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Measuring neuronal activity with electrophysiological methods may be useful in detecting
neurological dysfunctions, such as mild traumatic brain injury (mTBI).This approach may be
particularly valuable for rapid detection in at-risk populations including military service mem-
bers and athletes. Electrophysiological methods, such as quantitative electroencephalog-
raphy (qEEG) and recording event-related potentials (ERPs) may be promising; however,
the field is nascent and significant controversy exists on the efficacy and accuracy of the
approaches as diagnostic tools. For example, the specific measures derived from an elec-
troencephalogram (EEG) that are most suitable as markers of dysfunction have not been
clearly established. A study was conducted to summarize and evaluate the statistical rigor
of evidence on the overall utility of qEEG as an mTBI detection tool. The analysis evalu-
ated qEEG measures/parameters that may be most suitable as fieldable diagnostic tools,
identified other types of EEG measures and analysis methods of promise, recommended
specific measures and analysis methods for further development as mTBI detection tools,
identified research gaps in the field, and recommended future research and development
thrust areas. The qEEG study group formed the following conclusions: (1) Individual qEEG
measures provide limited diagnostic utility for mTBI. However, many measures can be
important features of qEEG discriminant functions, which do show significant promise as
mTBI detection tools. (2) ERPs offer utility in mTBI detection. In fact, evidence indicates
that ERPs can identify abnormalities in cases where EEGs alone are non-disclosing. (3)The
standard mathematical procedures used in the characterization of mTBI EEGs should be
expanded to incorporate newer methods of analysis including non-linear dynamical analy-
sis, complexity measures, analysis of causal interactions, graph theory, and information
dynamics. (4) Reports of high specificity in qEEG evaluations of TBI must be interpreted
with care. High specificities have been reported in carefully constructed clinical studies
in which healthy controls were compared against a carefully selected TBI population. The
published literature indicates, however, that similar abnormalities in qEEG measures are
observed in other neuropsychiatric disorders. While it may be possible to distinguish a
clinical patient from a healthy control participant with this technology, these measures are
unlikely to discriminate between, for example, major depressive disorder, bipolar disorder,
or TBI. The specificities observed in these clinical studies may well be lost in real world
clinical practice. (5)The absence of specificity does not preclude clinical utility.The possibil-
ity of use as a longitudinal measure of treatment response remains. However, efficacy as
a longitudinal clinical measure does require acceptable test–retest reliability. To date, very
few test–retest reliability studies have been published with qEEG data obtained from TBI
patients or from healthy controls. This is a particular concern because high variability is a
known characteristic of the injured central nervous system.
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INTRODUCTION
Mild TBI is caused by initial physical trauma that shears or
compresses brain tissue. The initial trauma can lead to a cas-
cade of delayed neurodegenerative events that may include diffuse
axonal injury, activation of excitotoxic inflammatory cascades, and
transneuronal degeneration. While initial damage in mild trau-
matic brain injury (mTBI) may be minimal or occult, the chronic
neurodegenerative effects can persist for weeks or months post-
injury and lead to significant cognitive, sensory, and psychiatric
dysfunctions (DeKosky et al., 2010). Over 75% of the 266,000 brain
injuries reported during U.S. military operations from 2000 to
2012 were classified as mTBI, thus underscoring mTBI as a major
health issue in the U.S. military (Hoge et al., 2008). It is antic-
ipated that rapid and accurate mTBI detection would improve
prognoses and minimize impacts to military operations; however,
a technological gap exists, especially in field-based settings. To
address this critical need, the Department of Defense is actively
seeking new technologies capable of rapid, accurate, non-invasive,
and field-capable detection of mTBI (Rigg and Mooney, 2011).

One promising avenue is measurement of brain electrical activ-
ity with quantitative electroencephalography (qEEG), in which
detection of altered patterning may indicate concussion. Since
qEEG is a nascent technology for mTBI detection, and significant
controversy exists in the field, a comprehensive evaluation of tech-
nology/measure efficacy as a detection tool is warranted. Critically
surveying the state-of-the-science also provides an opportunity
to establish recommendations on specific qEEG measures or sig-
nal processing technologies of promise, thus driving advanced
development decision-making.

BACKGROUND ON qEEG
The electroencephalogram (EEG) records the electrical poten-
tial difference between brain electrical activities recorded between
two electrodes (a single EEG channel). Multiple scalp electrodes
(generally >20) are connected in various patterns called mon-
tages, resulting in a series of channels of EEG activity. Often
the scalp electrodes are compared to one or more neutral refer-
ence electrodes. Detection of a scalp electrical potential requires
the synchronous activity of millions of neurons over at least
10 cm2 of cortex. The EEG detects the synchronous occurrence
of dendritic synaptic potentials (excitatory and inhibitory post-
synaptic potentials) principally on the apical dendrites of cortical
pyramidal neurons. Therefore, the EEG records the average mem-
brane potential of these apical dendrites, which tends to oscillate.
The physiological basis of these oscillations is a manifestation of
both intrinsic properties of neurons (ionic conductances) and,
importantly, network interactions (connectivity). Intrinsic res-
onant properties permit and promote frequency range-specific
oscillations based on network activity [see Berridge and Rapp
(1979)]. Different frequency oscillations are governed principally
by cortico-cortical connections and thalamocortical connections
to varying degrees depending on the specific oscillation. EEG oscil-
lations exist in a broad range of frequencies from well below one
Hertz to several hundred Hertz. The physiology is best understood
for several “classic” frequency bands including delta (0.5–4 Hz),
theta (4–7 Hz),alpha (8–13 Hz),beta (14–30 Hz),and gamma (30–
100 Hz). These frequency ranges are not arbitrarily divided [see

Penttonen and Buzsáki (2003)], but represent different oscillatory
phenomena with unique underlying physiological mechanisms,
cortical topographies, and functions, of which many are still being
delineated. Different combinations of frequency bands in differ-
ent quantities comprise different states of the brain (e.g., attentive
wakefulness, drowsiness, various stages of sleep).

The “clinical” evaluation of the EEG typically involves a visual
inspection of brain electrical activity across a range of brain states
and the assessment of the topography and “quantity” of state-
appropriate oscillatory activity, as well as examination for the
presence of pathological potentials. For the detection of epilep-
tiform activity, the human eye actually outperforms computerized
waveform analysis despite decades of attempts to automate EEG
interpretation (Harner, 2010). However, when it comes to the
assessment of the topography and quantity of oscillatory activ-
ity, and what constitutes a normal or abnormal distribution of
such activity, visual inspection fails considerably. Very poor inter-
rater reliability is common for visual inspections of oscillatory
activity, even in determining what constitutes normal vs. abnor-
mal. Additionally, visual inspection can shed no light whatsoever
on the nature of interregional interactions, both locally and glob-
ally, which constitute the basis for cognition and consciousness
(Tononi et al., 1994). This requires the use of computerized algo-
rithmic methodologies called qEEG, which we will use as a broad
encompassing term for all such analyses. For example, to obtain
a quantitative assessment of the amount of oscillatory activity at
any and all frequencies in a particular brain region, qEEG fre-
quency analysis transforms the original EEG data over a period
of time into a representation of its frequency content, generating
a continuous EEG “power spectrum.” Ultimately, however, using
methodologies that require averaging of data over relatively long
periods of time will be insensitive to the rich dynamics of the cor-
tex, which operates on a multitude of timescales down to the order
of milliseconds (see below).

EEG IN mTBI
Pathologically, mTBI is a complex process, resulting in neuronal
dysfunction that may be manifested in EEG changes apparent even
to visual inspection for a duration ranging from hours to up to a
few weeks post-injury. Beyond the acute and subacute stages, the
structural pathology of mTBI is characterized by diffuse axonal
injury involving the white matter as well as simplification of the
dendritic architecture of neurons in cortical gray matter, with a
relative absence of neural loss, leading to varying and often sub-
tle degrees of cortical atrophy or thinning (Bigler and Maxwell,
2011). Such effects below a certain threshold of severity will not
manifest on standard magnetic resonance imaging (MRI) at any
stage. Newer MRI methods, such as diffusion tensor imaging, may
be capable of detecting these more subtle structural disturbances,
but these imaging techniques are not common in practice and are
still in early stages of use.

Electroencephalogram, however, may be sensitive to detect-
ing the physiological effects of these processes. The simplified
dendritic system of neurons may result in a decrease in power
of fast frequencies. Even subtle relative deafferentation from the
thalamus or ascending neuromodulator systems (i.e., cholinergic,
noradrenergic, dopaminergic) due to axonal injury will increase
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the power of slow frequencies, due to an alteration of firing prop-
erties of thalamic and cortical neurons (resulting in a net increase
in theta frequency activity), and due to the release of intrinsi-
cally generated network oscillatory activity normally suppressed
by cholinergic afferents (from the basal forebrain) and glutamater-
gic afferents (from the thalamus). Additionally, and importantly,
axonal injury will reduce the effectiveness of synchronization of
distributed cell assemblies located throughout the cerebral cor-
tex, which are essential for cognition. The physiological basis of
the EEG, as described above, makes qEEG methodologies poten-
tially well-suited to detect these physiological alterations in the
“free-running” EEG oscillatory activity. Additionally, these patho-
logical changes can alter the timing and amplitude of slower
non-oscillatory electrical potentials, which are caused by the phase
resetting of these oscillatory rhythms during the performance of
cognitive tasks, the so-called event-related potentials (ERPs). Thus,
the assessment of ERPs is another potentially valuable tool in the
qEEG repertoire for the study of altered cortical physiology in the
setting of mTBI.

What is the function of EEG oscillations, and how can a quanti-
tative analysis of EEG activity provide insight into impaired brain
function in TBI? For several decades from 1960s to 1990s, the
prevailing view was that EEG activity/oscillations were epiphe-
nomenal and unrelated to moment-to-moment cerebral cortical
function, but simply reflected the general state of the brain (e.g.,
awake and alert, drowsy, asleep). The tide has turned dramati-
cally and it is now understood that moment-to-moment brain
function is directly linked to EEG oscillations. Cognitive processes
are a function of the rapid formation and subsequent dissolu-
tion of distributed cell communication assembles on the order
of several hundred milliseconds in duration (Breakspear et al.,
2004), and these assemblies form transiently based on a func-
tional (as opposed to structural) connectivity patterns established
by the synchronization patterns of EEG oscillations. This syn-
chronization allows effective communication among the members
of the transient assembly (Fries, 2005). True synchronization of
neuronal activities only occurs within a few millimeters. A bet-
ter term may be “polychronization” (Izhikevich, 2006), as most
functionally connected neurons are not truly synchronized, but
that term will suffice for our purposes. Fast frequencies (espe-
cially gamma) are involved in the synchronization of relatively
local cell assemblies in the processing of specific cortical represen-
tations and slower frequencies synchronize highly distributed cell
assemblies that span many centimeters of cortex and may involve
both hemispheres. Theta and delta frequency activity also support
the synchronization of faster frequencies among multiple local-
ized assemblies via the phenomenon of “cross-frequency coupling”
(Canolty and Knight, 2010). Computerized signal analysis of EEG
data has evolved significantly to address the complex interregional
interactions of brain connectivity, including the causal relation-
ships among interacting regions of brain during a cognitive act and
how these relationships may be deranged. For example, in brain
injury one could demonstrate altered causal relationships in which
control of action is more reactive or stimulus-based, such that cor-
tical sensory networks predominantly influence frontal-executive
networks instead of vice versa. A so-called “small-world” connec-
tivity analysis can determine whether or not the cerebral cortices

in a population of patients is performing with a functional con-
nectivity pattern that optimizes the ratio of local to long-range
functional connectivity. This ratio has shown to be altered in TBI
(Cao and Slobounov, 2010; Tsirka et al., 2011). Overall, recent
developments in the analysis of EEG activity to characterize brain
function hold tremendous promise for our ability to understand
the physiology of cognitive processes and their pathophysiologi-
cal derangement in neurological disorders such as traumatic brain
injury.

The effects of TBI can be significant and long-lasting. Fazel
et al. (2014) compared mortality rates 6 months or more after
injury against a control population. They found that TBI is asso-
ciated with substantially elevated risks of premature mortality,
particularly from suicide, injuries, and assaults. Similarly, TBI is a
significant risk factor for neuropsychiatric disorders (Rapp et al.,
2013a). These results argue against the view that TBI, even mTBI,
typically resolves without lasting consequences. In addition, these
results establish the need to identify individuals at-risk of delayed
onset neuropsychiatric disorders following brain injury. Quanti-
tative measures of altered brain electrical behavior may provide
quantitative prodromes of neuropsychiatric disorders. This pos-
sibility is encouraged by noting that changes in brain electrical
behavior following TBI can be persistent. Slobounov et al. (2012)
found that 85% of the mTBI patients who presented significant
EEG alterations in the immediate post-injury period still pre-
sented altered EEGs up to 12 months post-injury. Segalowitz et al.
(2001) found that ERPs were altered in mTBI patients in a patient
group that was on average 6.4 years post-injury. De Beaumont et al.
(2009) examined healthy former athletes in late adulthood (mean
age 61 years) who had sustained their last sports related concus-
sion in early adulthood (mean age at time of last injury 26 years).
These participants were compared against healthy former athletes
who did not have a history of concussion (average age 69 years).
Participants with a history of concussion had significantly differ-
ent ERPs. These results must be considered with care; however, as
they represent a problem that is common to studies in this area:
in almost all cases, pre-injury data are not available. It is possi-
ble, for example, that central nervous system (CNS) abnormalities
in the athletes in the de Beaumont study were present prior to
injury and were themselves a factor leading to injury. Nonetheless,
these results and other studies summarized in this report suggest
that measurement of brain electrical behavior may be a valuable
complement to other assessment procedures.

