at fast and slow production rates. Pianists’ serial
ordering errors and tone intensities (corresponding to loudness)
were compared for musical excerpts that were placed in long
or short sequence contexts. We tested the prediction that the
mean range (distance between an error and its intended serial
position) was greater when excerpts were surrounded by long
contexts compared to short contexts. We also tested the prediction
that longer contexts should enhance hierarchical relationships
between events with similar metrical accent strength; therefore,
we expected greater metrical similarity for serial ordering errors
that occurred in excerpts placed in long contexts compared to
short contexts. Finally, we tested the prediction that pitch error
rates would show stronger effects of metrical hierarchies when
the excerpts were surrounded by long contexts compared to
short contexts. We fit the range model to mean and individual
subject data, and tested whether the model’s metrical component
accounted for increased influence of context on performance
errors.

MATERIALS AND METHODS

PARTICIPANTS

Twenty-six experienced adult pianists from the Montreal music
community (M age = 22.9 years, range = 18-31, SD = 7.7)
participated. Participants had a mean of 15.8 years of expe-
rience performing the piano (range = 7-29 years, SD =
7.6). All participants reported playing the instrument regu-
larly and none reported having any hearing problems. Of the
26 participants, 24 reported being right-handed and 2 were
ambidextrous; 16 were female. Participants provided written
informed consent, and the study was conducted in accor-
dance with the principles laid down in the Declaration of
Helsinki and approved by the McGill University Research Ethics
Board.

MATERIALS

Eight musical excerpts conforming to conventions of classi-
cal Western tonal music were composed for the experiment.
Each excerpt contained a total of 16 isochronous sixteenth
notes (8 for the right and 8 for the left hand) in 4/4 meter.
Each musical excerpt was then embedded in one long con-
text (12 sixteenth-note events preceding and 13 following)
and one short context (4 sixteenth-note events preceding and
5 following), which were composed of isochronous sixteenth
notes for each hand, followed by a final whole note; thus,
all sequence locations contained equivalent numbers of events
across excerpts, in order to examine effects of context at all
metrical positions. Figure 1 shows one of the excerpts (boxed)
placed in a long context (top) and a short context (bottom).
Embedding the same musical excerpt in long and short con-
texts permitted experimental control of the frequency of pitch
reoccurrence, progressions of harmony, changes in hand posi-
tion, and musical key. The 4 events immediately surround-
ing each excerpt were also identical across long and short

contexts. Half of the pieces were in major keys (two in C
Major, and one each in G Major and F Major) and the other
half were in minor keys, based on harmonic minor scales
(C minor, G minor, D minor, and A minor). To ensure that
pianists used the same finger movements for performances of
the same musical excerpt, finger numbers were provided within
the music notation above or below pitches where there was
ambiguity regarding finger choice (at the beginnings of the
sequences and at certain pitch change points). Similar to phone-
mic repetitions in tongue-twisters (Garrett, 1980), the musical
pieces established pitch contour and repetition patterns early in
the stimulus that were violated later in the stimulus. Pitches
repeated every 6 events on average and no pitches repeated
successively.

APPARATUS

The sequences were performed by pianists on a Roland RD-
700 electronic keyboard. All auditory feedback was delivered to
participants through AKG K271 Studio headphones, with an
Edirol Studio Canvas SD-80. A Classical A02 Pianold Sound
Canvas timbre was used for piano tones and a classical drum
timbre was used for metronomic clicks at the beginnings of trials.
FTAP computer software controlled the timing of metronome
ticks and recorded the pitch, timing, and MIDI velocity of all key
press events (Finney, 2001).

DESIGN AND PROCEDURE

In a within-subjects design, participants were presented with 2
contexts (long/short) x 2 tempi (fast/medium) x 4 test blocks
(1-4). To test the model’s predictions, each pianist performed
half of the excerpts placed in long contexts and the other half
placed in short contexts, and each pianist performed half of the
pieces at a medium tempo (225 ms per sixteenth-note IO, or 67
beats per minute) and the other half at a fast tempo (187.5 ms
per sixteenth-note IOI, or 80 beats per minute). The pieces
assigned to each tempo condition were counterbalanced across
participants. The experiment consisted of a learning phase, in
which participants learned all of the musical stimuli, and a test
phase, in which each piece was performed 2 times per block over
4 test blocks for a total of 8 test performances. In the test phase,
long and short contexts were grouped within each block and half
of the pianists performed excerpts surrounded by long contexts
first, and the other half performed excerpts surrounded by short
contexts first. Presentation order of long and short contexts was
manipulated in a Latin square design across blocks. Medium and
fast production rates alternated every trial and their order was
counterbalanced across participants. Thus, the test phase of the
experiment contained a total of 4 (excerpts) x 2 (tempi) X 4
(blocks) x 2 (repetitions) = 64 trials.

At the start of the session, participants completed a question-
naire about their musical background. Participants then com-
pleted the learning phase of the experiment. During the learning
phase, participants were presented with the music notation for
one of the musical stimuli (a musical excerpt embedded in a
context) and were asked to practice the piece, for a maximum
of 3 min, until they felt comfortable playing it at a slow tempo.
Participants were then asked to perform the piece using the
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notated fingering at a slow tempo of 429 ms per sixteenth-note
IOI (35 beats per minute), as indicated by an initial metronome
beat that sounded on the quarter note. Participants were given
three attempts to perform each piece without making any errors
at this slow tempo before moving on to the next piece. Piece
orders were counterbalanced; the same order was used for the
learning phase and the first block of the test phase of the
experiment. All participants were able to perform every piece
without errors at the slow tempo before continuing to the test
phase of the experiment. Thus, all pianists learned the 8 excerpts
in their associated contexts to a note-perfect criterion (pianists
were never presented with the excerpts in isolation). These slow
performances ensured that errors that occurred at faster tempi
were not due to sight-reading failures or incorrect learning of the
musical pieces.

