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Recent years have seen increased appli-
cation of functional MRI (fMRI), tran-
scranial magnetic stimulation (TMS) and
event-related potentials (ERP), to ques-
tions of human rationality. This has
both illuminated the brain bases of these
functions and contributed to theoretical
advances (Goel, 2007; Prado et al., 2008).
Most studies have, however, employed
only one method and the developing
literatures run somewhat parallel with
only informal integration of results across
methods. Results from other fields (Sarfeld
et al., 2012) demonstrate the potential
benefits of integration of multiple neu-
roscientific methods within studies of
human reasoning, allowing findings from
one method to influence the application of
other methods, or constrain the interpre-
tation of data derived therefrom. Including
data on regional brain volume, struc-
tural and functional connectivity, individ-
ual differences and development and aging
is particularly appropriate to the study
of neural mechanisms of human reason-
ing, which are likely to be formed from
networks of numerous widely-distributed
brain regions. Here we briefly describe
how the integration of several neurosci-
entific methods within a single study may
advance investigations of the reasoning
brain.

fMRI has now been applied to a large
number of reasoning paradigms (Goel,
2007). Consideration of what appears ini-
tially as a disparate set of brain activations
reveals consistencies suggestive of several

underlying neural systems. A formal anal-
ysis (Prado et al., 2011) of 28 studies found
similar consistency of activation across
studies and reasoning paradigms, but no
monolithic neural system for reasoning.
Instead, a collection of subsystems incor-
porating widely distributed areas of the
brain is apparent. This widespread acti-
vation, encompassing frontal and poste-
rior areas, in response to high-level tasks
with long processing times complicates
interpretation.

Approaches which move beyond map-
ping the spatial extent of activation to
consider the quality of brain activity seen
in separate regions promise to clarify the
distributed-network nature of the reason-
ing brain. Analyses may focus on the time-
courses of activation within brain regions
(Rodriguez-Moreno and Hirsch, 2009),
identifying subsets of regions involved at
different stages of reasoning, or, as in our
current research (ESRC Grant RES-062-
23-3285), the correlation in the degree of
activation seen in separate clusters with
individual differences (Reverberi et al.,
2012).

Formal analyses of functional con-
nectivity, or correlated activity (Friston,
2011), between brain regions active during
the resting state have revealed the effects
of prolonged practice on a reasoning task
(Mackey et al., 2013). The application of
functional-connectivity analyses to brain
activity elicited by reasoning, rather than
rest, awaits. While many imaging studies
of reasoning speak of the “networks”

involved it would be more accurate to
speak of distributed regions of task-
related activation as no studies have
formally tested functional connectivity
between regions. This is in contrast to
other areas, such as research in mem-
ory, attention and task control, in which
functional-connectivity analyses are com-
monplace and have greatly advanced the
characterization of implicated brain net-
works (Vincent et al., 2008). Functional-
connectivity analyses have the potential to
further clarify how subsets of the numer-
ous regions found active in fMRI stud-
ies of reasoning group together to form
dynamic networks that are reconfigured
across extended periods of reasoning-task
performance.

A further step is analysis of effective
connectivity in which causal networks
of distributed regions are modeled and
tested against observed data (Friston,
2011). Models incorporate information
about brain structural connectivity into
predictions of inter-regional functional
connectivity. These structural data have
traditionally come from monkey section
studies but human diffusion-tensor imag-
ing (DTI) data are now being used, as
described in a recent survey of meth-
ods and applications for fusing fMRI
and DTI data (Zhu et al., 2014). DTI
is a MRI technique which allows the
microstructural connectivity of brain tis-
sue to be probed (Le Bihan, 2003). The
data can be acquired in a scan lasting only
around 10 min, which could feasibly be
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included in a fMRI study. DTI data have
informed researchers about the constrain-
ing effect of structural connectivity upon
functional connectivity in non-reasoning
tasks (Honey et al., 2009). Structural-
connectivity maps of direct and indirect
connections between brain regions were
tested as predictors of resting-state inter-
regional functional connectivity, leading
to a model in which functional connec-
tivity is determined by a combination of
direct and indirect structural connections.
Ultimately, the integration of fMRI and
DTI datasets could allow the development
of richer models of dynamic networks of
distributed brain regions supporting rea-
soning performance. Putative networks of
brain regions activated by reasoning tasks
may be merely regions of correlated activ-
ity that do not exist in a causative rela-
tionship, or they may be comprised of
two or more overlapping and commonly-
activated sub-networks. These possibilities
can be tested using models informed by
integrated methods.