COMPARATIVE UTILITY OF qEEG FOR mTBI DETECTION
Aside from the direct connection between qEEG and the physio-
logical responses described above, EEG supplements conventional
medical approaches to imaging the structure and function of the
brain. EEG as a neuroimaging modality holds several advantages
over more conventional medical approaches. Computed tomog-
raphy (CT) and MRI are current the “gold standards” for imag-
ing assessment of neurophysiological trauma. These techniques
provide excellent spatial resolution for easily identifying lesions;
however, significant limitations of CT and MRI reduce the prac-
tical utility for mTBI detection. For instance, both approaches
require very large and expensive equipment, special facilities for
their use, and dedicated technicians for operation. CT uses small
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doses of radiation, which may carry potential risks for long-term
side effects if patients are scanned often. MRI uses an extremely
strong magnetic field (>1 T), necessitating careful operating pro-
cedures. Perhaps most limiting for MRI is the contraindication of
medical devices, implants, and any foreign ferrous metal objects
in the patient’s body. Since service members may have metal frag-
ments lodged in their bodies from the same injury event, this
limitation is particularly difficult to reconcile for military use. In
contrast to CT and MRI, equipment used for EEG is substantially
more portable, less expensive, requires no special facilities, and, in
most cases, can be applied by personnel with very minimal train-
ing. All of these characteristics contribute to a substantially higher
level of fieldability and a broader operational effectiveness beyond
dedicated medical centers. The fieldability of qEEG also facili-
tates neuroscience research outside of laboratory environments,
for which more accurate “real world” data can be captured and
compared to findings in the laboratory, thus driving advancements
in neurotechnology applications (McDowell et al., 2013).

The data derived from EEG are also fundamentally distinct as
compared to CT and MRI data. In particular, while CT and MRI
have excellent spatial resolution, the resulting images (which take
several minutes to acquire) are temporally static, and thus provide
no direct measurement of functional, ongoing brain activity. Even
the best current methods of “functional MRI”are limited to multi-
ple seconds for the acquisition of whole-brain images. In contrast,
EEG is extremely high-resolution in the time domain (EEG can be
sub-millisecond) and, as described above, is a direct measurement
of neuronal activity. This allows a great number of analyses (as
described above and in the following sections), which capitalize on
direct responses to stimuli, cognitive responses, inter-relatedness
of continuous signals, and the oscillation of both discrete and
cross-regional networks of brain areas.

LITERATURE INDEX OF qEEG STUDIES RELEVANT TO mTBI
LITERATURE SEARCH METHODOLOGY
A literature search was conducted in peer-reviewed primary
sources from PubMed and the “gray” literature (i.e., documents
not peer-reviewed) from the defense technical information center
(DTIC) technical report database. Keyword searches were chosen
to identify studies that specifically measured qEEG in head injured
groups. See Supplementary Material for keyword search terms and
record returns. Studies using established statistical approaches
to demonstrate differential qEEG between injured and control
groups were considered particularly important. Statistical meth-
ods of high value included effect size statistics such as Cohen’s d,
odds ratio, and area under receiver operating characteristic curve.
In addition, studies exploring test–retest reliability were flagged.
To efficiently filter the large number of initial hits and maintain
a pertinent collection for TWG review, the following study char-
acteristics resulted in exclusion from the primary qEEG literature
index:

1. Studies that used severe TBI or comatose patients,
2. Studies exploring pharmacologic or biologic agent efficacy,
3. Rehabilitation or therapeutic studies (those not diagnostic in

nature),
4. Studies using animal models of neurological injury, and

5. Studies exploring the use of qEEG in dysfunctions besides
head injury (e.g., neurodegenerative diseases, psychological
dysfunctions).

The primary qEEG literature index was further down selected to
focus on studies that provide statistical evidence for qEEG measures
as detection tools for mTBI. Therefore, the following study char-
acteristics resulted in removal from the qEEG-refined literature
index:

1. Retrospective studies (i.e., symptom catalogs)
2. Studies without direct statistical comparisons.

LITERATURE SEARCH RESULTS
Using the methodology described above, the primary qEEG lit-
erature index consisted of 40 studies (Supplementary Material).
Twenty-five of these studies were further down selected as provid-
ing direct statistical evidence related to qEEG measure discrimina-
tory ability. The refined literature index was subsequently used by
the TWG to evaluate major qEEG measure types, power spectra,
connectivity measures, and the use of discriminant functions. Each
analysis of the measure types and the use of discriminant func-
tions includes a general description of the approach, the potential
utility for detection of mTBI, an evaluation of the statistical evi-
dence to discriminate between injured and non-injured persons,
research gaps and future directions to improve upon the eviden-
tiary data, and conclusions on the overall prospects for use as
an mTBI detection method. Section “Advanced Signal Processing
Technologies” extends the scope of the original literature search to
introduce important approaches with high perceived value (based
on the opinion of this TWG) as mTBI diagnostic tools, but with
low evidentiary support to date.

MEASURES REPRESENTED IN THE DOWN SELECTED qEEG
LITERATURE INDEX
Examination of the down selected literature index revealed two
main types of qEEG analysis investigated for mTBI detection
efficacy: spectral analysis (see Table 1) and functional connec-
tivity analysis. Each type of analysis is introduced below, fol-
lowed by critical evaluation of the literature-based evidence and
recommendations for future research.

SPECTRAL ANALYSIS
Definition (spectral analysis)
Spectral analysis is a common form of EEG interpretation in which
the distribution of signal is evaluated over various EEG frequen-
cies. Spectral analysis is usually limited to a narrow frequency
band from 0.1 to 100 Hz, which is further subdivided into sev-
eral sub-bands (e.g., delta, theta, alpha, beta, and gamma bands).
The boundaries of the sub-bands can differ slightly among var-
ious researchers, resulting in potential variation of results across
studies. A typical sub-band range, used by Prichep et al. (2012a,b),
is as follows: delta (1.5–2.5 Hz), theta (3.5–7.5 Hz), alpha (7.5–
12.5 Hz), alpha1 (7.5–10.0 Hz), alpha2 (10.0–12.5 Hz), beta1
(12.5–25.0 Hz), beta2 (25.0–35.0 Hz), gamma (35.0–50.0 Hz). The
spectral power for each band is obtained either by (1) calculating
the power spectrum of the total signal recorded at an electrode site
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Table 1 | Studies using spectral analysis.

General study information

(spectral analysis)

Study design Results

mTBI

group (n)

Control

group (n)

qEEG recording

condition

Criteria for

TBI patient

Measures Statistical test/

comparison/significance

Chen et al. (2006a)

“Electroencephalogram and evoked

potential parameters examined in

Chinese mild head injury patients for

forensic medicine”

60 30 Eyes closed, resting,

wakeful

Glasgow coma

scores (13–15)

Frequency band average

power

Unpaired t -test
1. α1 (p < 0.001)

2. θ, α2, β1, β2 (all p > 0.05) (NS)

Frequency band power

ratios

Unpaired t -test

1. θ/α1 and θ/α2 (both p < 0.05)

2. α1/α2 (p < 0.01)

Frequency band power

ratios and average power

Paired t -test

Initial vs. 3 month retest (p > 0.05

for all comparisons) (NS)

Notes: this study supports qEEG as a

more sensitive method for detecting

mTBI compared to evoked potential

recording (auditory and flash). This

conclusion is somewhat contradictory

to other studies in the field

Coutin-Churchman et al. (2003)

“Quantitative spectral analysis of EEG

in psychiatry revisited: drawing signs

out of numbers in a clinical setting”

Notes: qEEG was reported to bin

normal subjects and psychiatric

patients with good specificity and

sensitivity. However, this study does

not find any clear association between

particular qEEG measures and specific

disorders. In addition, the patient group

mostly consisted of individuals with

mood and psychological disorders, not

cognitive impairments due to injury

4 (Post-traumatic

headache

336 With other

neurological

disorders

67 Eyes closed, resting,

wakeful

Post-traumatic

headache

diagnosis

Power spectra (all bands),

converted to Z -score (all

disorders combined)

Z -score abnormality defined as

Z -score >3 or <−3

1. Sensitivity (0.838)

2. Specificity (0.9104)

3. Positive predictive value (0.979)

4. Negative predictive value

(0.526)

Absolute power and

power asymmetry (all

disorders combined)

Various tests

Overall correspondence between

qEEG abnormality pattern and

clinical diagnosis (χ2
=315.8,

Cramer’s V =0.305, Contingency

coefficient=0.694; p=0.00001)

Beta activity increase (all

disorders combined)

Pearson’s correlation

Medication use in all patients

(Pearson χ2
=7.865, df=1,

p=0.005)

Slow band decrease (all

disorders combined)

Pearson’s correlation

Medication use in all patients

(χ2
=2.963, df=1, p=0.085)

(NS)

Gosselin et al. (2009)

“Sleep following sport-related

concussions”

Notes: while this report did not find

differences in sleep architecture

(frequency activities) between

concussed and control athletes,

concussed athletes showed significant

increased delta and reduced alpha

activities in the waking qEEG analysis.

This study also demonstrates effective

combinatorial technology use (fMRI

and ERP)

10 11 Eyes closed, resting,

wakeful

Eyes closed, asleep

Frontal region (Fz, F3,

F4), central region

(CZ, C3, C4), parietal

region (Pz, P3, P4),

occipital region (O1

and O2), temporal

region (T7, T8, P7, P8)

Glasgow coma

scores (13–15)

Relative spectral power

(all frequencies) (eyes

closed asleep)

Two-way ANOVA (no significance

for any region)

Relative delta power (eyes

closed, wakefulness)

Two-way ANOVA (F 1, 14 =12.7,

p < 0.01) (all regions)

Relative alpha power

(eyes closed,

wakefulness)

Two-way ANOVA (F 1, 14 =8.8,

p < 0.05) (all regions)

Slow to fast frequencies

ratio (eyes closed,

wakefulness)

Two-way ANOVA (F 1, 14 =11.5,

p < 0.01) (all regions)

Haglund and Persson (1990) 47 50 Eyes closed, resting,

wakeful

High number of

boxing matches

(>25)

Average power spectrum

(grand averages from

each frequency)

Chi square (no significant

differences between all groups)“Does Swedish amateur boxing lead to

chronic brain damage? A retrospective

clinical neurophysiological study”

22 High-match

boxers

25 Soccer

players

Notes: study reports no differences in

qEEG measures between patient

groups, but the effort was exploratory

and used grand averages for each

frequency band. Importantly, inter-rater

reliability was reported to be sufficient

25 Low-match

boxers

25 Track and

field players

(Continued)
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Table 1 | Continued

General study information

(spectral analysis)

Study design Results

mTBI

group (n)

Control

group (n)

qEEG recording

condition

Criteria for

TBI patient

Measures Statistical test/

comparison/significance

Korn et al. (2005)

“Focal cortical dysfunction and

blood-brain barrier disruption in patients

with post-concussion syndrome”

Notes: the main purpose of this study

was to correlate abnormal EEG, brain

imaging, and blood–brain barrier

disruptions, especially as related to

localization. Arciniegas’ (2011) review

provides critical perspective on this

study (classification of some

experimental group subjects as having

mTBI, but CT scans suggest a more

severe form of TBI)

17 17 N/A Glasgow coma

scale >12,

post-concussion

syndrome (PCS)

diagnosis 1 month

to 7 years

post-injury

Delta frequency power

Alpha frequency power

Student’s t-test

Increased delta (p < 0.01)

Student’s t-test

Lower alpha 1 (p < 0.05)

Lower alpha 2 (p < 0.05)

Montgomery et al. (1991)

“The psychobiology of minor head

injury”

Notes: the theta band was the only

abnormal frequency in the qEEG

analysis. However, no normative

sampling or pre-injury measures, or

control group measures were used.

The comparison was only between

immediate post-injury (approximately

24 h) and 6 weeks later. So, reduction in

theta power may be considered

persistent

26 None Eyes closed, resting,

wakeful

Head injury

requiring overnight

hospital stay;

post-traumatic

amnesia >12 h

Mean theta power

(comparison between day

0 and 6 weeks)

Two-tailed paired t -tests

1. Right temporal, T4–T6

(p < 0.025)

2. Right parietal, P4–O2 (p < 0.01)

3. Left temporal, T3–T5 (p < 0.01)

4. Left parietal, P3–O1 (p < 0.01)

Mean alpha power

(comparison between day

0 and 6 weeks)

Two-tailed paired t -tests

No significance at any region

Mean delta power

(comparison between day

0 and 6 weeks)

Two-tailed paired t -tests

No significance at any region

Slobounov et al. (2012)

“Residual brain dysfunction observed

1 year post-mild traumatic brain injury:

combined EEG and balance study”

Notes: this study suggests qEEG and

balance analysis as good prognostic

tools; efficacy as a diagnostic tool was

not explored

49 None (used

baseline

testing from

mTBI group

pre-injury)

Eyes closed, resting,

wakeful

Eyes open, resting,

wakeful

Eyes closed, standing,

wakeful

Eyes open, standing,

wakeful

Grade 1 mTBI

(Cantu Dad Driven

Revised

Concussion

Grading Guideline,

2006)

Alpha power suppression

(from resting to standing

posture) increase

t -Test (baseline vs. day 7

post-injury)

1. Occipital region of interest:

F =11.77 (1,48), p < 0.01

2. Parietal region of interest:

F =8.2 (1,48), p=0.038

Tebano et al. (1988)

“EEG spectral analysis after minor

head injury in man”

Notes: this report suggests differences

in power band frequencies occur

between healthy and patients with

mTBI. This is an early study and may be

considered exploratory

9 (No loss of

consciousness)

9 (Reported loss

of consciousness)

9 Eyes closed, resting,

wakeful (baseline

recording)

Eyes open, resting,

wakeful (recording)

Reported loss of

consciousness

after injury

Alpha I band power

(higher in injured group)

Mann–Whitney test

U =28, p < 0.01

Alpha II band power

(reduced in injured group)

Mann–Whitney test

U =47, p < 0.05

Mean frequency of total

alpha band power

(reduced in injured group)

Mann–Whitney test

U =46, p < 0.05

Frequency band total

power (if significant,

reduced in injured group)

Mann–Whitney test

1. Alpha (alpha I and II), (NS)

2. Delta, U =45, p < 0.05

3. Beta II, U =41, p < 0.025

Thatcher et al. (2001)

“Estimation of the EEG power

spectrum using MRI T2 relaxation time

in traumatic brain injury”

Notes: Nuwer et al. (2005) criticizes

this study due to lack of age-matching

and broad spread of TBI severity

18 (Mild-severe

TBI)