Following the learning phase of the experiment, participants
were asked to perform the pieces at the faster tempi in a test phase
consisting of 4 experimental blocks. In each trial, participants
first heard a metronome click to establish the prescribed tempo,
which sounded at the quarter-note level throughout each trial.
Participants were instructed to perform the sequence at the tempo
indicated by the metronome using the notated fingering and, if
they made any errors, to continue playing and not stop or try
to correct them. They performed the piece twice in each trial,
pausing between repetitions, with the musical notation in view.
The entire experiment lasted 60 min, and participants received a
nominal fee for their participation.

DATA ANALYSIS

Pitch errors were identified by computer comparison of pianists’
performances with the information in the notated musical score
(Large, 1993; Palmer and van de Sande, 1993, 1995). The majority
of errors involved an intruder (unintended event) that replaced a
target (intended event, as determined by the musical notation).
The assumption that notated events were intended is based on
the participants’ error-free performances at the slower tempo.
The intruder could reflect a pitch that was coded as contextual
(present in the musical stimulus) or noncontextual (a pitch not
found anywhere in the musical stimulus). Contextual errors, also
called movement errors (Dell et al., 1997; Palmer and Pfordresher,
2003), were coded for distance in terms of the number of
intervening events (sixteenth notes) between the error and its
source (nearest same pitch) in the musical score. An exchange of
two successive pitches in serial order (for example, performing
A-D-E-C when the intended sequence was A-E-D-C) was coded
as a single contextual error (exchange), to be consistent with
previous coding systems. The coding of pitch errors was octave-
specific, and errors were coded in terms of the nearest pitch
in both frequency (pitch height) and time. Multiple incorrect
pitches with onsets occurring within the same small tempo-
ral window (94 ms, approximately half of the fastest tempo,
which was 187.5 ms IOI) were coded as a single error (a chord
error). Noncontextual errors consisted of deletions and additions
(additions of pitches that were not intended for anywhere in
the entire piece). Analyses of error intensities and error rates
were conducted on all errors (contextual and noncontextual)
produced within the stimulus excerpts. To avoid errors that

arose from sight-reading tasks or learning problems, any pitch
error that occurred in one of the 3 initial slow performances
during the learning phase and in more than half (4 or more
performances) of the total 8 test phase performances for the same
stimulus were excluded from analyses (n = 21, less than 1% of
all errors produced during the test phase). Although subjects
were instructed not to stop to correct errors, subjects occasionally
corrected errors; corrected errors were also excluded from all
analyses.

The relative frequency with which contextual errors arose
across sequence distances was examined in terms of a movement
gradient, a distribution of error frequencies as a function of the
distance of the nearest intended event from the current event
(Brown et al., 2000, 2007; Vousden et al., 2000). To measure
whether a context-dependent pattern of results would occur by
chance, we report error simulations based on random sampling
from the set of sequence pitches. The a-priori global alpha level
was 0.05. Greenhouse-Geisser corrections were performed for
analyses when necessary. Pianists’ MIDI key velocities (associated
with physical intensity and subsequent perceived loudness) were
analyzed in both correct and incorrect keystrokes for evidence of
metrical hierarchies.

RESULTS

Participants performed a total of 7,469 errors across the entire
musical sequences. The mean error rate per trial, which was
based on all pitch errors that occurred within participants’ per-
formances, was 0.10. Eighty percent of produced errors were
contextual errors (deletion errors were the most frequently pro-
duced noncontextual error). The mean production rate across
performances was 194.2 ms per tone (SD = 6.0 ms) in the fast
condition (prescribed rate = 187.5 ms) and 226.7 ms per tone
(SD = 3.8 ms) in the medium condition (prescribed rate =
225 ms). Thus, the participants performed at tempi close to those
prescribed.

Within the excerpts, a total of 2,736 errors occurred and
the mean error rate per trial was 0.12. The error rate per trial
for excerpts performed within long contexts was 0.13, and the
error rate for excerpts performed within short contexts was 0.11.
Eighty-one percent of errors produced within excerpts were con-
textual errors. Eighty-three percent of errors produced within
excerpts surrounded by long contexts were contextual, and 79%
of errors produced within excerpts surrounded by short contexts
were contextual. Ninety-three percent of all contextual errors had
an identifiable source within an absolute distance of 8 events (one
complete metrical cycle consisting of 8 sixteenth-note events).
Thus, the types of errors and error rate produced by pianists
within the excerpt were representative of those produced across
the entire sequence. All further analyses are reported on the
performances of the embedded musical excerpts.