The further integration of a develop-
mental or aging perspective, to which
DTI is sensitive (Sullivan and Pfefferbaum,
2006), would allow the organization and
degeneration of brain structural connec-
tivity, and its role in supporting reasoning,
to be traced over the lifespan. Information
on brain regional and connective devel-
opment and degeneration is of great rel-
evance to a growing literature (Salthouse,
2005) of age effects on reasoning. The
anterior to posterior progression of degen-
eration in the aged brain, apparent in
DTI studies (Sullivan and Pfefferbaum,
2006), predicts that reasoning processes
that draw heavily on frontal support will
be more affected by age than are reason-
ing processes that primarily involve pos-
terior regions. Also of relevance is infor-
mation about brain regional volume, as
assessed by MRI, which has been shown
to be abnormal in some populations, such
as people with autism (Mcalonan et al.,
2005; Redcay and Courchesne, 2005), who
are also of interest to investigators of
reasoning (Mckenzie et al., 2010; Morsanyi
and Holyoak, 2010).

The incorporation of structural and
functional MRI into studies of reason-
ing using repetitive TMS has promise
to increase the power and accuracy of
a technique which can probe the causal

relationship between brain activity and
reasoning performance. Previous rTMS
studies (Tsujii et al., 2010, 2011) guided
stimulation using structural MRI but
selected cortical targets somewhat arbi-
trarily from a set of areas implicated in
fMRI studies. An improvement is to inte-
grate results from an fMRI study using
the same paradigm and stimuli to tar-
get specific locations found to be func-
tionally active. As considerable variation
in reasoning-associated activation across
studies using similar, but non-identical,
paradigms, and stimuli has been observed
(Goel, 2007) the targeting of specific areas
activated by specific experimental designs
is important. We (ESRC Grant RES-
062-23-3285) are doing this by warping
the standard-space group-analysis results
from our fMRI study of conditional rea-
soning into the individual TMS-subject
space to identify functionally-relevant tar-
gets. Furthermore, using a within-trial,
short-burst rTMS paradigm (Fuggetta
et al., 2008), allows greater temporal speci-
ficity in rTMS application. By disrupting
activity in ventral and dorsal prefrontal
cortex at different stages of conditional-
reasoning trials we predict a double dis-
sociation of the effect of rTMS on belief
bias at the two locations over the two stages
of the trial. This result would advance our
understanding of the processes involved in
conditional reasoning, and of the roles of
the two brain regions, and is an example
of how method integration might inform
psychological theory.

ERP studies of reasoning differ in the
degree to which they preserve the tradi-
tional behavioral paradigms (Qiu et al.,
2009; Luo et al., 2013), which typically
involve extended reading, and the tem-
poral specificity with which they are able
to resolve reasoning processes by adapt-
ing orthodox paradigms shown to elicit
well-defined ERPs (Prado et al., 2008;
Banks and Hope, 2014). Despite this
heterogeneity, evidence is accumulating
that ERPs and oscillatory activity asso-
ciated with expectation and inhibition
are modulated by performance on rea-
soning tasks (Bonnefond and Van der
Henst, 2009; Bonnefond et al., 2014).
Initial steps to identify the neural sources
of observed ERPs (Qiu et al., 2009; Luo
et al., 2013) could be greatly improved
by using results from fMRI studies to

constrain the fitting of source models. The
ultimate aim is to conduct simultaneous
recordings of EEG and fMRI (Baumeister
et al., 2014), illuminating sequential acti-
vations across distributed networks, as are
revealed by the less-available technique
of magnetoencephalography (Bonnefond
et al., 2013).

A full characterization of the rea-
soning brain will require models that
describe functional connectivity between
widespread brain regions, constrained and
shaped by structural connectivity, which
varies between and within individuals
across time and space. This implies a
conceptualization of the reasoning brain
as a spatially-extended dynamical system.
Models of this type will necessarily inte-
grate data derived from many different
methods and may require mathematical
tools not previously applied to investiga-
tions of reasoning (Siegelmann, 2010). At
present most of these techniques are being
applied to the study of the reasoning brain,
but in a parallel fashion. The lesson from
other areas of investigation (Calhoun and
Lemieux, 2014) is that their integration
can yield more than the sum of their parts.
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