11 Eyes closed, resting,

wakeful

Chronic TBI

diagnosis

Correlation between

relative EEG frequency

power and T2 relaxation

time (MRI scan)

(decreased alpha and

beta; increased delta and

theta with MRI T2

abnormalities)

ANOVA

1. Delta (t =8.876, p < 0.0001)

2. Theta (t =8.529, p < 0.0001)

3. Alpha (t =−9.276, p < 0.0001)

4. Beta (t =2.421, p < 0.016)

(Continued)

Frontiers in Human Neuroscience www.frontiersin.org February 2015 | Volume 9 | Article 11 | 6

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive
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Table 1 | Continued

General study information

(spectral analysis)

Study design Results

mTBI

group (n)

Control

group (n)

qEEG recording

condition

Criteria for

TBI patient

Measures Statistical test/

comparison/significance

Thatcher et al. (1991) 162 None N/A Closed head injury

and admittance to

Neurotrauma

hospital center

EEG relative

power

Prediction accuracy (extreme

outcome scores) (1 year) 67.1%“Comprehensive Predictions of

Outcome in Closed Head-Injured

Patients”

Notes: a gradient of prognostic

strength of diagnostic measures was

EEG phase > EEG coherence >

GCS-T > CT scan > EEG relative power

Thornton (2003)

“The electrophysiological effects of a

brain injury on auditory memory

functioning. The QEEG correlates of

impaired memory”

Notes: twenty-seven patients of the

mTBI group were on various

medications. Age was statistically

different between groups (mTBI group

was slightly older)

85 56 Eyes closed,

resting, wakeful,

during auditory

memory task

Eyes open,

resting, wakeful,

during auditory

memory task

Loss of

consciousness

<20 min

Power band

frequency

measures for

alpha, beta, theta,

and delta (includes

absolute/relative

magnitude, peak

amplitude, peak

frequency, and

symmetry)

t -Test

1. Increased beta1 relative power

(p < 0.05)

Tomkins et al. (2011)

“Blood–brain barrier breakdown

following traumatic brain injury: a

possible role in posttraumatic epilepsy”

Notes: study focuses mostly on

blood–brain barrier localization with

qEEG abnormalities

37 (19 With

post-traumatic

epilepsy, PTE)

13 Eyes closed,

wakeful

Glasgow coma

scale >13

Delta power

(increase)

Mann–Whitney U test

Injured vs. controls (p=0.002)

(equivalent among PTE and non-PTE

mTBI patients)
Alpha power

(decrease)

Mann–Whitney U test
Injured vs. controls (p=0.005) (only

seen in PTE group, p=0.01)

Theta power

(increase)

Mann–Whitney U test
PTE group of mTBI patients vs.

controls (p=0.04)

von Bierbrauer et al. (1992)

“Computer assisted vs. visual

EEG-analysis in patients with minor

head injury (a follow-up examination)”

Notes: this study also provides

evidence for qEEG as a relevant

technology for patient diagnosis and

analysis as compared to standard EEG.

Original article is in German; analysis

adapted from review article (Nuwer

et al., 2005)

31 None N/A N/A Median posterior

alpha frequency

(increase over

time)

t -Test

1. 24 h vs. 1 week (NS)

2. 24 h vs. 3 weeks (p < 0.01)

3. 24 h vs. 2 months (p < 0.01)

Theta/alpha ratio

(decrease over

time)

t -Test

1. 24 h vs. 1 week (NS)

2. 24 h vs. 3 weeks (p < 0.05)

3. 24 h vs. 2 months (p < 0.01)

Watson (1995)

“The post-concussional state:

neurophysiological aspects”

Notes: study suggests combined use

of qEEG power spectral analysis and

brainstem audio evoked potential

(BAEP) I–V latency analysis could

provide utility to diagnose mTBI

symptoms (both organic and

psychological)

25 None Eyes closed,

resting, wakeful

Men; aged 14–30;

uncomplicated

head injury with

post-traumatic

amnesia <12 h

Alpha/theta ratio

(at day 0, day 10,

and 6 weeks

post-injury)

Paired two-tailed t -test (day 0 vs. day

10 post-injury)
1. Right temporal (T4–T6), p < 0.006

2. Right parieto-occiptal (P4–O2),

p < 0.02 (day 10 vs. 6 weeks) – not

significant for any region

Williams et al. (2008)

“Polysomnographic and quantitative

EEG analysis of subjects with long-term

insomnia complaints associated with

mild traumatic brain injury”

Notes: this study shows limited ability

of qEEG power spectra analysis to

differentiate among mTBI patients

suffering from sleep disorders and

control groups

9 9 Eyes closed,

resting, asleep

Glasgow coma

scale 13–15; loss

of consciousness

<20 min;

hospitalization

<48 h; reported

sleep dysfunction

Beta 2 power

(decrease in

injured patients)

Two-tailed t -tests with Welch’s

corrections (Wilcoxon rank sum test

also used if outliers were apparent)
1. Beta 2 (F (1, 16)=8.9, p=0.008)

Variability in power

(greater variability

in mTBI patients)

Two-tailed t -tests with Welch’s

corrections (Wilcoxon rank sum test

also used if outliers were apparent)

1. Sigma (F 1,16 =10.5, p=0.005)

2. Theta (F 1,16 =6.8, p=0.019)

3. Delta (F 1,16 =9.2, p=0.008)
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Rapp et al. TBI detection using EEG methods

and then summing the contributions of the frequencies included
in the band, or (2) subjecting the total signal to an appropriate
passband filter and then calculating the power spectrum of the
filtered signal. The resulting band power is typically averaged over
electrode sites and reported either as “absolute power” or as “rela-
tive power,” which is the ratio of the band power to the total power
over all bands. Other common parameters of spectral analysis
include median frequency and spectral edge frequency (Dressler
et al., 2004).

Utility for mTBI detection (spectral analysis)
A key feature of spectral analysis that allows for strong utility as
an mTBI detection tool is that spectral data can be obtained from
as few as two electrodes. Therefore, fielded devices do not require
the costs or burden of large montages of electrodes. This fea-
ture reduces equipment burden, administration time, and cost.
Simplified devices also allow for faster training and simplified
analysis.

Evidence of efficacy (spectral analysis)
Of the 25 studies comprising the down selected qEEG literature
index, 15 studies used spectral analysis as a measure to compare
injured and control groups. Most of the studies report statisti-
cally significant alteration in at least one frequency band in mTBI
patients compared to control groups. To visualize the overall trends
in results, Table 2 summarizes the reported changes to spectral
power (either absolute or relative power) across frequency sub-
bands from relevant studies. The table also displays the recording
montage and statistical significance from each finding. Measure-
ments were made under eyes closed, no task, but awake conditions,
with few exceptions [e.g., Tebano et al., 1988 – eyes open; Gos-
selin et al. (2009) – asleep condition; Thornton (2003) – EEG
recorded during memory task]. While results are somewhat var-
ied, generalizations can be inferred. For instance, mTBI injury is
often associated with a decrease in alpha power and an increase
in delta, beta, and theta bands. We note this evidence is not based
entirely on well-designed studies with large sample groups and
strong statistical significance. As an example, Thornton (2003)
reported increased beta activity in the injured group, but used
27 mTBI patients that were on some type of medication. Fur-
thermore, the age difference between injured and control groups
was statistically significant. These inconsistencies could potentially
skew EEG recordings. Korn et al. (2005), which reported decreased
alpha and increased delta power in the injured group, has been
criticized due to the potential misclassification of moderate-severe
TBI patients as mTBI patients (Arciniegas, 2011). The absence of
a uniformly applied criterion for defining mild TBI is a significant
complicating factor. Tebano et al. (1988), inconsistent with sev-
eral other studies, reported results based on very small sample
sizes and recorded brain activity with a single bipolar deriva-
tion (O1–T5) using an eyes open paradigm. Other inconsistencies
in the findings may be attributed to the various montages and
derivations used during data acquisition sessions (see Table 2 for
details). Overall, differential spectral power in injured patients is
strongly suggested in the literature, but specific findings need to
be confirmed based on robust studies that use similar recording
conditions.

Several additional studies from the literature index investigated
spectral measures, but did not compare results to a control group.
For example, Montgomery et al. (1991), Slobounov et al. (2012),
von Bierbrauer et al. (1992), and Watson (1995) reported spectral
changes in injured patients over time (theta reduction,alpha power
reduction plus theta/alpha ratio changes, and alpha/theta ratio
changes, respectively). Contradicting these studies, Chen et al.
(2006a) reported all spectral power measures returned to nor-
mal levels after a three month retest (alpha1, theta/alpha1 ratio,
theta/alpha2 ratio, and alpha1/alpha2 ratio). These results suggest
spectral analyses may have utility for longitudinal evaluations, but
confirmatory experiments must be matched with respect to time
post-injury and recording condition.

Additionally, some studies reported no spectral differences
between injured and control groups when a broad frequency win-
dow was used (Haglund and Persson, 1990; Coutin-Churchman
et al., 2003; Gosselin et al., 2009). Such findings suggest power
spectral analysis using sub-bands is preferred to observe signifi-
cant differences in mTBI patients. We note that the patient group
in the Coutin-Churchman et al. (2003) study included individuals
with a wide range of psychiatric disorders (only 4/340 patients were
classified with “post-traumatic headache”) and patients were not
controlled for medication usage. Therefore, the study should only
be considered a demonstration of the ability of spectral analysis to
uncover dysfunction across many neurological conditions. Finally,
Williams et al. (2008) reported higher variability in power in mTBI
patients compared to normal participants (sigma, p= 0.005; theta,
p= 0.019; delta, p= 0.008), but only limited ability of power spec-
tra analysis to differentiate among injured and normal. Refer to
Table 2 for a full listing of the 15 studies reporting use of spectral
analysis.

Research gaps and future directions (spectral analysis)
The variability of qEEG recording conditions across studies
severely impedes the formulation of strong conclusions on spec-
tral analysis utility or effectiveness. While studies strongly suggest
spectral analysis may be used as an mTBI detection tool, efforts
should be made to corroborate previous findings using high-
quality studies with controlled recording conditions and injured
group selection criteria. In addition, the use of smaller electrode
montages should be emphasized if field-based qEEG recording
devices are expected to be preferred for U.S. military operations.

Spectral power averaged over all electrode sites is a global mea-
sure. It provides no information about the energy generated at
individual sites or about the connectivities of different sites. This
more detailed information is provided, in part, by functional con-
nectivity measures, such as coherence and phase difference (see
below), and by inter- and intra-hemispheric power asymmetries.
Research should be devoted to identify the most promising spec-
tral measures, but with the overall goal to use spectral measures in
combination with other measures.

Summary of analysis (spectral analysis)
There are some examples in the literature suggesting that spec-
tral analysis can be used to detect mTBI. Studies generally report
altered alpha, delta, beta, and theta power as potential indica-
tors of mTBI. However, while trends of specific spectral power

Frontiers in Human Neuroscience www.frontiersin.org February 2015 | Volume 9 | Article 11 | 8

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rapp et al. TBI detection using EEG methods

Table 2 | Summary of changes in spectral power associated with mTBIa.

Frequency range Decrease in spectral power Increase in spectral power Unchanged spectral power

Delta (1.5–3.5 Hz) Tebano et al. (1988) (p < 0.01; O1–T5,

relative power)

Korn et al. (2005) (p < 0.01; 128 channels,

relative power); Gosselin et al. (2009)

(p < 0.01, asleep, relative power); Tomkins

et al. (2011) (p=0.002, 23 channels)

Theta (3.5–7.5 Hz) Tomkins et al. (2011) (p=0.04, 23 channels);

Montgomery et al. (1991) (p < 0.025, T4–T6;

p < 0.01, P4–O2; p < 0.01, T3–T5; p < 0.01,

P3–O1)b

Tebano et al. (1988) (O1–T5,

relative power); Chen et al.

(2006a) (16 channels, specific

locations unknown)

Alpha1 (7.5–10 Hz) Korn et al. (2005) (p < 0.05; 128

channels, relative power)

Tebano et al. (1988) (p < 0.01; O1–T5); Chen

et al. (2006a) (p < 0.01; 16 channels, specific

locations unknown)

Alpha2 (10.0–12.5 Hz) Korn et al. (2005) (p < 0.05; 128

channels, relative power); Tebano et al.

(1988) (p < 0.05; O1–T5, relative power)

Chen et al. (2006a) (16 channels,

specific locations unknown)

Alpha (7.5–12.5 Hz) Gosselin et al. (2009) (p < 0.05, asleep,

relative power); Tomkins et al. (2011)

(p=0.005,only in post-traumatic

epilepsy mTBI subgroup)

Tebano et al. (1988) (O1–T5,

relative power)

Beta (12.5–25 Hz) Tebano et al. (1988) (O1–T5,

relative power)

Beta1 (13–32 Hz) Thornton (2003) (p < 0.02, auditory memory

task)

Chen et al. (2006a) (16 channels,

specific locations unknown)

Beta2 (25–35 Hz) Tebano et al. (1988) (p < 0.025; O1–T5,

relative power); Williams et al. (2008)

(p=0.008, 10/20 config, asleep)

Thornton (2003) (p < 0.05, auditory memory

task)

Chen et al. (2006a) (16 channels,

specific locations unknown)

Gamma (35–50 Hz)

Theta/alpha Watson (1995) (p < 0.006, T4–T6; p < 0.02,

P4–O2, P3–O1)c

Theta/alpha1 Chen et al. (2006a) (p < 0.05; 16

channels, specific locations unknown)

Theta/alpha2 Chen et al. (2006a) (p < 0.05; 16 channels,

specific locations unknown)

Alpha1/alpha2 Chen et al. (2006a) (p < 0.01; 16 channels,

specific locations unknown)

aEEGs were measured in 19 channels during eyes closed, awake recording sessions, unless otherwise noted. Reported changes are in absolute power relative to

normal controls, unless otherwise noted.
bMontgomery et al. (1991) noted a decrease in theta power of the same subject from day 0 to 6 weeks post-concussion suggesting that theta power may have

increased as a result of the concussion and was trending back to normal 6 weeks later as the patient recovered.
cWatson (1995) found that for channel pairs T4–T6, P4–O2, P3–O1, the theta/alpha ratio had decreased from day 0 to day 10 post-injury for the same subjects

suggesting that the ratio may have increased as a result of the concussion and was trending back to normal 10 days later as the patient recovered.

alterations are apparent (decreased alpha and increased delta, beta,
and theta in injured groups), the literature contains a high degree
of contradictory results. This uncertainty is most likely due to
poor study design and a lack of recording condition consistency.