METRICAL HIERARCHIES
Correct tone intensities
We tested the hypothesis that longer contexts would increase the
salience of metrical levels by evaluating tone intensities in terms
of their metrical accent strength. Figure 3 shows the mean MIDI
tone intensities of correct excerpt tones that received different
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metrical accent strengths. A 2 (context) x 2 (tempo) X 4 (metrical
accent) ANOVA indicated a main effect of metrical accent on the
intensity with which tones were produced within the excerpts,
Fi75) = 68.66, p < 0.001. Tones produced at more strongly
accented positions were performed with greater intensity than
tones produced at more weakly accented positions (Tukey HSD =
1.62, & = 0.05), indicating that the metrical accent manipulation
reliably altered participants’ keystroke intensities. In addition,
there was a main effect of context, F(; 5 = 8.84, p < 0.01.
Tones within long contexts were produced with greater intensity
(M = 67.0, SE = 0.62) than tones within short contexts (M = 65.5,
SE = 0.60). The three-way interaction between metrical accent,
context, and tempo was also significant, F3 75 = 3.20, p < 0.05.
Post hoc comparisons indicated that tones in the long contexts
were produced with greater intensity when they aligned with
strong metrical accent strengths (3 or 4) than with weak accent
strengths (1 or 2) in long contexts, for both tempo conditions
(Tukey HSD = 1.97, o = 0.05). Tones in short contexts also showed
asignificant change in intensity between strong and weak metrical
accents; this difference was reduced at the medium tempo. There
was no main effect of tempo on tone intensities, and there were
no other significant interactions. Thus, both the metrical accent
strength of individual tones and the size of the surrounding
context increased the intensities with which tones were produced.

Error intensities

Context effects on the salience of metrical levels were also
investigated in the tone intensities of excerpt errors. Figure 4
shows the mean intensities of error events produced within the
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FIGURE 3 | Mean tone intensities (MIDI values) by context condition
and metrical accent strength for correctly produced excerpt events
performed at the fast tempo (top) and medium tempo (bottom). Error
bars represent one standard error.

excerpts by context and metrical accent strength. A 2 (context)
X 2 (tempo) x 4 (metrical accent) ANOVA indicated a main
effect of metrical accent, F375 = 31.53, p < 0.001. As with
correct events, errors produced at the most strongly accented
positions were performed with greatest intensity (M = 67.8,
SE = 0.84), followed by errors at the next strongest accent
positions (M = 63.2, SE = 1.01), followed by the two most
weakly accented positions (accent strength 2 M = 57.6, SE =
1.03; accent strength 1 M = 56.8, SE = 0.97), which did not
differ from each other (Tukey HSD = 3.92, o = 0.05). There
was a significant three-way interaction between metrical accent,
context, and tempo, F375 = 8.34, p < 0.001. Post hoc com-
parisons indicated that, in the long context condition, tones
receiving the strongest metrical accent strength (4) were per-
formed with greater intensity than other tones (accent strengths
1, 2, and 3) at the medium tempo, but not at the fast tempo
(Tukey HSD = 6.69, a = 0.05). The opposite pattern was found
in the short context condition: Tones receiving the strongest
accent strength (4) were performed with greater intensity than
other tones (accent strengths 1, 2, and 3) at the fast tempo
but not at the medium tempo. There were no other significant
main effects or interactions. An analysis of only contextual errors
in which metrical accent strength was coded in terms of the
intruder position (as opposed to the target position) revealed that
error intensities at metrical levels 3 and 4 did not significantly
differ from those at levels 1 and 2 (Tukey HSD = 2.79, o =
0.05), suggesting that contextual errors adopt the intensity of
the position at which they are produced. Similar to the correct
events, performers produced errors with greater intensity when
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FIGURE 4 | Mean tone intensities (MIDI values) by context condition
and metrical accent strength for all excerpt errors performed at the
fast tempo (top) and medium tempo (bottom). Error bars represent one
standard error.
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they were aligned with positions of strong metrical accent, and
these effects were mediated by the context and tempo. Planned
metrical associations may therefore differ from executed metrical
accents.

CONTEXT EFFECTS

Error rates

We predicted that longer contexts would enhance effects of
meter on performers’ error rates. Specifically, lower error rates
were expected at excerpt locations aligned with stronger metrical
accents compared to weaker metrical accents, and this effect
was predicted to be larger for errors produced in long con-
texts compared to short contexts. Excerpt error rates broken
down by metrical accent strength were adjusted for the number
of opportunities for an error to receive that metrical accent
strength (arising from unequal numbers of events aligned with
metrical accent strengths, shown in Figure 1). The metrical
accent strength of each event corresponds to the number of
Xs shown for that event in Figure 1. Each excerpt contained
four events aligned with a metrical accent strength of 1, two
aligned with a metrical accent strength of 2, one aligned with
an accent strength of 3, and one aligned with an accent strength
of 4.

Figure 5 shows mean overall error rates across events within
the excerpts as a function of metrical accent, context, and tempo.
A 2 (context) x 2 (tempo) x 4 (metrical accent) ANOVA
yielded a significant main effect of tempo, F(125 = 7.50, p <
0.05, and a significant main effect of metrical accent, F(3 75 =
30.23, p < 0.001. Overall, error rates were higher at the faster
tempo (M = 0.10, SE = 0.006) than at the medium tempo
(M = 0.07, SE = 0.006). Thus, the tempo manipulation reli-
ably altered pianists’ error rates. In terms of metrical accents,
error rates were lowest at positions receiving a metrical accent
strength of 3 (M = 0.07, SE = 0.008) and 4 (M = 0.06, SE
= 0.008), next lowest at positions receiving a metrical accent
strength of 2 (M = 0.09, SE = 0.009), and highest for posi-
tions receiving a metrical accent strength of 1 (M = 0.12, SE
= 0.009) (Tukey HSD = 0.040, o = 0.05). The main effect of
context was not significant (p = 0.06). Critically, the context
x metrical accent interaction was significant, F(3 75 = 13.15, p
< 0.001. Error rates for excerpts in long contexts were signif-
icantly lower for positions receiving a metrical accent strength
of 4 (M = 0.054, SE = 0.009) compared with all other accents,
and higher for positions receiving a metrical accent strength
of 1 (M = 0.13, SE = 0.014) compared with all other accents
(Tukey HSD = 0.032, o = 0.05). The only significant differences
seen for short contexts were reduced error rates at positions
receiving an accent strength of 3 (M = 0.043, SE = 0.008)
compared with accent strengths of 1 (M = 0.10, SE = 0.012)
and 2 (M = 0.089, SE = 0.012). There were no other significant
interactions.

We further explored the differences in error rates across
contexts and metrical levels using a contrast analysis (Keppel
and Wickens, 2004). For each participant and context condition
(based on crossing context with tempo), we derived a contrast
value based on the summed products of excerpt error rates
within that cell with a set of weights that linearly contrasted
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FIGURE 5 | Mean excerpt error rates for all excerpt errors by context
condition and metrical accent strength at the fast tempo (top) and
medium tempo (bottom). Error bars represent one standard error.

error rates at positions associated with each of the 4 metrical
accent strengths. Negative values of this contrast indicate decreas-
ing error probability with increasing metrical accent strength.
A 2 (context) x 2 (tempo) ANOVA on the contrast measures
yielded a significant main effect of context, F(1 5y = 6.24, p <
0.05, and main effect of tempo, F25 = 5.54, p < 0.05, but
no interaction. Contrast values were generally negative, indi-
cating a linear decrease in error probability with increasing
metrical accent (errors were least likely at the most strongly
accented positions), but the magnitude of contrasts was greater
for long contexts (M = —0.11, SE = 0.014) than for short con-
texts (M = —0.07, SE = 0.012), and for fast tempo sequences
(M = —0.11, SE = 0.015) than for medium tempo sequences
(M = —0.07, SE = 0.011). Thus, longer contexts and slower
tempi enhanced beneficial effects of metrical accent on error
rates.

Range of planning

We tested the prediction that error types are affected by context;
we predicted that the target-intruder distance for contextual
excerpt errors would increase as the size of the surrounding
context increased. The mean range between each contextual pitch
error and the sequence position for which that pitch was intended
was calculated for all contextual errors by averaging the absolute
distances between the location of contextual errors and their
sources within 8 events of the target event (one complete metrical
cycle at the highest metrical level). A two-way ANOVA on mean
ranges for excerpt errors revealed a main effect of context, Fi »s)
= 12.98, p < 0.005. Target-intruder distances were greater when
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the same excerpt was placed in a longer context (M = 2.1 events,
SE = 0.07) than in a shorter context (M = 1.8 events, SE = 0.07),
when possible target-intruder distances were controlled for across
context length, indicating that context facilitated a greater range
of planning. There was no effect of tempo or interaction with
context.

To assess the possible influences of pitch repetition rates in the
musical sequences on error distance measures, we analyzed the
distances over which pitches recurred across the entire musical
sequence and applied that criterion (M = 6 tones apart) to include
only those errors whose distances fell within this chance estimate;
this is an important control for the distributions of pitches
outside the excerpt from which the errors might have arisen.
The same 2 (context) x 2 (tempo) ANOVA on mean ranges
of contextual errors within the pitch repetition chance estimate
replicated the main effect of context, F(; 25 = 5.50, p < 0.05, with
greater target-intruder distances for longer contexts than shorter
contexts.

Context-distance interactions

We next tested the prediction that the pitch contents of contextual
errors reflected metrically similar events more often when
excerpts were placed in long contexts as opposed to short contexts.
Metrically similar events should arise from sequence distances 2,
4, 6, and 8, due to the alternating strong-weak binary meter of
the musical sequences used in the experiment. Contextual error
proportions within each performance were computed for errors
arising from distances 1 through 8, called movement gradients
(Dell et al., 1997). The error proportions refer to the frequency
with which each contextual error was associated with an intruder
from a specific distance, and apply only to contextual errors. (This
is distinct from error rates, which refer to the frequency with
which an error of any sort occurs.) Mean movement gradients are
shown in Figure 6 by context and distance; most errors arose from
nearby distances (as predicted by the serial proximity component
of the range model; Palmer and Pfordresher, 2003). An 8 (dis-
tance) X 2 (context) x 2 (tempo) ANOVA on error proportions
revealed a significant main effect of distance, F(7,175) = 139.49, p <
0.001, and a significant distance x context interaction, F(7,175) =
4.78, p < 0.001. Post hoc comparisons revealed that a significantly
larger proportion of errors arose from distance 1 than distance
2 in short contexts: This was not the case in long contexts. The
tempo x distance interaction was also significant, F(7,175) = 2.25,
p < 0.05, but did not survive a Greenhouse-Geisser correction
(p = 0.106). Importantly, and in line with model predictions,
differences across contexts reflected greater accessibility of
metrically similar events (even numbered positions) and lower
accessibility of dissimilar events (odd numbered positions) for the
long context. Differences attributable to metrical similarity across
contexts were only apparent at close serial proximities, which is
consistent with the range model’s prediction that metrical sim-
ilarity effects are lessened at far distances due to the modulating
effect of serial proximity (Palmer and Pfordresher, 2003).

To test whether longer sequence contexts affect performers’
conceptions of metrical similarity, we compared the proportions
of contextual errors arising from metrically similar events (dis-
tances 2, 4, 6, and 8) across long and short contexts. On average,
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FIGURE 6 | Mean error proportions by context condition and absolute
sequence distance, for contextual excerpt errors. Error bars represent
one standard error. The solid and dashed lines depict chance estimate
distance proportions yielded by error simulations for the long and short
context conditions, respectively.