Therefore, additional studies with carefully controlled conditions
must be conducted to identify the best spectral measures for mTBI
detection. We anticipate spectral analysis would not be a sufficient
detection tool in isolation, and, in fact, multiple studies suggest
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improved accuracy only when combined with other qEEG mea-
sures (Thatcher et al., 1989, 1991; Trudeau et al., 1998; Thornton,
1999, 2003; McCrea et al., 2010; Barr et al., 2012; Prichep et al.,
2012a,b). Additionally, there is some evidence that depression is
also marked by a decrease in alpha power and an increase in beta
power similar to those seen in mTBI patients (Thornton, 2003).
This finding raises the possibility of confounding test results in
patient populations that may be prone to depression or PTSD. In
summary, spectral analysis in and of itself does not appear to be a
viable tool for mTBI detection.

FUNCTIONAL CONNECTIVITY MEASURES
Definition (functional connectivity)
Analysis of functional connectivity quantifies the relationships
between EEG signals recorded simultaneously at different sites.
EEG connectivity measures fall into three groups: time domain
measures, frequency-domain measures, and measures calculated
from the geometry of embedded data.

Time domain measures quantify the correlation between EEG
time series. They can be used to assess the connectivity of discrete
feedback loops and the stereotyped propagation of signals across
neural networks (Koenig et al., 2005). There are four commonly
used time domain measures of functional connectivity to assess
the correlation between pairs of observations: (1) Pearson prod-
uct moment correlation, (2) Spearman rank order correlation, (3)
Kendall rank order correlation, and (4) mutual information. Addi-
tional time domain measures of note include a normalization of
mutual information [recently constructed by Reshef et al. (2011)]
and EEG microstate topography, in which the occurrence of spon-
taneous short-lasting brain states is assessed (Koenig et al., 2005).

Frequency-domain measures quantify the correlation between
spectra rather than between the original time series, or quantify
the relationship between the phases of two signals. Variations on
these themes that have been applied to EEG signals include coher-
ence (Nunez et al., 1997, 1999), phase synchronization (Aviyente
et al., 2011), phase locking index (Hurtado et al., 2004; Sazonov
et al., 2009; Stam et al., 2009), phase locking value (Lachaux et al.,
1999), imaginary coherency (Nolte et al., 2004; Stam et al., 2007),
synchronization index (Gross et al., 2004), and phase lag index
(Stam et al., 2007, 2009).

Measures of embedded data are more recent additions to the
assessment of functional connectivity. Consider a scalar voltage
time series measures at a scalp electrode, (v1, v2, . . ., vN). This time
series is used to construct points in m-dimensional space, Z i= (v i,
v i+1, . . ., v i+(m−1)). While there are more complicated versions of
the embedding process, in each version the original time series
in this example becomes a directed trajectory in m-dimensional
space, as motivated by the Takens embedding theorem (Takens,
1981). This powerful result demonstrates that, to an approxima-
tion, an intimate relationship exists between the geometry of the
embedded set and the dynamical structure of the system that gen-
erated the observed time series. Now suppose two time series
are measured simultaneously and used to generate two separate
m-dimensional trajectories. Functional connectivity between the
two original time series may be assessed by constructing measures
relating the two trajectories. Examples include synchronization
likelihood (Stam and van Dijk, 2002; Wendling et al., 2009) and

cross recurrence diagrams (Romano et al., 2004; Richardson et al.,
2008).

Distinction must also be made between connectivity measures
and measures of causal relationships. Functional connectivity
measures are computed from voltage signals recorded at differ-
ent electrodes to determine if there is a relationship between two
signals. These measures are adirectional. In contrast, causality
measures specifically assess the direction of information move-
ment. Measuring causality for mTBI detection is examined in
Section “Analysis of Causal Relationships” of this report.

Utility for mTBI detection (functional connectivity)
Alterations in the functional connectivity of multichannel EEG
have been reported in a range of neuropsychiatric disorders,
including TBI (Table 3). This suggests reasonable utility of using
functional connectivity measures for mTBI detection. It should

Table 3 | Pathological conditions associated with altered functional

connectivity (adapted from Bonita et al., 2014).

Disorder/dysfunction Relevant publications

Alzheimer’s disease Georgopoulos et al.

(2007)

Rosenbaum et al.

(2008)

Güntekin et al. (2008) Stam et al. (2006, 2007,

2009)

Locatelli et al. (1998) Zhou et al. (2008)

Epileptic seizures Ponten et al. (2007)

Intra-arterial

amobarbital injection

Douw et al. (2010)

Autism spectrum

disorder

Belmonte et al. (2004) Murias et al. (2007)

Just et al. (2004) Rippon et al. (2007)

Kana et al. (2007) Vidal et al. (2006)

Brain tumors Bartolomei et al. (2006)

Bosma et al. (2008)

Multiple sclerosis Georgopoulos et al.

(2007)

Lenne et al. (2012)

Preterm birth Mullen et al. (2011)

PTSD Lanius et al. (2004)

Shaw (2002)

Schizophrenia Breakspear et al. (2004) Lynall et al. (2010)

Georgopoulos et al.

(2007)

Michelyannis et al.

(2006)

Lawrie et al. (2002) Symond et al. (2005)

Stroke Grefkes and Fink (2012)

Traumatic brain injury Cao and Slobounov

(2010)

Kumar et al. (2009a,b)

Castellanos et al. (2010,

2011a,b)

Nakamura et al. (2009)

Ham and Sharp (2012) Sponheim et al. (2011)

Kasahara et al. (2010) Tsirka et al. (2011)
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be noted, however, that multichannel EEG usually requires more
complex electrode montages and advanced computational capac-
ity for data analysis. These features may be contrary to simple,
lightweight devices capable of field-based use and easy operation.
Additionally, the signal analysis and neuroinformatics challenges
of these investigations should not be underestimated (Irimia et al.,
2009, 2012; Goh et al., 2014).

Evidence of efficacy (functional connectivity)
The various functional connectivity measures described above
offers specific advantages and disadvantages as detection tools
of neurological dysfunction. For example, Bonita et al. (2014)
recently compared the four classical measures of time domain con-
nectivity (Pearson product moment correlation, Spearman rank
order correlation, Kendall rank order correlation, and mutual
information) with multichannel EEGs obtained in two behav-
ioral states (eyes open, no task and eyes closed, no task) from
healthy control participants. It was found that mutual informa-
tion distinguished between behavioral states with less data and
was more robust to noise. This result was not unanticipated since
mutual information is a non-linear measure that captures rela-
tionships not detected by the other three time domain measures.
In addition, time domain measures have been most commonly
applied to event-related data, since common reference points in
time are often required for calculations (Koenig et al., 2005). EEG
microstate topography analysis, however, does not require exter-
nal time reference points and may be used with spontaneous qEEG
recording to assess individuals with varied cognitive states or dys-
functions (Koenig et al., 1999; Lehmann et al., 2005; Müller et al.,
2005). Frequency-domain measures are not robust to naïve appli-
cation. For example, Schiff (2005) showed coherence calculations
can produce misleading results and Guevara et al. (2005) reported
synchronization values can be sensitive to the common reference
signal used in EEG recordings. Insofar as we know, a compara-
tive study of frequency-domain measures, analogous to the Bonita
et al. (2014) time domain measure study, has not been conducted.
Similarly, essential comparative studies have not been reported for
measures of embedded data.

Specific evidence related to mTBI detection is relatively sparse:
only three studies from the refined literature index investigated
the efficacy of functional connectivity measures (see Table 4).
Sponheim et al. (2011) reported reduced synchrony between
specific frontal electrode positions for delta, beta, and gamma
frequency bands. The results were statistically significant with a
strong criterion (limited to p < 0.05 for all comparisons; Cohen’s
d = 0.92–1.20), but we note the study used small sample group
sizes (nine injured and eight normal) and follow-up studies with
larger groups could improve significance. Interestingly, the use of
neurocognitive assessment tools (battery of multiple tests) failed
to properly classify individuals as injured or uninjured, suggest-
ing that this new method may uncover dysfunctions below the
thresholds of current mTBI detection methods. Thatcher et al.
(1991) reported EEG phase was reasonably accurate in predicting
outcome scores of patients 1 year post-injury (90.2% accuracy).
This study also ranked the prognostic strength of EEG phase and
EEG coherence above CT scan and spectral relative power. The
Thatcher et al. (1991) study was longitudinal and no control group

was used to assess diagnostic capacity of the functional connec-
tivity measures. Finally, Thornton (2003) used an audio memory
task paradigm and reported that phase and coherence were low-
ered for beta1 and beta2 spectral bands (p < 0.05 for each test).
This study involved reasonable sample groups (85 injured, 56 con-
trols), but has been challenged since 27 patients from the mTBI
group were on medications and there was a statistically signifi-
cant difference in age between the groups. Nevertheless, this study
suggests functional connectivity should be further investigated
as a diagnostic approach for mTBI. Details on the three stud-
ies investigating functional connectivity in mTBI are presented in
Table 4.

Research gaps and future directions (functional connectivity)
Since a limited number of studies have specifically investigated
detection efficacy of mTBI, future research should be directed to
corroborate previous findings. Concerns of study quality are abun-
dant; therefore, future studies should ensure robust study design
and limited reliance on medicated patient groups. The signal pro-
cessing methods for coherence should also be investigated, since
studies have reported misleading results depending on the analysis
method.

Summary of analysis (functional connectivity)
In the context of mTBI, functional connectivity has not been
investigated to the same extent as spectral analysis. The small
number of available studies report that coherence may be a use-
able measure for accurate mTBI detection. However, the studies
are fundamentally weak in their experimental design and need
to be corroborated. Furthermore, the strongest positive results
were reported for a longitudinal study. Similar to spectral analy-
sis, coherence may be best suited as a contributing measure of a
discriminant function for mTBI detection.

DISCRIMINANT FUNCTIONS
While not specific to qEEG, discriminant functions were identified
during the literature search as a common methodology for mTBI
detection. Discriminant functions in this context comprise more
than one qEEG measure and so deserve consideration here. Similar
to the evaluation of spectral analysis and functional connectivity,
discriminant functions are defined below, followed by an analysis
of the evidentiary support for use as an mTBI detection tool.

Definition (discriminant functions)
The term“discriminant functions”refers to an entire class of analy-
sis approaches in which a specific model is used to classify a set
of data as belonging to a specific group (or not). Broadly defined,
this involves the use of a specific rule (or set of rules), which define
members of a class, and applying the rule to a set of data where
membership is unknown in order to classify where the target mem-
ber belongs. This is most commonly a discrete decision, but can
even be used to estimate the location within a categorized contin-
uum. Within the domain of TBI, discriminant functions may be
used to classify a patient based on level of severity (e.g., severe TBI
vs. mTBI) or the presence of injury (e.g., TBI vs. no injury) through
the combination of various metrics (such as spectral or functional
connectivity features) within a single discriminant model.
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Table 4 | mTBI studies using connectivity measures.

General study information

(spectral analysis)

Study design Results

mTBI

group (n)

Control

group (n)

qEEG recording

condition

Criteria for

TBI patient

Measures Statistical test/

comparison/significance

Sponheim et al. (2011)

“Evidence of disrupted functional

connectivity in the brain after

combat-related blast injury”

Notes: this study uses a new method

for calculating phase synchrony in

qEEG recordings, and identifies several

statistically significant synchrony

disruptions in mTBI patients.

Neurocognitive assessment tools

(battery of multiple tests) were unable

to distinguish between groups

9 8 Eyes closed, resting,

wakeful

American Congress of

Rehabilitation

Medicine Special

Interest Group on Mild

Traumatic Brain Injury

and the concussion

grading system by the

American Academy of

Neurology

EEG synchrony between

F7 and Fp2 (reduced)

Wilcoxon ranksum test and Cohen’s d

1. Delta frequency: p < 0.05, d =1.19

2. Theta: p < 0.05, d =1.07

3. Beta-1: p < 0.05, d =1.06

4. Beta-2: p < 0.05, d =1.20

EEG synchrony between

F7 and F4 (reduced)

Wilcoxon ranksum test and Cohen’s d

1. Delta: p < 0.05, d =1.00

EEG synchrony between

F8 and Fp1 (reduced)

Wilcoxon ranksum test and Cohen’s d

1. Gamma: p < 0.05, d =0.92

Thatcher et al. (1991)

“Comprehensive Predictions of

Outcome in Closed Head-Injured

Patients”

Notes: a gradient of prognostic

strength of diagnostic measures was

EEG phase > EEG coherence >

GCS-T > CT scan > EEG relative power

162 None N/A Closed head injury

and admittance to

Neurotrauma hospital

center

EEG phase Prediction accuracy (extreme

outcome scores) (1 year) 90.2%

Correlation (intermediate scores)

R=0.664

Thornton (2003)

“The electrophysiological effects of a

brain injury on auditory memory

functioning. The QEEG correlates of

impaired memory”

Notes: twenty-seven patients of the

mTBI group were on various

medications. Age was statistically

different between groups (mTBI group

was slightly older)

85 56 Eyes closed, resting,

wakeful, during

auditory memory task

Eyes open, resting,

wakeful, during

auditory memory task

Loss of

consciousness

<20 min

Connectivity measures

(includes phase and

coherence)

t -Test

1. Lowered beta 1 phase and

coherence (p < 0.05)

2. Lowered beta 2 phase and

coherence (p < 0.05)

Evidence of efficacy (discriminant functions)
Nine studies were identified that investigate the utility of discrim-
inant function analysis of qEEG data for the detection of mTBI
(Table 5). Four studies investigate the efficacy of the same dis-
criminant function currently under development by BrainScope,
Inc. (McCrea et al., 2010; Naunheim et al., 2010a,b; Naunheim
and Casner, 2010; Barr et al., 2012; O’Neil et al., 2012; Prichep
et al., 2012a,b). McCrea et al. (2010) introduces the BrainScope
method and device in which seven qEEG features comprise the
discriminant function. The group does not provide complete
details in this paper, but report the discriminant function con-
sists of measures of asymmetry, coherence, and spectral power in
the beta frequency range. Of note, the device only acquires data
from three frontal electrode sites, and thus discrimination cannot
be based on large network interactions. Twenty-eight concussed
athletes were compared to age-matched controls and the data indi-
cated statically significant differences between injured and control
groups immediately after injury and 8 days post-injury, but not at
day 45 post-injury. While specifics of the discriminant function
are missing, the study is sound and provides evidence that the
BrainScope discriminant function is efficacious as a detection tool
immediately after injury.