44% (SE = 4.0%) of contextual excerpt errors in long contexts
arose from metrically similar distances, whereas only 31% (SE =
2.7%) of excerpt errors in short contexts arose from metrically
similar distances, t(;5y = 2.87, p < 0.005 (one-tailed). Thus,
metrically similar errors (those arising from distances 2, 4, 6 and
8) were more likely to arise in long contexts than in short contexts,
similar to the model’s predicted context effects.

In a second follow-up analysis, contextual error proportions
were computed for errors arising from distances 1 through 4.
The same 4 (distance) x 2 (context) x 2 (tempo) ANOVA on
contextual error proportions revealed a significant main effect of
distance, F(375) = 79.62, p < 0.001, and a significant distance x
context interaction, F(375) = 3.92, p < 0.05. Post hoc comparisons
revealed that a significantly larger proportion of errors arose from
distance 1 than distance 2 in short contexts: This was not the
case in long contexts (Tukey HSD = 0.13, o = 0.05), similar to
the analysis of error proportions arising from distances 1 through
8. The tempo x distance interaction was not significant, F3 75
= 2.39, p = 0.08. There were no other significant effects or
interactions.

Finally, we tested whether the rate at which pitches repeated
in the melodic sequences differed across metrical accent strengths
or context lengths. The mean distance between repeating pitches
at each position in the stimulus excerpts did not correlate with
the metrical accent strength at each position for long contexts,
762 = 0.11, p = 0.37, or for short contexts, r(s2) = 0.04, p = 0.74.
In a final test of whether pitch repetitions within the musical
sequences differentially influenced contextual errors in long
and short contexts, we correlated the distances at which pitches
repeated within each excerpt across the long and short contexts;
the pitch distances were highly correlated across context lengths
for both the right hand part, re) = 0.90, p < 0.001, and the left
hand part, 7 = 0.94, p < 0.001. This finding follows from the
fact that the pitch contents (4 events) on either side of the excerpt
were identical across long and short contexts.

ESTIMATING RANDOM PROCESS EFFECTS

To address whether the distance effects on error proportions
shown in Figure 6 arose from a random process, we simu-
lated performance errors by randomly sampling from the set of
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sequence pitches. Specifically, we simulated error events with a
probability of 0.10 to match the observed error rate by randomly
selecting pitches from all sequence events. We then computed
the serial distance between each contextual error location and
the nearest same pitch occurring in the musical sequence for
errors occurring with the excerpt. One thousand error simula-
tions were conducted for each context condition and participant
to yield chance estimates that minimized the influence of noise
in the output. The solid and dashed lines in Figure 6 show
the mean distance proportions yielded by the error simulations
for long and short context conditions, respectively. As can be
seen, there is a slight tendency for contextual error frequencies
to decrease with distance, and there is no evidence of metri-
cal similarity (greater predicted proportions at even-numbered
distances).

We evaluated additional factors that may influence the error
patterns reported here. Previous findings (Palmer and van de
Sande, 1993, 1995) indicated that pianists’ error patterns yielded
hand differences (more errors produced by the left hand), diatonic
relatedness (more in-key than out-of-key errors) and harmonic
relatedness (more in-chord than out-of-chord errors) at rates
greater than expected by chance. In the current study, 60% of
all errors were produced by the left hand (greater than the
chance estimate of 50%); 83% of errors yielded in-key outcomes
(chance estimate = 7/12) and 49% of errors yielded in-chord
outcomes (chance estimate = 3/12), similar to previous findings.
Furthermore, tones produced by participants’ right hands were
performed with greater intensity on average (M = 74.7, SE =
0.48) than tones produced by participants’ left hands (M = 58.8,
SE = 0.46), F,5 = 237.32, p < 0.001, similar to previous
studies (Palmer and van de Sande, 1995). The patterns of meter
and context effects were the same across hands. To assess pitch
similarity metrics, all pitch errors were also coded in terms of the
number of semitones between the pitch error and the intended
pitch. Error proportions did not decrease systematically over
semitone distances. Pitch error distances were also examined in
terms of the nearest tone generated by the same finger move-
ment, based on notated fingerings provided to pianists, and in
terms of whether they were anticipatory (if the error source
occurred ahead of the intended pitch; M = 42% of contextual
errors) or perseveratory (if the error source occurred behind
the intended pitch; M = 58% of contextual errors). Proportions
of all pitch errors coded in terms of finger distance did not
correlate significantly with the observed movement gradients in
Figure 6, () = 0.41, p = 0.32. ANOVAs on the additional factors
by context and metrical accent strength yielded no significant
differences.

MODEL FITS

Range of planning

The range model was fit to individuals® excerpt error proportions
from the movement gradients separately for each context-tempo
condition. Fits were carried out in two steps, following the same
procedure introduced by Palmer and Pfordresher (2003). All
model fits used the mean produced IOI per trial as the value for
parameter t. The model was first fit to each individual’s movement
gradients for each condition using one free parameter, a from

Equation 1, which was allowed to vary across individuals (taking
the average a from an initial fit to each condition for each partic-
ipant, as in Palmer and Pfordresher, 2003). The metrical weight
on level 2, w, (the eighth-note level), which weights different
values of m in Equation 2, was fit to each experimental condition,
based on previous findings that this level was weighted heavily
with similar pieces possessing the same 4/4 meter (Palmer and
Pfordresher, 2003). The metrical weight on level 2 was permitted
to vary between 0.25 and 0.99, and remaining metrical weights
were set equal to ((1—w,) / (k—1)), where k represents the total
number of metrical levels, as described in the introduction. Of
the 26 pianists, 3 pianists produced no errors in the long-medium
condition, 3 produced no errors in the short-medium condition,
and 2 produced no errors in the short-fast condition; model fits
could not be performed on these individual conditions. We fit
only those combinations of participant and condition for which
there were error data (1 = 96).