The Barr et al. (2012) study is similar to the McCrea study,
but recorded qEEG from a larger cohort of mTBI patients and
healthy controls and used a five electrode montage. Similar
results were reported as well; statistically significant discrimi-
nant function indices were observed on the day of injury and
at day 8 post-injury, but not at day 45 post-injury. A larger
difference (yielding higher significance criterion) was observed
compared to the McCrea et al. (2010) study, implying that the
discriminant function was altered compared to the McCrea ver-
sion. However, no details were provided about the specific mea-
sures that comprise the function; thus this possibility cannot be
confirmed.

O’Neil et al. (2012) also report on the utility of the BrainScope
discriminant function, but do not use a control group. The study
compares the classification outcome of the discriminant function
(called the TBI-index) to classification by medical examination
and CT scan. The sensitivity of the discriminant function was
good (94.7%), but specificity and positive predictive value were
poor (approximately 50%). Problems with the study design are
not evident, but the results suggest improvement of the BrainScope
discriminant function is required to attain reasonable specificity
and avoidance of false negatives.
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Rapp et al. TBI detection using EEG methods

Table 5 | mTBI studies using discriminant functions.

General study information

(spectral analysis)

Study design Results

mTBI

group (n)

Control

group (n)

qEEG recording

condition

Criteria for

TBI patient

Measures Statistical test/

comparison/significance

Barr et al. (2012)

“Measuring brain electrical activity to

track recovery from sport-related

concussion”

Notes: this study provides further

evidence for the BrainScope

discriminant function as a potential

mTBI diagnostic tool and may suggest

utility after acute phases of injury.

Commercial funds (BrainScope) were

used to complete this study

59 31 Eyes closed, resting,

wakeful

Concussion

(diagnosed at hospital

admittance)

BrainScope index

(proprietary discriminant

function index)

t -Test, corrected for unequal n’s (TBI

vs. control)

1. Day of injury (t =3.75, p=0.0004)

2. Day 8 (t =2.76, p=0.008)

3. Day 45 (t =1.49, p=0.15) (NS)

Course of recovery (day of

injury to day 8–45)

One-way ANOVA (TBI group)

1. Day of injury compared to day 8

and day 45 (F =3.2; p=0.046)

Course of recovery,

control group

One-way ANOVA (control group)

1. Day of injury compared to day 8

and day 45 (F =0.5; p=0.67) (NS)

Leon-Carrion et al. (2008)

“A QEEG index of level of functional

dependence for people sustaining

acquired brain injury: the Seville

independence index (SINDI)”

Notes: investigates validity and

reliability of a qEEG discriminant

function for evaluating patient

functional dependence. This function is

less likely to be accurate for various

levels of mTBI severity

40 (TBI) 40 (TBI

patients,

FIM+FAM

score binning)

Eyes closed, resting,

wakeful

CT or MRI scan Mean SINDI score One-way ANOVA

Group 1 vs. Group 2 vs. Group 3

(F =48.9, p < 0.0001)

Group 1:

complete

dependence

Correlation between new

discriminant and

FIM+FAM scores

Pearson coefficient

R=0.81 (p < 0.001)

Group 2:

modified

dependence

Group 3:

independence

Correlation between

predicted scores from

multiple regression and

FIM+FAM scores

Pearson coefficient

R=0.85 (p < 0.0001)

Leave-one-out method

(discriminant function

validation)

Classification accuracy (96.65%)

External validation (33

patient group)

Classification accuracy (75%)

McCrea et al. (2010)

“Acute effects and recovery after

sport-related concussion: a

neurocognitive and quantitative brain

electrical activity study”

Notes: this study used the BrainScope

device, currently under commercial

development. The BrainScope TBI index

discriminant is based on 7 qEEG

variables identified as good measures

for comparison and differentiation (by

ANOVA) and converted to standard

z -scores

28 28 Eyes closed, resting,

wakeful

Frontal electrode site

data acquisition only

(FP1, FP2, AFz)

Concussion diagnosis

(using American

Academy of

Neurology Guideline

for Management of

Sports Concussion)

Multivariate discriminant

(BrainScope TBI index)

combining various

measures across

frequency bands (main

variables included

measures of asymmetry,

coherence, high beta

power, and low beta

power)

MANOVA

Comparison between injured and

control groups

1. Baseline: F =1.65, p=0.164 (NS)

2. At injury: F =4.4, p=0.002

3. Day 8: F =2.53, p=0.04

4. Day 45: F =0.6, p=0.74 (NS)

O’Neil et al. (2012)

“Quantitative brain electrical activity in

the initial screening of mild traumatic

brain injuries”

Notes: this study describes the

BrainScope Index (a qEEG discriminant

function) as an effective screening tool

for emergency room patients with

suspected TBI. Note that BrainScope

funded this study and authors are

BrainScope employees or consultants

119 None Eyes closed, resting,

wakeful

American congress of

rehabilitation criteria

TBI-Index Sensitivity=94.7

Specificity=49.4

Positive predictive value=47.4

Negative predictive value=95.3

Positive likelihood value=1.92

Negative likelihood value=0.10

Odds ratio=18.5

TBI-Index plus New

Orleans Criteria (NOC)

Sensitivity=97.0
Specificity=50.6

Positive predictive value=48.05

Negative predictive value=97.62

Positive likelihood value=1.97

Negative likelihood value=0.06

Odds ratio=36.1

Correlation between

TBI-Index and NOC

Pearson correlation
R=0.33, p < 0.0001

(Continued)
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Table 5 | Continued

General study information

(spectral analysis)

Study design Results

mTBI

group (n)

Control

group (n)

qEEG recording

condition

Criteria for

TBI patient

Measures Statistical test/

comparison/significance

Prichep et al. (2012a)

“Classification of traumatic brain injury

severity using informed data reduction

in a series of binary classifier

algorithms”

Notes: this method provides evidence

for algorithms that can be used in

portable devices to effectively score

suspected mTBI patients based on

qEEG recording analysis. The

sensitivities and specificities were

reported to be better than

neurocognitive assessment tools, such

as the MACE. A wide-scale multicenter

trial is underway

633 None Eyes closed, resting,

wakeful

Glasgow coma scale >8

Category 1: no evidence

of acute injury and no

visible CT scan

abnormality)

Category 2: no visible

CT scan abnormality;

neurocognitive

assessment

abnormalities

Category 3: presence of

acute injury (visible CT

scan abnormality)

Custom algorithm 1

(captures wide range of

measures)

Classification of Category 3 from

Categories 1 and 2

Sensitivity=96.3%

Specificity=77.5%

Positive predictive value=47.1%

Negative predictive value=99.0%

AUC=0.911

Cohen’s d =1.94

Custom algorithm 2

(captures wide range of

measures)

Classification of Category 1 from

Categories 2 and 3

Sensitivity=80.5%

Specificity=73.9%

Positive predictive value=85.4%

Negative predictive value=66.5%

AUC=0.797

Cohen’s d =1.29

Thatcher et al. (2001)

“An EEG Severity Index of Traumatic

Brain Injury”

Notes: Nuwer et al. (2005) criticizes

this paper indicating that factors such

as drowsiness and medication are well

known to effect EEG results, contrary

to the results of this study

108 (40

mTBI, 25

moderate

TBI, 2

severe TBI)

503 (cross-

validation)

None Eyes closed, resting,

wakeful

mTBI subgroup:

Glasgow coma score

13–15; posttraumatic

amnesia <1 h; loss of

consciousness <20 min

EEG severity index

(discriminant function)

Classification accuracy

mTBI accuracy=95.08%

Pearson correlation

1. EEG index and neuropsychological

performance (various tests) (p < 0.05)

t -Test

1. Mild vs. moderate (p < 0.0001)

2. Mild vs. severe (p < 0.000001)

3. Moderate vs. severe (p < 0.00001)

Thatcher et al. (1989)

“EEG discriminant analysis of mild

head trauma”

Notes: this study showed that EEG

discriminant functions can be

accurately (> 90%) be used to classify

normal subjects vs. those with mild

TBI. Nuwer contends that results from

use of this discriminant function have

not been published since 1989 and the

TBI patients were on a variety of

medications that could skew the results

608 108 N/A Glasgow coma score

13–15; loss of

consciousness <20 min

Thatcher discriminant

function (comprises 20

measures) accuracy

1. 204 mTBI subjects vs. 83 controls

(94.8% accuracy)

2. 130 mTBI subjects vs. 21 controls

(95.4% accuracy for mTBI, 90.5% for

normals)

3. Test-retest classification accuracy

using 93 patients ranged from 77.8 to

92.3%

4. Off-site test with 70 new patients

(92.8% accuracy for TBI patients and

100% for normals)

Thatcher discriminant score

change (for injured patients)

over 2 weeks

Pearson correlation

R2
=29.9%, p < 0.68 (NS)

Thatcher discriminant score

change (for injured patients)

vs. number of days from

injury to EEG test

Pearson correlation

R2
=48.3%, p < 0.38 (NS)

Thornton (1999)

“Exploratory investigation into mild

brain injury and discriminant analysis

with high frequency bands (32–64 Hz)”

Notes: introduces a discriminant

function for mTBI based on high

frequency frontal coherence (2945

variables). Author acknowledged the

study as exploratory and preliminary.

Combination of both Thatcher and new

discriminant functions resulted in

perfect accuracy

32 52 Eyes closed, resting,

wakeful

Hit head on part of car

during car accident; loss

of consciousness

<2 min or none

Thatcher discriminant (over

1 year post-injury)

Accuracy (79% for injured group)

New high-frequency (up to

64 Hz) discriminant

Accuracy (89% for injured group

across all time periods; 100% for

injured group within 1 year of injury)

False hit rate (normal sample=52%

New high-frequency

discriminant plus Thatcher

discriminant

Accuracy=100%

FP1 position variables Levene’s test for homogeneity of

variances

p < 0.05 for all variables

Relative power

Coherence theta

Coherence beta 2

Phase beta2

(Continued)
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Table 5 | Continued

General study information

(spectral analysis)

Study design Results

mTBI

group (n)

Control

group (n)

qEEG recording

condition

Criteria for

TBI patient

Measures Statistical test/

comparison/significance

Trudeau et al. (1998)

“Findings of mild traumatic brain injury

in combat veterans with PTSD and a

history of blast concussion”

Notes: this study provides data that

suggests the Thatcher discriminant

function can be used to differentiate

previous blast-induced mTBI among

veterans suffering from PTSD from

those PTSD patients who did not suffer

a blast mTBI. While the discriminant

function was not able to accurately bin

TBI vs. non-TBI, the sample size was

small and the range in age and

post-injury timeframe was quite large

27 (blast

history)

16 (no-blast

history)

Eyes closed, wakeful PTSD patient with blast

history (note: control

group also PTSD

patients)

Thatcher discriminant

score

t -Test

Blast group vs. no-blast group

(t =5.4, df=41, p < 0.0001)

t -Test

Regrouping of TBI history vs. no-TBI

history (t =0.32, df=41, p=0.75)

(NS)

ANOVA

ADHD, other mTBI history, TBI

history, or psychoactive substance

abuse (no significance)

Prichep et al. (2012a) provides data from a large mTBI group
of 633 patients. Although the study design was similar to O’Neil
et al. (2012), the project was substantially improved by including
comparison to other approaches and improving the complexity
of the analysis. For example, Prichep et al. compared the Brain-
Scope discriminant function to a more relevant group of common
TBI assessment tools (e.g., military acute concussion evaluation)
and inclusion of an “artifact detection module” to minimize EEG
noise and artifacts. The discriminant function itself was signif-
icantly more complex and includes variables such as spectral
analysis measures, information theory-based measures, scale-free
brain activity measures, fractal dimension measures, functional
connectivity measures, and various multivariate measures. Two
algorithms were devised to separate various levels of severity of
TBI and specificity was improved compared to O’Neil et al. (2012).
Specifically, the new discriminant function was able to differentiate
between mTBI and moderate/severe TBI patients with a sensitivity
of 80.5% and a specificity of 73.9%. Positive predictive value was
also improved compared to the O’Neil data (85.4%), but negative
predictive value was poorer (66.5%). These results indicated the
newer BrainScope discriminant function was able to detect mTBI,
differentiate it from more severe forms, and decrease incidence
of false negative classification. Overall, this paper provides excel-
lent evidence that a well-designed discriminant function may be a
serviceable mTBI detection tool.

Leon-Carrion et al. (2008) described another discriminant
function not associated with BrainScope. However, this discrimi-
nant function, the Seville independence index (SINDI), was built
to classify patients according to the level of functional depen-
dence, such as complete dependence, modified dependence, and
independence. These classifications are less meaningful for ini-
tial detection of injury, but rather are used to predict the level of
care required during the rehabilitation phase. The discriminant
function comprised nine qEEG variables including four coher-
ence variables, three phase lag variables, one absolute amplitude

variable, and one absolute asymmetry variable at specific fre-
quency bands. Accuracy was 100% for classification between
complete dependence (n= 15) and independence (n= 14), which
may correlate with severe TBI and mTBI, respectively. In addi-
tion, the SINDI scores correlated well (p < 0.0001) with estab-
lished tests of functional dependence (Functional Independence
Measure+ Functional Assessment Measure). Overall, this paper
reports the qEEG-based discriminant function may be used to
predict the level of functional dependence in injured patients, but
does not investigate the diagnostic potential of SINDI.