The model provided a significant fit in 85 of the 96 individual
experimental condition fits (p < 0.05), and the mean variance
accounted for (VAF) values per individual ranged from 0.46 to
0.91 (critical VAF = 0.50); fits by individual were significant for
23 out of 26 individuals (p < 0.05; M individual VAF = 0.75).
The model’s parameter a, which is thought to capture individual
working memory constraints, was correlated with the behavioral
metric for mean range based on error distances. A significant
positive correlation was found between individuals’ a parameter
values (range = 0.77-0.89) and their mean range of planning
(the mean distance between each contextual error and its source),
74y = 0.46, p < 0.05. Thus, participants with higher a values
had greater mean ranges of planning, similar to previous findings
(Palmer and Schendel, 2002; Palmer and Pfordresher, 2003).

Metrical component

We tested whether the model’s metrical similarity component was
necessary to explain the excerpt errors by first comparing two
different versions of the model: one containing the metrical com-
ponent (S x M) and the other without the metrical component
(S). Both the meter-free model (S) and serial x metrical (S x M)
model were first fit to the mean data for each tempo-context con-
dition with a varying, and subsequent fits used a values averaged
across conditions. All metrical levels were weighted equally (w;
= 0.25) for fits of the serial x metrical (S x M) model so that
the number of free parameters was identical to the meter-free (S)
model. Figure 7 shows the VAF for the mean movement gradients
fit by the model that contained only the serial component (S) and
one containing the metrical component in addition (S x M). The
diagonal line in Figure 7 indicates values for which the models
with and without the metrical component would explain equiv-
alent variance. Three of four conditions fall above the diagonal
line, indicating value added by the metrical component in those
conditions. Thus, inclusion of the model’s metrical component
was able to explain more variance in three of the four conditions:
both of the long context conditions (the two conditions expected
to enhance metrical similarity) and the short-medium condition.
The lower half of Table 1 shows the mean VAF for fits of the (S)
and (S x M) models to individual subject data for each of the 4
tempo-context conditions. The (S) model provided a significant
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FIGURE 7 | Percent variance accounted for in the mean excerpt error
proportions for each tempo-context condition by the serial model
(x-axis), compared with the serial x metrical model (y-axis).

fit in 58 of the 96 individual experimental condition fits, and the
(S x M) model provided a significant fit in 72 of 96 individual fits
(p < 0.05). Thus, inclusion of the metrical component was able to
explain more variance for the majority of individual data.

Finally, we tested whether the model’s metrical parameter,
wy, provided additional explanatory value for the behavioral
measures. When the metrical parameter was permitted to vary
in fits of the serial x metrical (S x M) model, the VAF was
improved for all four conditions over the serial (S) model and
serial x metrical (S x M) model fits, shown in the upper half of
Table 1. The Akaike information criterion (AIC; Akaike, 1973), a
measure of model complexity that takes into account the number
of model free parameters, was computed for the fits shown in
Table 1 (a lower value indicates a better fit). As shown in Table 1
(column 3), the serial x metrical (S x M) model with the
additional free parameter w, provided a better fit for the 2 long
context conditions, but not the 2 short context conditions. Thus,
the S x M model’s additional metrical weight parameter, derived
from fits of the model to the data, improved the long context
fits above and beyond the introduction of the model’s metrical
similarity component (column 2 of Table 1). The bold values in
Table 1 indicate the best-fitting model for each tempo-context

condition. The (S x M) model with w; fixed at 0.25 provided a
significant fit in 72 of the 96 individual experimental condition
fits, and the (S x M) model when w, was allowed to vary
provided a significant fit in 85 of 96 individuals fits (p < 0.05).
Thus, inclusion of the metrical weight on level 2 (an intermediate
metrical level) was able to explain more variance for the majority
of individual data.

A 2 (tempo) x 2 (context) ANOVA on individuals’ fitted
metrical weights (w, values) yielded a significant main effect of
tempo, F(125 = 6.49, p < 0.05. Excerpt errors from medium
tempo conditions yielded model fits with larger metrical weights
(M wy = 0.48, SE = 0.036) than excerpt errors from fast tempo
conditions (M w, = 0.40, SE = 0.033). Fits of the model to
the data from long context conditions tended to result in larger
metrical weights (M w; = 0.48, SE = 0.037) than fits to data from
short context conditions (M w, = 0.40, SE = 0.032), although
the main effect of context on metrical weights was not significant
(p = 0.06). The interaction between tempo and context vari-
ables was not significant. Thus, the metrical weighting parameter
indicated greater emphasis on level 2 of the metrical hierarchy
when excerpts were performed at a slower tempo and in a longer
context.