The remaining papers in the literature index present results
based on a collection of discriminant functions from the same
group. The original discriminant function comprised 20 measures
of coherence, phase, amplitude asymmetry, and relative power at
various frequency bands (Thatcher et al., 1989). The function was
reported to be >90% accurate in discriminating mTBI patients
(Glasgow coma score 13–15; loss of consciousness <20 min) from
healthy controls in a large dataset (total of 608 mTBI patients and
108 controls). It also reported good test–retest accuracy using 93
patients (77.8–92.3%). The paper, however, has received strong
criticism since the TBI patients were on a variety of medica-
tions (Nuwer et al., 2005). The same group published another
report on another discriminant function that used 16 measures of
EEG coherence, phase, and amplitude asymmetry (Thatcher et al.,
2001). Notably, none of the measures used in the 2001 study were
the same as those in the 1989 study. This discriminant function
was able to classify mTBI from moderate TBI with high probabil-
ity of success (t -test, p < 0.0001). Overall classification accuracy
of mTBI patients from controls was also high (95%). This study
was criticized since it was assumed that medications did not alter
EEG, even though such an effect is widely accepted in the field
(Nuwer et al., 2005). Nuwer’s argument does not, however, ques-
tion the overall study design or methodology [unlike the criticism
leveled against Thatcher et al. (1989)]. The Thatcher et al. (1999)
discriminant function was also tested in concert with another
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Rapp et al. TBI detection using EEG methods

discriminant function and the authors found the discriminant
to maintain reasonable classification accuracy (79%) over 1 year
post-injury. Supplementation with a new high-frequency discrim-
inant function improved accuracy to 100% in a sample group of 32
mTBI injured patients and 52 controls. Use of the high-frequency
discriminant function alone was reported to provide not only high
accuracy (89%) but also a high false hit rate (52%). These studies
also suggest high potential value of using a discriminant function
as a mTBI detection tool.

Research gaps and future directions (discriminant functions)
The primary challenge in the use of discriminant functions with
qEEG is in deciding the most appropriate functions to use, which is
directly tied to which features are most relevant. The problems here
are threefold. First, there are an extremely large number, poten-
tially hundreds, of possible analytic approaches and data features,
which could be used as the basis for classification. These range
from time-based measures, such as ERPs, to frequency-domain
analytics, to more complex time-frequency hybrid features such
as cross-channel phase relationships described above. Second, the
function or class of functions used for discrimination must be rel-
atively specific to the state being detected, so as to include both
a high successful “hit” rate, and decrease as much as possible
the occurrence of false-identifications. That is, in the example of
mTBI, the functions must be precise enough to discriminate not
only the occurrence of mTBI from no trauma but also the occur-
rence of trauma from other states such as extreme exhaustion,
sleepiness, or cognitive fatigue, which may share similar response
features. Finally, in most cases discrimination requires either some
level of ad hoc adjustment or comparison against a known base-
line in order to perform accurately for multiple individuals, due to
the high variability between individuals, and between situations.
Access to a state considered to be “ground truth” is required. While
this is generally not a problem in research, gaming, or repeated-
access medical applications in which the conditions of detection
system can be predicted and controlled, access to the patient will
most likely occur only after trauma has occurred.

Summary of analysis (discriminant functions)
qEEG-based discriminant functions represent a promising solu-
tion for detecting mTBI, since the use of multiple measures in
the evaluation process improves specificity and sensitivity. Stud-
ies with large sample sizes have reported strong discriminatory
abilities of discriminant functions (Thatcher et al., 2001; Prichep
et al., 2012a). Criticism of earlier studies has been warranted due to
the known effects of medication on the EEG, but improved study
design of more recent studies (i.e., Prichep et al., 2012a) suggests
discriminant functions may be considered highly valuable mTBI
detection tools.

ADDITIONAL MEASURES NOT REPRESENTED IN THE DOWN
SELECTED qEEG LITERATURE
Additional EEG-related technologies not represented in the orig-
inal literature search are also relevant to mTBI detection and
deserve consideration here. Many of these technologies are based
on newer mathematical analysis techniques not previously investi-
gated with respect to mTBI. Relevant technologies include assess-
ment using ERPs, information dynamics, symbolic dynamics,

analysis of causal relationships, and graph theory. Each technol-
ogy is introduced below and includes a summary of the available
evidence for mTBI detection utility based on additional literature
reviews.

EVENT-RELATED POTENTIALS
Event-related potentials are stereotyped responses to a discrete
sensory, cognitive, or motor event. An ERP is distinguished from
an evoked potential (EP) by having a longer latency and in being
altered by the cognitive significance of the stimulus to the subject.
EPs may be referred to as “exogenous” because they are strongly
dependent on the physical properties of the stimulus being used
to elicit the response (e.g., auditory vs. visual stimulation). Con-
versely, ERPs may be described as “endogenous” in nature because,
although they are also related to some external event, they are
heavily influenced by higher level cognitive processes and are less
dependent on the stimulus modality or physical characteristics
of the stimulus. Can ERPs reliably diagnose mTBI? Gaetz and
Bernstein (2001) reviewed the use of ERPs in the assessment of
traumatic brain injury. Specifically, they considered alterations in
the amplitudes and latencies of well characterized components of
ERPs, for example, the P3, as indicators of injury. They concluded:

Visual P3 latency seems to be the most sensitive electrophysi-
ologic procedure covered in this review. All studies using this
technique to assess mTBI have found differences in P3 latency
compared with normal controls. In addition, the P3 word
technique may be very useful for the simultaneous assess-
ment of PTSD, malingering, and brain injury. This procedure
seems to be sensitive to injury while resistant to false positives
when a 2.5 SD normal limit is used.

and,

An electrophysiologic assessment battery may be the most
effective method to detect differences in MTBI subjects who
experience cognitive dysfunction.

In addition, Lew et al. (2006) also suggested that “longer latency
ERP components hold promise in predicting recovery of higher
cognitive functions.” Since deficits in emotional processing may
be an element in the clinical presentation of TBI, ERP investiga-
tions using emotionally valenced stimuli (Catani, 2003; Lew et al.,
2005b; Solbakk et al., 2005) may be particularly informative with
this patient population.

There are, however, two notable caveats that are unique to the
collection of ERPs. First, because responses are analyzed in respect
to the occurrence of a specific event, there is a necessity for a more
complex data acquisition system than in the passive collection of
qEEG data (Spencer, 2005). Specifically, a secondary device, sys-
tem, or method must be available to provide the stimulus used
to drive the ERP (examples include a PC and monitor, audio
amplifier, LED driver, or vibrotactile stimulator). The stimulation
device must be very tightly coordinated with the EEG data acqui-
sition system (on a sub-millisecond time scale), so that accurate
time-locking of the ERP to the original event(s) can be achieved.
While this level of integration is not technically challenging, it
adds bulk, complexity, and additional use effort on behalf of the
device operator and requires special EEG acquisition hardware,
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which is designed for integration with other devices. It should be
noted, however, that ERPs may be used in clinical settings with
fairly minimalistic equipment.

A second caveat of ERPs that stems from the reliance upon
a stimulation paradigm is the intimate, but somewhat limiting,
specificity between the stimulus used and the type of brain activ-
ity, which will occur in response to that event. By definition, the
response elected by an ERP is related to a specific event, and (in a
good paradigm) will include response only to that event, because
of the extreme complexity and high specificity of various sensory
regions of the brain. For example, at least in a normal healthy brain,
auditory-evoked-potentials will not activate the occipital cortex
(which is primarily dedicated to vision), while visual-evoked-
potentials tend to be isolated to this very region. As a result, the
type of paradigm used to elicit ERPs is critical to their under-
standing and analysis, and leaves opportunity for abnormalities
in other, non-stimulated brain regions to be overlooked. In the
case of mTBI, which can manifest in a wide variety of manners
and stem from many possible neurophysiological dysfunctions,
it is a substantial challenge to identify a single paradigm, which
might be sufficient to cover all, or even the majority of potential
cases.

Besides the studies referenced above, a large number of other
published reports have obtained ERPs from TBI patients (Table 6).
However, the collective experience does not yet provide a defini-
tive answer as to whether ERP is an accurate diagnostic tool (Rapp
and Curley, 2012). To date, the examination of ERPs obtained
from TBI patients has been limited to reports of differences in
amplitude and latencies of identified components of the ERP.

ADVANCED SIGNAL PROCESSING TECHNOLOGIES
This section provides evidence that the clinical utility of qEEG may
be advanced significantly by expanding the set of measures that are
computed from EEG signals. The mathematical field of dynamical
systems theory has expanded dramatically during the past 30 years.
Research activity is continuing and, indeed, accelerating. To date,
the application of these new methods has been mostly confined
to the analysis of physical and financial systems. These methods
have not yet received systematic application in EEG. Four areas are
particularly promising: information dynamics, symbolic dynam-
ics, measures of causal relationships, and measures of network
dynamics derived from graph theory.

Information dynamics
A digitized EEG signal is a sequence of voltage measurements. As
classically defined, the Shannon entropy (Shannon, 1948) of this
signal is insensitive to the sequential order of the voltage measure-
ments. That is, if the voltage measurements are randomly shuffled,
the same value of Shannon entropy will be obtained. Kolmogorov
(1958, 1959) and Sinai (1959) extended the concept of entropy by
constructing a generalization of the original concept that quanti-
fies the sequential structure of a signal. Kolmogorov–Sinai (K–S)
entropy has been described as the rate at which a system generates
information (Eckmann and Ruelle, 1985), which may also be con-
sidered the central function of the CNS. K–S entropy and related
measures provide the mathematical foundation of information
dynamics (Deco and Schürmann, 2001). While K–S entropy is a

Table 6 | Index of ERP studies of traumatic brain injury.

Arciniegas and Topkoff

(2004)

Gaetz and Weinberg

(2000)

Olbrich et al. (1986)

Arciniegas et al. (2005) Gaetz and Bernstein

(2001)

Onofrj et al. (1991)

Baguley et al. (1997) Geisler et al. (1999) Papanicolaou et al. (1984)

Bennouna et al. (2007) Giaquinto (2004) Perlstein et al. (2006)

Broglio et al. (2009) Gosselin et al. (2006) Polo et al. (2002)

Campbell et al. (1986) Gosselin et al. (2011) Pontifex et al. (2009)

Campbell et al. (1990) Gosselin et al. (2012) Potter and Barrett (1999)

Campbell and DeLugt

(1995)

Heinze et al. (1992) Potter et al. (2001)

Catani (2003) Kaipio et al. (1999) Potter et al. (2002)

Chen et al. (2006a) Kaipio et al. (2001) Pratap-Chand et al. (1988)

Clark et al. (1992) Kane et al. (1996) Rappaport et al. (1990)

Cremona-Meteyard

and Geffen (1994)

Keren et al. (1998) Reinvang (1999)

Curry (1980) Lachapelle et al.

(2008)

Reinvang et al. (2000)

Curry et al. (1986) Lavoie et al. (2004) Reuter and Linke (1989)

Deacon-Elliott and

Campbell (1987)

Lew (2001) Rizzo et al. (1978)

Deacon-Elliott et al.

(1987)

Lew (2005) Rugg et al. (1988)

Deacon et al. (1991) Lew et al. (1999) Rugg et al. (1993)

Deacon et al. (1991) Lew et al. (2002) Sangal and Sangal (1996)

De Beaumont et al.

(2007a)

Lew et al. (2003) Segalowitz et al. (1992)

De Beaumont et al.

(2007b)

Lew et al. (2004) Segalowitz et al. (1997)

De Beaumont et al.

(2009)

Lew et al. (2005a) Segalowitz et al. (2001)

di Russo and Spinelli

(2010)

Lew et al. (2005b) Solbakk et al. (1999)

Drake and John (1987) Lew et al. (2008) Solbakk et al. (2000)

Duncan et al. (2003) Lew et al. (2006) Solbakk et al. (2002)

Duncan et al. (2005) Lew et al. (2007a,b) Solbakk et al. (2005)

Dupuis et al. (2000) Mazzini (2004) Spikman et al. (2004)

Dywan and

Segalowitz (1996)

Mazzini et al. (1999) Unsal and Segalowitz

(1995)

Elting et al. (2008) Mazzini et al. (2001) Viggiano (1996)

Folmer et al. (2011) Münte and Heinze

(1994)

von Bierbrauer and

Weissenborn (1998)

Ford and Khalil (1996a) Olbrich et al. (1986) Wang et al. (2004)

Ford and Khalil (1996b) Onofrj et al. (1991) Werner and Vanderzant

(1991)

Gaetz et al. (2000) Papanicolaou et al.

(1984)

Perlstein et al. (2006)
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limiting process requiring, by definition, an infinite amount of
data, it is possible to construct approximations computed with
finite data sets. The most commonly utilized approximations are
approximate entropy (Pincus, 1991) and sample entropy (Rich-
man and Moorman, 2000). Approximate entropy and sample
entropy have been used to quantify EEG records (Bruhn et al.,
2000; Abásolo et al., 2005; Sabeti et al., 2009; Yuan et al., 2011;
Yun et al., 2012), heart interbeat interval sequences (Pincus and
Goldberger, 1994; Ho et al., 1997), and human postural sway data
(Ramdani et al., 2009). Insofar as we know, they have not been
used in the analysis of EEGs obtained from TBI patients.

A variant of sample entropy is multiscale entropy (Costa et al.,
2002). The original time series is used to construct a sequence of
coarse-grained time series. The Scale 2 time series is obtained by
averaging every two values. The Scale 3 time series is obtained
by averaging every three values, and so on. The sample entropy
is calculated for each time series to produce entropy as a func-
tion of temporal scale. The procedure was originally applied to
the analysis of heart interbeat interval sequences and was found
to discriminate between healthy controls and patients presenting
congestive heart failure, atrial fibrillation or advanced age (Costa
et al., 2002, 2005). The same method has been used in the analysis
of EEG signals to discriminate between control participants and
those with autism spectrum disorder (Bosl et al., 2011; Catarino
et al., 2011), Alzheimer’s disease (Park et al., 2007; Mizuno et al.,
2010), schizophrenia (Takahashi et al., 2010), and Parkinson’s dis-
ease (Chung et al., 2013) patients. Insofar as we know, multiscale
entropy has not been used to analyze EEG records obtained from
TBI patients. The approach was, however, used to analyze intracra-
nial pressure records obtained from TBI patients where it was
found that multiscale entropy correlates with outcome.

There are technical issues associated with estimation of multi-
scale entropy that require attention. Nikulin and Brismar (2004)
argued (in our view,correctly) that the scaling length in the embed-
ding space used to calculate sample entropy should be adjusted
with the temporal scale of the time series. In their calculations
with simulated data, the temporal scale dependence of entropy
was lost when this modification was introduced. Costa et al. (2004)
replied and argued that in the case of the heart interbeat interval
data analyzed in their paper, scale dependence is preserved. Wu
et al. (2013) noted that the coarse graining procedure used in
Costa et al. (2002), and in other papers using the method, reduces
the length of the data set with each increase in temporal scale
length. Substituting a moving average retains much of the multi-
scale characteristics of the original implementation of multiscale
entropy without introducing the loss of reliability that results from
attempting entropy calculations with small data sets. Systematic
validation calculations are required to confirm this assertion.

Symbolic dynamics
As will be seen, the terms entropy and complexity lose specificity,
rather than gain it, as a function of time. Complexity measures
derived from symbolic dynamics share the important property
of sequence sensitivity with K–S entropy and its variants. As the
term complexity is used here, there is a fundamental difference
between symbolic dynamic measures and K–S entropy. Approx-
imate entropy and sample entropy are computed directly from

the voltage values. In the case of symbolic dynamic measures, the
original sequence of voltages is converted to a symbol sequence.
Complexity is a measure of the orderliness or lack of orderliness
of this symbol sequence. The procedure for converting voltages to
a symbol sequence can be simple. For example, the symbol “A” is
entered into the sequence if the value of the voltage is greater than
the median or the symbol “B” is entered if the voltage value is less
than the median (note that the use of the median, rather than the
mean, is statistically important). More elaborate procedures for
generating a symbol sequence from a voltage are possible. A com-
plicating clarification must be introduced, while the immediate
emphasis here is on measures computed from symbol sequences,
some of these measures, such as mutual information, can be
recast in versions that utilize continuous variables such as voltages.
Sequence sensitive measures of symbol sequences include topo-
logical entropy (Crutchfield and Packard, 1983), metric entropy
[also in Crutchfield and Packard (1983)], forbidden word entropy
(D’Alessandro and Politi, 1990), context free grammar complexity
(Jiménez-Montanó, 1984), Lempel–Ziv complexity (Lempel and
Ziv, 1976), mutual information (Gallager, 1968; Cellucci et al.,
2006), n-th order entropy (Ebeling, 1997), and conditional entropy
(Steuer et al., 2001).

Xu et al. (1994) found that the forbidden word complexity of
EEG data is sensitive to the participant’s behavioral state (e.g., eyes
open vs. eyes closed recording conditions), mental load, and sleep
stage. Watanabe et al. (2003) found that EEG Lempel–Ziv com-
plexity changes in response to work load and eyes open vs. eyes
closed recording conditions. Symbol sequence complexity mea-
sures have also been used in the analysis of clinical EEG records
including assessment of schizophrenia and depression (Li et al.,
2008; Sabeti et al., 2009), diagnosis of Alzheimer’s disease (Abá-
solo et al., 2006), anesthetic depth (Fan et al., 2011), and seizure
detection (Hu et al., 2006). Our limited literature review on sym-
bolic dynamics did not locate papers using these methods in the
analysis of EEG data obtained from TBI patients.

Analysis of causal relationships
The measures of functional connectivity described in Section
“Functional Connectivity Measures” are used to establish the
degree of association between two simultaneously recorded sig-
nals. However, these measures are insensitive to the direction of
information movement. Measures of causal relationship extend
the analysis of functional connectivity by addressing directional-
ity. The operationalization of causality that was used to construct
mathematical measures of directionality was published by Wiener
in 1956 (Wiener, 1956). Stated simply, if measuring Signal A
improves the prediction of Signal B, then the process generating
Signal A is, to some degree, a causal driver of the process generat-
ing Signal B. This relationship is not necessarily unidirectional, as
measuring Signal B may also improve the prediction of Signal A.
The relative magnitude of these relationships can be used to define
net information flow.

Mathematical methods of assessing the direction of informa-
tion movement fall into four groups: linear regression meth-
ods (Granger, 1969; Sims, 1972; Kaminski et al., 2011), infor-
mation theory methods (Kaneko, 1986; Vastano and Swinney,
1988; Schreiber, 2000), frequency-domain methods (Baccalá and
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Sameshima, 2001; Nolte et al., 2008), and methods constructed
with embedded data (Rulkov et al., 1995; Le Van Quyen et al.,
1998, 1999; Arnhold et al., 1999).

There is a prior literature describing the application of these
methods to scalp EEG signals (Inouye et al., 1983, 1993; Mars and
Lopes da Silva, 1983; Mars et al., 1985; Hesse et al., 2003; Chen
et al., 2006b). It would seem plausible to speculate that TBI alters
network relationships, and that post-injury alterations of infor-
mation flow direction would provide a sensitive assessment of
CNS damage. Unfortunately, this optimistic anticipation has not
been realized. To this end, several problems must be addressed. The
first set of difficulties is specific to EEG analysis. Haufe et al. (2011)
showed that because of volume conduction, all EEG channels drive
each other. Their simulations indicate that Granger causality used
with the usual statistical tests can lead to spurious relationships.
The same authors subsequently constructed procedures that can,
to a degree, address these difficulties (Haufe et al., 2013). The sec-
ond set of difficulties exists independently of the special problems
associated with EEG. Namely, mathematical analysis shows that
spurious identifications of causality can occur (He and Maekawa,
2001; Breitung and Swanson, 2002; Albo et al., 2004).

An additional complication should be considered: causal rela-
tionships are not static. Consider two processes, Process A and
Process B. Suppose that Process A is a strong causal driver of
Process B from time t 0 to time t 1. Now suppose this relationship
reverses and Process B is a strong driver of process A from time
t 1 to time t 2. If the analysis is conducted over time t 0 to time
t 2, evidence of any causal relationship may be lost. Therefore, the
identification of transitions between domains of dynamical behav-
ior is a first step in causal analysis. The identification of transitions
between different dynamical regimes is not, however, as straight-
forward as one might suppose, and this characteristic difficulty is
particularly true of EEG data. While noise contamination can be
a main cause, the problem can be more subtle. For example, tran-
sitions in CNS activity form a temporal hierarchy (Kiebel et al.,
2008; Perdikis et al., 2011a,b; Papo, 2013), and a transition that is
dynamically significant on a time scale of 1 s may not be significant
on a time scale of 1 min (Rapp et al., 2013b). Causal relationships
will show similar time-scale dependence. Therefore, as is often
the case, the translation of an elegant mathematical concept to
practical application in EEG can be more difficult than initially
anticipated.

Graph theory
Viewed mathematically, a network is a collection of nodes and
edges (lines). When applied to EEG, the nodes are electrodes and
the edges are the connections between them. There are three pos-
sible characterizations of edges. In the simplest case, the edge is
either present or absent. This is implemented by selecting a con-
nectivity measure from the previously described measures and
selecting a threshold. A connection between two electrodes is
deemed to be present if the connectivity measure’s value exceeds
the threshold and absent if the value is less than the threshold.
A second possible characterization of an edge is a weighted edge
where the strength of the connection between two electrodes is
determined by the value of the selected connectivity measure. The
third characterization of an edge is the directed edge where, in

Table 7 | Studies reporting altered network geometries in

neuropsychiatric disorders.

Disorder/dysfunction Relevant publications

Alzheimer’s disease Stam et al. (2007)

CNS tumor Bartolomei et al. (2006)

Depression Leistedt et al. (2009), Park et al. (2014)

Epilepsy Bernhardt et al. (2011), Ponten et al. (2007),

van Dellen et al. (2009)

Schizophrenia Li et al. (2008), Rubinov et al. (2009)

Traumatic brain injury Cao and Slobounov (2010), Castellanos et al.

(2011a), Castellanos et al. (2011b), Nakamura

et al. (2009), Tsirka et al. (2011), Zourdakis

et al. (2011), Irimia et al. (2013a), Irimia et al.

(2013b), Goh et al. (2014)

addition to a weighting, the direction of information transfer is
determined using a causality measure.

Once the geometry of the network has been determined, it is
possible to use the methods of graph theory to provide a concise,
quantitative description. The most commonly employed metrics
are the clustering coefficient and the path length (Watts and Stro-
gatz, 1998). The validity of these measures in characterizing the
CNS is suggested by Smit et al. (2008). The investigators examined
EEG records from 574 monozygotic or dizygotic twins and found
that 46–89% of individual differences in the clustering coefficient
and 37–62% of individual differences in path length are heritable.
Alterations of network geometries as determined by EEG, mag-
netoencephalography (MEG), or MRI have been found in clinical
populations, including TBI patients (Table 7).

Once again, however, initial enthusiasm must be tempered
by analyses showing spurious identifications of network proper-
ties. Bialonski et al. (2011) examined binary networks (an edge
is either present or absent) constructed by a simple threshold
criterion. These results suggest that “small world” topologies in
networks constructed from empirical data “may be partly or solely
due to finite length and frequency content of time series.” They
suggest that random networks constructed from surrogate data
may provide important comparisons for results obtained from
multichannel EEG [surrogate data calculations are an important
statistical procedure for validating the results obtained with exper-
imental data, Theiler et al. (1992), Prichard and Theiler (1994)].
It should be noted, however, that inappropriately constructed sur-
rogates can result in the false-positive rejection of the surrogate
null hypothesis, that is, the procedure can indicate the pres-
ence of deterministic non-linear structure in a signal constructed
from linearly filtered random numbers (Rapp et al., 2001). Bli-
nowska and Kaminski (2013) found that networks constructed
from adirectional measures (correlation, coherence, mutual infor-
mation, synchronization likelihood, transfer entropy) can result
in spurious correlations. Indeed, they report that spurious cor-
relations can outnumber true correlations. Giving all connec-
tions an equal weight (a binary network) exacerbates this prob-
lem. They recommend directional, causally dependent measures

Frontiers in Human Neuroscience www.frontiersin.org February 2015 | Volume 9 | Article 11 | 19

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rapp et al. TBI detection using EEG methods

(directed transfer function, partial directed coherence), but as
noted above volume conduction in the CNS introduces signif-
icant problems when directional measures are applied to EEG
signals.

DISCUSSION
CONTROVERSY WITHIN THE qEEG FIELD
The earlier literature describing the application of qEEG tech-
nologies in the assessment of TBI has been marked by strident
disagreement. In 1989, Thatcher et al. published a study based
on EEG records obtained from 608 patients with mTBI and 108
healthy control participants. In this study, qEEG-derived measures
discriminated between the two groups with a sensitivity of 96.6%
and specificity of 89.1% (as outlined presently, the reports of
specificity require reconsideration). Subsequently, the same group
constructed a qEEG-based Severity Index of TBI and obtained a
sensitivity of 95.5% and specificity of 97% (Thatcher et al., 2001).

In 1997, in part in response to the Thatcher et al. (1989) report,
a highly critical review of clinical qEEG was published (Nuwer,
1997). Nuwer concluded“on the basis of current clinical literature,
opinions of most experts, and proposed rationales for their use,
qEEG remains investigational for clinical use in post-concussion
syndrome, mild or moderate head injury, learning disability, atten-
tion disorders, schizophrenia, depression, alcoholism, and drug
abuse. . .” Nuwer continued, “Because of the very substantial risk
of erroneous interpretations, it is unacceptable for EEG brain map-
ping or other qEEG techniques to be used clinically by those who
are not physicians highly skilled in clinical EEG interpretation.”

Vigorous responses to the 1997 Nuwer paper were published by
Thatcher et al. (1999), and by Hoffman et al. (1999). The Nuwer
paper has been an element in court actions, for example, County
Court at Law No. 1, Travis County Texas, Cause No. 227,520. As
summarized by Thatcher et al. (2003), the judge in the Travis
County case admitted qEEG evidence in a TBI case and denied
admission of the 1997 Nuwer paper (see also Zawski v. Giggs).
In 2005, Nuwer et al. returned to the subject and focused specifi-
cally on the application of qEEG in the assessment of TBI. Nuwer
et al. concluded that “overall the disadvantages of qEEG panels
and diagnostic discriminants presently outweigh the advantages
of these studies in the diagnosis of MTBI.” In spite of this assess-
ment, qEEG as a potential TBI detection tool has still received a
great deal of attention since Nuwer’s 2005 paper. This more recent
research argues against an unreservedly negative assessment of
qEEG utility. Indeed, while the evidence supporting the sole use
of qEEG (as defined by the TWG) for the assessment of mTBI
is weak it would be unwarranted to conclude that EEG is not a
valued metric in the search for the proper assessment protocol
for mTBI. Upon expansion of the definition of “qEEG” to include
other EEG-based datasets (e.g., ERPs and EPs), EEG will most
likely be a necessary component of any assessment protocol for
mTBI. In addition, evidence suggests that the value of qEEG in
the assessment of mTBI will increase as the methods used in the
analysis of these signals become more sophisticated.

Evidence supporting the value of more elegant analysis pro-
cedures for EEG in the assessment of mTBI comes in part from
McCrea et al. (2010), Prichep et al. (2012a,b), and Tsirka et al.
(2011). Prichep et al. (2012a,b) and McCrea et al. (2010) used

a modest EEG montage to collect short epochs of EEG that were
subjected to rigorous artifact detection algorithms: traditional and
non-traditional univariate and multivariate analysis procedures
that feed into an informed data reduction protocol. This pro-
tocol controls for replicability, over-fitting, and cross-validation
of metrics. In addition, we see the value of integration of vari-
ous demographic, neurocognitive, and self-report datasets along
with the physiological datasets to achieve increased sensitivity
and specificity for assessment of mTBI. Tsirka et al. (2011) adds
positive assessment value to this approach by using small world
network metrics, which utilize mean power analysis, and syn-
chronization likelihood parameters to assess suboptimal network
organization in EEGs obtained from mTBI victims.