DISCUSSION

Musicians’ production errors, elicited in performances of musi-
cal excerpts that were surrounded by long and short contexts,
indicated three facilitative effects of a longer musical context.
First, serial ordering errors arose between sequence events that
spanned greater distances when excerpts were placed in longer
contexts than in shorter contexts. This finding suggests that
performers employed greater ranges of planning for events in
long contexts, consistent with the range model’s (Palmer and
Pfordresher, 2003; Pfordresher et al., 2007) prediction that mem-
ory activation of current events arises from their contextual
relationships. Second, more serial ordering errors arose from
metrically similar sequential positions for events placed in longer
contexts than in shorter contexts. The enhanced metrical simi-
larity effect may reflect the influence of higher-level hierarchical
relationships that are defined over longer sequence distances,
corroborated by evidence for metrical hierarchies in musicians’
keystroke intensities for both correct and erroneous pitches.
Third, longer sequence contexts increased the tendency for pitch

Table 1 | Goodness-of-fit of the serial (S) and serial x metrical (S x M) models to mean error patterns, and mean model fits to individual data.

S S x M (w; fixed) S x M (wj varied)
Condition N VAF (%) AlC VAF (%) AlC VAF (%) AlC
Mean data Long-Medium 23 84.0 —-26.0 970 —34.2 98.4 -36.7
Long-Fast 26 73.7 —22.1 93.2 -278 99.3 -41.3
Short-Medium 23 91.9 —-29.0 98.0 -35.9 98.0 -33.9
Short-Fast 24 99.4 -325 93.0 -25.5 93.0 -23.5
Mean of individual fits Long-Medium 23 52.3 —-14.3 60.2 —-14.8 75.0 -171
Long-Fast 26 52.0 -16.1 63.5 -16.7 79.9 -20.0
Short-Medium 23 48.4 -10.9 54.5 -11.5 69.8 -13.7
Short-Fast 24 79.8 —-22.2 770 -19.5 776 -18.3

Note. Bold values indicate the best-fitting model for each tempo-context condition.
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events aligned with relatively stronger metrical accents to be
performed with greater accuracy. Each of these findings follows
from the fact that larger metrical periodicities are defined over
greater sequence distances in longer contexts than in shorter
contexts, and the salience of events from greater distances
enhances performers’ ability to plan larger increments during
performance.

These findings underscore the role of contextual information
in the retrieval of musical sequences. Contextually defined hier-
archies of musical features may provide performers with a means
of quickly and efficiently retrieving information from memory,
consistent with theories of expert performance memory (Ericsson
and Kintsch, 1995; Chaffin and Imreh, 1997). Our findings sup-
port the proposal that metrical accent, one musical feature that
is defined by the sequence context, provides such a framework
for planning (Palmer and Pfordresher, 2003). Longer sequence
contexts contain information to define hierarchical relationships
that span larger time periods; this was evidenced by the larger
proportions of metrically similar errors in long than in short
sequence contexts. Thus, longer sequence contexts may enhance
the overall magnitude of metrical hierarchies more than shorter
contexts, a notion that is supported by evidence that metrical
representations take time to become instantiated during listening
(Longuet-Higgins and Lee, 1982; Drake and Botte, 1993). The
strength of neural oscillations underlying metrical hierarchies
may also therefore depend on contextual information that rein-
forces a metrical pattern. Fewer repetitions of higher-level metri-
cal periodicities in short contexts during music perception may
lead listeners to focus attention at lower periodicities, whereas
longer contexts provide more stimulus beats for attentional pulses
to shift to higher metrical levels (Large and Jones, 1999; Large
and Palmer, 2002). The greater salience of higher-order metrical
accents in the longer sequences, also evidenced in the increased
intensity with which performers produced those events, is likely
to have contributed to larger planning ranges.

COMPARISON WITH OTHER APPROACHES

The range model’s approach to the role of contextual information
in memory retrieval can be contrasted with the approach taken by
temporal-contextual distinctiveness theories of serial recall (e.g.,
Brown et al., 2000, 2007) which predict that memorability of
a sequence event increases as temporal separation from neigh-
boring contextual events increases. Brown et al’s (2007) scale-
independent memory, perception, and learning (SIMPLE) model,
for example, proposes that event retrieval is constrained by how
easily items can be temporally discriminated in terms of their
position, similar to the identification of stimuli in terms of posi-
tion along dimensions such as weight, line length, or loudness. In
SIMPLE, an item is best retrieved when it is temporally isolated
from contextual events: Retrieval is most accurate when little
(or no) contextual information is present. Thus, SIMPLE can
be described as taking the view that contextual information is
detrimental to retrieval of the current event. The range model
proposes the opposite: The larger the sequence context, the greater
the likelihood that the current event tied to that context will be
retrieved.

The oscillator-based associate recall (OSCAR) model of Brown
et al. (2000; Vousden et al., 2000) also predicts a beneficial effect
of temporal isolation on recall. OSCAR proposes that sinusoidal
oscillators encode contextual information in sequences. Retrieval
of a sequence event from memory is achieved by reinstating the
oscillator pattern with which the event is associated. Sequence
events that are more temporally distinctive are associated with
different combinations of oscillator activations than events that
are temporally close together, and are as a result retrieved more
easily. The findings presented here qualify theories of tempo-
ral distinctiveness like SIMPLE and OSCAR by demonstrating
that increases in the number of contextual events surrounding
a current event can facilitate event preparation, as opposed to
hindering it.

The range model differs from other models in its claim that
contextual information is not only accessible during production,
but also makes the current event more accessible than it otherwise
would have been if there were less (or no) sequential context. Most
models of memory retrieval have neglected to incorporate hier-
archical structure in theoretical frameworks. Research on effects
of hierarchical structures on recall has led to the acknowledg-
ment that short-term memory retrieval processes must somehow
interact with information stored in long-term memory (Atkinson
and Shiffrin, 1968; Crowder, 1976; Henson, 1998; Burgess and
Hitch, 2005). The gap between short-term retrieval processes and
hierarchical facilitation is theoretically bridged with a “unitary”
view of short- and long-term memory, which proposes that
short-term memory representations are simply the contents of
long-term memory in an activated state (Cowan, 1995, 2001).
Another approach is Botvinick and Plaut (2006) recurrent net-
work account of serial recall, which relies on an activation-based
mechanism of recurrent connectivity that adjusts patterns of unit
activation for domain-specific knowledge. Connectionist models
typically provide mechanisms for both bottom-up and top-down
influences on perception, in which context can constrain which
information is activated in memory (Thomas and McClelland,
2008). The metrical framework proposed here similarly reflects
producers’ learned knowledge of events’ accent patterns, which
may modulate the spread of activation within distributed neural
networks during sequence production.

The current study tested range model predictions with musical
pieces that contained isochronous events in order to maintain
equivalent rates of musical events occurring at different metrical
positions. Because strong and weak metrical accents alternate
strictly in binary meters across all sequence positions, metrical
similarity is not confounded with primacy or recency effects.
Much of Western tonal music contains varying tone durations,
which can influence chunking processes, in which retrieval of
musical segments is an all-or-none process cued by longer dura-
tions occurring at chunk boundaries (Ericsson and Kintsch, 1995;
Chaffin and Logan, 2006). However, most errors during perfor-
mance of rhythmically varying music, like isochronous music,
involve single pitches and not larger units or chunks (Palmer
and van de Sande, 1993; Drake and Palmer, 2000), a finding
corroborated by the current study, which supports the idea that
performers possess incremental access to contextual sequence
events during production. Future studies may test extensions
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of range model predictions to rhythmically varying music, by
incorporating a duration-based similarity metric. For example,
two tones could share the same metrical accent strength, enhanc-
ing hierarchically-based similarity, but differ in terms of their
durations, decreasing their overall similarity.

The musical pieces used in the current study were char-
acterized by binary metrical structures that contained a strict
alternation of strong and weak beats. An analysis of a large
corpus of musical styles has shown that the frequency with
which pitches occur in different metrical locations can differ for
binary and ternary meters and can differ across musical styles
and genres (Palmer and Pfordresher, 2003). Furthermore, the
beat level of a metrical hierarchy may also consist of combi-
nations of binary and ternary accents, as in complex meters
(London, 1995). It remains to be tested whether different musical
meters and styles lead to different distributions of contextual
errors. The musical pieces used in the current study presented
short (8-event) excerpts in relatively short musical contexts;
future studies should also employ contexts of greater length, in
order to examine further context effects on planning. Larger
contexts may heighten facilitative effects on planning as the
range model predicts, or perhaps those contexts would reach a
threshold at which contextual relationships could no longer be
integrated in an updated memory representation. The relatively
brief contexts used in the current study (25 non-excerpt events
for the large context and 9 non-excerpt events for the short
context) limited the range of observable serial ordering errors
for some positions in the small context excerpt within an 8-
event hierarchical metrical cycle. The size of the contexts and
the windows used to identify contextual error sources influ-
ences the numbers of strongly and weakly accented contextual
event positions, which were kept constant in the current study;
nonetheless, analyses that limited the size of the window to
exclude events outside chance estimates yielded the same find-
ings as were observed with a larger (8-event) window. Fur-
thermore, we simulated the error types that would result from
simple variations in the size of the event window; these error
patterns differed completely from the experimentally observed
errors.

Metrical hierarchies may modulate influences on memory of
other musical dimensions such as tonality, harmony, and timbre,
which also yield similarity-based confusion errors in comprehen-
sion and performance (Crowder and Pitt, 1992; Palmer and van
de Sande, 1993). For example, metrical accents can interact with
pitch accents in memory for musical sequences (Jones, 1987), and
perceptual experiments suggest that listeners combine multiple
pitch and temporal features from which they infer meter (Hannon
et al., 2004). Thus, production errors that incorporate other
musical dimensions may yield similar contextual predictions to
the ones tested here. Pianists were instructed to use the same
notated fingerings for excerpts placed in short and long contexts.
Thus, although some fingerings are easier than others (and may
have contributed to error likelihoods), it is unlikely that fingerings
accounted for the context effects reported here.

Predictions of the range model can be applied to the pro-
duction of other complex sequences, such as typing and speech,
whose elements hold hierarchical relationships defined within

each context (cf. Crump and Logan, 2010). The core assumptions
of the range model for memory retrieval are implemented with
a parameter space constrained by similarity-based interference
processes that arise within the constraints of working memory.
The range model has been applied to the production of nonsense
syllables (Palmer and Schendel, 2002); metrical patterns arising
from varying degrees of syllable prominence (Liberman and
Prince, 1977) can be captured by hierarchical periodicities in the
range model’s metrical component. The current findings suggest
that longer contexts in spoken language may lead to greater stress
placed on linguistic units that are aligned with greater hierarchical
periodicities, as metrical relationships among elements would
become more firmly established with increased context.

CONCLUSION

Sometimes more is better: Increased metrical associations in
longer sequential contexts facilitate performers’ retrieval of indi-
vidual sequence events. Incrementally planned representations
are popular among memory retrieval models during sequence
production; the range model (Palmer and Pfordresher, 2003;
Pfordresher et al., 2007) makes unique assumptions about
similarity-based relationships among metrically regular sequence
events. Advantages for sequence planning incurred from longer
contexts, therefore, temper the negative outcomes of list length
effects on retrieval processes: Increased contextual information is
not always detrimental to memory retrieval.
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