SPECIFICITY OF EEG BASED mTBI DETECTION
Published reports suggest that dynamical measures calculated
from EEGs are altered following TBI, that is, the sensitivity of
these measures to TBI is supported. Reports of high specificity
must, however, be interpreted with care. While high specifici-
ties have been obtained in carefully constructed clinical studies,
which compare TBI patients against healthy control participants,
dynamical measures calculated from EEG records thus far are not
specific to TBI. This lack of specificity is indicated by the results
summarized in Table 8. Altered EEG synchronization is observed
following traumatic brain injury, but it is also observed in most
neuropsychiatric disorders. Therefore, while it may be possible to
discriminate between TBI patients and healthy individuals using
these measures alone, it will probably not be possible to discrimi-
nate between TBI and depression, schizophrenia, or several other
clinical conditions.

Importantly, the absence of specificity does not preclude clin-
ical utility of qEEG as an evaluation tool. Non-specific measures
are particularly important in longitudinal assessment. The classi-
cal example is body temperature. Fever is non-specific, but body
temperature is nonetheless a central clinical measure. Neverthe-
less, an important technical point on reliability must be empha-
sized here. Temperature would not be an effective longitudinal
measure if it varied randomly between 85° and 105°. Stated dif-
ferently, meaningful longitudinal application requires acceptable
test–retest reliability. To date, very few test–retest reliability studies
of dynamical measures calculated from EEGs have been published.
Thus, systematic test–retest determinations in healthy participants
are essential next steps in the construction of a clinically useful
qEEG technology.

RELIABILITY OF qEEG MEASURES
The reliability of quantitative EEG measures is crucial to their
clinical utility. This has been recognized at least since the pio-
neering work of Kennard and Schwartzman (1957). Nonetheless,
test–retest reliabilities are not typically reported and this defi-
ciency is a significant factor limiting the widespread application
of qEEG. EEG reliabilities depend on the electrode site(s), the
kind of electrode technology used, the frequency band, sam-
pling frequency, the resolution of the digitizer, the duration of
the recording epoch, the behavioral task implemented during the
recording, the qEEG measure computed, the procedure used to
compute it, and the retest interval. Additionally, there has been
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Table 8 | Studies reporting altered synchronization of EEGs in various neuropsychiatric disorders.

Disorder/dysfunction Relevant publications

AD/HD Barry et al. (2002, 2003, 2005)

Alcohol abuse Georgopoulos et al. (2007), Kamarajan et al. (2005)

Alexithymia Matsumoto et al. (2006), Symond et al. (2005)

Autism Grice et al. (2001), Just et al. (2004), Orekhova et al. (2007), Rippon et al. (2007), Welsh et al. (2005), Wickelgren (2005)

Bipolar disorders O’Donnell et al. (2004)

Dementia Adamis et al. (2005), Adler et al. (2003), Brunovsky et al. (2003), Georgopoulos et al. (2007), Koenig et al. (2005),

Leuchter et al. (1987), Prichep et al. (2006), Stam et al. (2003)

Depression Armitage et al. (1999), Lee et al. (2007), Linkenkaer-Hansen et al. (2005), Llinás et al. (1999), Park et al. (2007)

Hallucinations Baldeweg et al. (1998)

HIV dementia Fletcher et al. (1997)

Migraine Angelini et al. (2004)

Multiple sclerosis Georgopoulos et al. (2007)

Neuropsychiatric disorders:

general reviews

Herrmann and Demiralp (2005), Llinás et al. (1999), Schnitzler and Gross (2005), Stam et al. (2003), Stam (2005),

Uhlhaas and Singer (2006)

Parkinson’s disease Akbari and Gharibzadeh (2009), Levy et al. (2000), Raz et al. (2000), Stoffers et al. (2007)

Post-traumatic stress disorder Kolassa and Elbert (2007)

Schizophrenia and other

psychotic disorders

Basar-Eroglu et al. (2009), Bob (2007), Bob et al. (2008), Breakspear et al. (2004), Brenner et al. (2003), Bressler

(2003), Cho et al. (2006), Ferrarelli et al. (2012), Ford and Mathalon (2005), Ford et al. (2007, 2008), Georgopoulos et al.

(2007), Green et al. (1999), Hirano et al. (2008), Koukkou et al. (1995), Kwon et al. (1999), Lee et al. (2003a,b), Lewis

et al. (1999, 2005), Light et al. (2006), Pinault (2008), Ramos-Loyo et al. (2009), Rockstroh et al. (2007), Roopun et al.

(2008), Siegel et al. (2006), Spencer et al. (2003), Spencer et al. (2004, 2008a,b), Spencer and McCarley (2006),

Symond et al. (2005), Tononi and Edelman (2000), Uhlhaas and Singer (2006), Uhlhaas et al. (2008), van der Stelt and

Belger (2007), Vierling-Claassen et al. (2008), Whittington (2008), Williams et al. (2008), Winterer et al. (2000)

Traumatic brain injury Dockree et al. (2004), Hoffman et al. (1995), Kumar et al. (2009a,b), Roche et al. (2004), Slewa-Younan et al. (2002),

Thatcher et al. (1999, 2001), Thatcher (2000, 2006)

no agreement in the literature concerning the choice of statisti-
cal measure used to quantify EEG reliability. Measures that have
been used in EEG studies include Cornbach alpha (Burgess and
Gruzelier, 1993; Lund et al., 1995), rank correlation (Gasser et al.,
1985; Van Albada et al., 2007), intraclass correlation coefficient
(Fein et al., 1983; Tomarken et al., 1992; Gudmussen et al., 2007;
Ambrosius et al., 2008; Gram et al., 2014), Pearson correlation
coefficient (Fein et al., 1984; Salinsky et al., 1991; Tomarken et al.,
1992; Kondacs and Szabo, 1999), Fisher’s r (Pollock et al., 1991),
two-way analysis of variance (Sloan and Fenton, 1993), coefficient
of variation (Maltez et al., 2004; Fingelkurts et al., 2006), and the
coefficient of determination (Fingelkurts et al., 2006). This diver-
sity of statistical analysis has made it impossible to obtain a clear
understanding of the reliability of many qEEG measures.

We recommend using the intraclass correlation coefficient to
report test–retest reliability. Several considerations have moti-
vated this recommendation including the intraclass correlation
coefficient’s immediate relationship to the standard error of mea-
surement and the minimal detectable difference. These variables
in turn help inform the identification of the minimal clinically
important difference, where it is explicitly recognized that clinical
significance is determined only in part by statistical significance
(Jaeschke et al., 1989; Crosby et al., 2003).

Important conditions should be met when using the intra-
class correlation coefficient in reliability studies. This is not a
single measure but a class of measures. Shrout and Fleiss (1979)
constructed six intraclass correlation measures and McGraw and
Wong (1996) constructed ten. The choice of intraclass correlation
coefficient is crucial to the analysis. Depending on the formula
used, large differences in the numerical value of the coefficient
can be obtained with the same data. Guidelines for the choice
of appropriate statistical model for a given study, and hence the
choice of the appropriate intraclass correlation coefficient, are
given in Müller and Büttner (1994) who included a decision tree
to summarize the selection process. As noted by Krebs (1986), it is
therefore essential to identify the form of coefficient when report-
ing results. A specification of the coefficient’s confidence interval is
also a critical element in the data report (Stratford, 1989). Identifi-
cation of the confidence interval is important because the interval
must be considered when interpreting the coefficient. For example,
Morrow and Jackson (1993) have shown that a high value of the
coefficient, which suggests that the measure is reliable, can have a
large confidence interval, which argues against this interpretation.
Donner and Wells (1986) provide a comparison of procedures for
constructing confidence intervals for the coefficient. We suggest
the Wald method that was used by Zou (2012) to construct an
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algorithm for estimating the sample size required in studies that
use the intraclass correlation coefficient as the statistical measure
of reliability.

Two additional issues should be considered in reliability stud-
ies. First, reliability is population dependent. A measure that
presents adequate reliability in one population may fail to do
so in a different population. Examples are found in a study of
EEG reliability (Lund et al., 1995) comparing healthy controls
and schizophrenics and in a study by Fein et al. (1983) that com-
pared EEG reliabilities obtained with healthy controls and dyslexic
participants. Population-dependent determination of reliability
is particularly important in the investigation of traumatic brain
injury because it has long been recognized that high variability
is a characteristic of an injured CNS (Head, 1926; Bleiberg et al.,
1997). Second, distributions presented by EEG measures can be
markedly non-normal (Gasser et al., 1982). Non-normal distri-
butions can reduce test–retest reliability (Dunlap et al., 1994).
Van Albada and Robinson (2007) have shown that a transforma-
tion to a near normal distribution can improve EEG test–retest
reliability.

CONCLUSION AND RECOMMENDATIONS
ELECTROPHYSIOLOGICAL ASSESSMENT AND mTBI DETECTION
Based on our critical evaluations of qEEG as an mTBI assessment
tool, the following general conclusions are made:

1. qEEG provides, at best, an imperfect assessment of mTBI. The
published literature does indicate, however, that it can be an
important complement to other assessment procedures.

2. TBI is not a discrete clinical entity. Different injury events can
initiate very different pathophysiological processes. It follows
that, just as there is not a single test for cancer, there is not a
single test for TBI.

3. Reports of high specificity of qEEG evaluations of TBI must
be interpreted with care. High specificities have been reported
in carefully constructed clinical studies in which healthy con-
trol participants were compared against a carefully selected
TBI population. The published literature indicates, however,
that similar abnormalities in qEEG measures are observed in
other neuropsychiatric disorders. While it may be possible
to distinguish a clinical patient form a healthy control with
this technology, these measures are unlikely to discriminate
between, for example, major depressive disorder, bipolar disor-
der, or TBI. The specificities observed in these clinical studies
may well be lost in real world clinical practice.

4. The absence of specificity does not preclude clinical utility. Effi-
cacy as a longitudinal clinical measure does, however, require
acceptable test–retest reliability. To date, very few test–retest
reliability studies have been published with qEEG data obtained
from TBI patients. This is a particular concern because high
variability is a known characteristic of the injured CNS.

5. Specific measures and analysis methods were qualitatively
assessed based on the degree of testing in mTBI patients, the
usefulness for mTBI detection as a unique entity, and the use-
fulness as a component in a discriminant function for mTBI
detection. Table 9 provides a summary of our findings. For
example, spectral analysis has been tested extensively in mTBI

Table 9 | Summary ofTWG conclusions on electrophysiological

measures for mTBI detection (0 < 1 < 2 < 3 < 4).

Measure/

analysis method

History of

testing

in mTBI

patients

Usefulness

for mTBI

detection

as a unique

entity

Usefulness

for mTBI

detection as part

of a discriminant

function

Spectral analysis 4 0 2

Connectivity measures 3 1 3

ERPs 4 2 4

Information dynamics 0 Unknowna Unknowna

Symbolic dynamics 2 3 Unknowna

Analysis of casual

relationships

2 2 Unknowna

Graph theory 1 3 Unknowna

aUnknown, but high perceived potential.

patients, but its usefulness as a mTBI detection tool (in iso-
lation) is low. The usefulness of spectral analysis as a compo-
nent in a discriminant function, however, is more promising.
Note that some methods require additional investigation before
qualitative scores of usefulness can be assigned, but the TWG
considers the methods to hold considerable promise.

RECOMMENDATIONS FOR RESEARCH AND CONTINUED ADVANCED
DEVELOPMENT
The qEEG TWG recommends the following actions to best
advance qEEG and other electrophysiological assessment methods
as mTBI detection tools:

1. Reliability in a healthy population is a necessary, but not suf-
ficient, property of a useful clinical measure. Systematic test–
retest reliability studies of qEEG measures should be conducted
as the first step in the rigorous development of a clinical qEEG
technology. Reliability must be established for each candidate
measure.

2. We define the clinical validity of a measure as its ability to dis-
criminate between a clinical population and healthy controls
and, ideally, its ability to discriminate between different clinical
populations. For any given measure, systematic validity studies
are required once reliability has been established as outlined
in the first recommendation. In the first instance, these stud-
ies should compare results obtained with well characterized
TBI patients and healthy controls. If the results of these studies
are positive, they can be expanded to include other psychiatric
populations.

3. Evidence indicates that ERPs can identify abnormalities in cases
where EEGs alone are non-disclosing. It should be noted that
the same signal amplifiers are used for EEGs and ERPs. Thus,
there is no technical barrier to incorporating ERP measure-
ments in an EEG evaluation, as long as careful considerations
are made to ensure precise time-locking between stimulus and
recording instrumentation. Reliability and validity evaluations
must also be performed with ERP-derived measures.
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4. The mathematical methods used in signal analysis in other
application areas have expanded enormously during the past
30 years. Important growth areas include non-linear dynam-
ical analysis, complexity measures, analysis of causal interac-
tions, graph theory, and information dynamics. These meth-
ods have received limited application in the analysis of EEG
records obtained from TBI patients. It seems possible that,
as was the case in other research domains, the system-
atic application of these methods in the analysis of mTBI
will be similarly useful. The standard mathematical proce-
dures used in the characterization of mTBI EEG abnormal-
ities should be expanded to incorporate these methods of
analysis.

5. Reliability and validity study data should, following de-
identification, be made available on a publically accessible
website for download and reanalysis by other investigators. As
this is standard practice in genomics research and astronomy, it
should also be standard practice in neuropsychiatry. This rec-
ommendation is motivated in part by the rapid advances being
made in signal analysis. Public access to well documented EEG
records will make it possible for investigators throughout the
world to test the reliability and validity of new mathematical
measures as they are developed.

6. As argued in the second conclusion, the diversity of under-
lying neuropathology in the TBI population precludes the
development of a single test for TBI. As a potential solution,
an integrated neuropsychiatric assessment platform can be
developed that will permit simultaneous acquisition of EEG
records including ERPs, heart rate variability data, and eye
tracking records during a neuropsychological assessment. This
system should include an onboard signal analysis capability
and be capable of incorporating additional data types includ-
ing genomic, epigenetic, proteomic/biomarker, and imaging
data. The result would be a comprehensive, statistically valid
characterization of the CNS.
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