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INTRODUCTION

The multiband EPI sequence has been developed for the human connectome project
to accelerate MRI data acquisition. However, no study has yet investigated the
test-retest (TRT) reliability of the graph metrics of white matter (WM) structural brain
networks constructed from this new sequence. Here, we employed a multiband diffusion
MRI (dMRI) dataset with repeated scanning sessions and constructed both low- and
high-resolution WM networks by volume- and surface-based parcellation methods. The
reproducibility of network metrics and its dependence on type of construction procedures
was assessed by the intra-class correlation coefficient (ICC). We observed conserved
topological architecture of WM structural networks constructed from the multiband dMRI
data as previous findings from conventional dMRI. For the global network properties,
the first order metrics were more reliable than second order metrics. Between two
parcellation methods, networks with volume-based parcellation showed better reliability
than surface-based parcellation, especially for the global metrics. Between different
resolutions, the high-resolution network exhibited higher TRT performance than the
low-resolution in terms of the global metrics with a large effect size, whereas the
low-resolution performs better in terms of local (region and connection) properties with
a relatively low effect size. Moreover, we identified that the association and primary
cortices showed higher reproducibility than the paralimbic/limbic regions. The important
hub regions and rich-club connections are more reliable than the non-hub regions and
connections. Finally, we found WM networks from the multiband dMRI showed higher
reproducibility compared with those from the conventional dMRI. Together, our results
demonstrated the fair to good reliability of the WM structural brain networks from the
multiband EPI sequence, suggesting its potential utility for exploring individual differences
and for clinical applications.

Keywords: brain connectome, diffusion tensor imaging, graph theory, multiband EPI, reproducibility, tractography,
white matter

Zalesky et al., 2011; Bai et al., 2012; Cao et al., 2013), suggest-

The concept of the “human connectome” has been recently pro-
posed and has provided a new perspective to investigate the
brain’s structural and functional systems (Sporns et al., 2005).
As the anatomical substrate of brain function, the structural
brain connectome describes brain wiring patterns and is fun-
damentally important for revealing the mechanisms of how the
brain works. Recent studies have suggested that the human white
matter (WM) structural network can be mapped in vivo using
diffusion MRI (dMRI) tractography techniques and quantified
by graph-theoretical analysis (Hagmann et al., 2007; Bullmore
and Sporns, 2009; Gong et al., 2009a). The quantitative graph
metrics of structural brain networks are suggested to be closely
related to individual cognitive performances (Li et al., 2009; Wen
et al., 2011) and sensitive to the processes of normal develop-
ment (Hagmann et al., 2010) and aging (Gong et al., 2009b), as
well as neuropsychiatric diseases (Lo et al., 2010; Shu et al., 2011;

ing that network metrics may be potential biomarkers for clinical
applications.

Recently, some promising fast-collecting imaging techniques,
such as multiband EPI (mEPI), have been applied in the dMRI
data acquisition (Moeller et al., 2010). This new sequence can
accelerate acquisition by simultaneously imaging multiple slices
in the human brain, while not significantly sacrificing spatial res-
olution or the SNR (Moeller et al., 2010; Xu et al., 2013). This
sequence is being applied in the recently launched human connec-
tome project aiming to acquire a large sample of healthy subjects
with the goal of uncovering individual differences in brain cir-
cuitry related to behavior (van Essen et al, 2012). However,
before successfully charting the human connectome using this
new sequence, studies must determine whether connectivity
properties conserved across the population can be reproducibly
quantified in an individual over multiple scanning sessions and
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whether that reproducibility can be potentially influenced by
methodological variations.

Previous network studies have suggested that many factors
may influence the accuracy and reliability of the network met-
rics, such as various choices of the structural descriptions of the
WM network elements and connections. Specifically, the nodes
can be defined by the parcellation of the cortex into hundreds or
thousands of regions using an atlas (Zalesky et al., 2010) or the
landmarks of gyri and sulci (Hagmann et al., 2008). The connec-
tions can be reconstructed by dMRI deterministic or probabilistic
tractography approaches (Gong et al., 2009a,b; Shu et al., 2011).
Additionally, the network construction and analysis involve other
procedures that may also introduce certain variances, such as
node scales and weighting schemes. Until now, only a subset of
studies has investigated the intra- and inter-variability and relia-
bility of network metrics from dMRI data using a conventional
EPI sequence (Vaessen et al., 2010; Zalesky et al., 2010; Bassett
etal,, 2011; Cheng et al., 2012; Buchanan et al., 2014; Duda et al.,
2014); moderate to high reliability was indicated for the global
network metrics, and different procedures have large effects on
the intra- and inter-subject variability. However, for the mEPI
sequence, whether multiband dMRI scans can effectively identify
the conserved topological organization of the WM structural net-
work in the brain and whether they can exhibit good test-retest
(TRT) reliability remains largely unknown.

In the present study, we aim to investigate the TRT reliability
of network metrics from fast collecting dMRI data with hundreds
of gradient directions as acquired by a mEPI sequence. The multi-
band dMRI dataset consists of 11 healthy subjects who were each
scanned twice with approximately 1 week apart. Based on differ-
ent parcellation approaches, both low- and high-resolution WM
structural networks were constructed to examine the reliability of
network properties from global and local perspectives. The repro-
ducibility of network properties and its dependence on types of
procedures (cortical parcellation and nodal scales) were assessed
by the intra-class correlation coefficient (ICC).

MATERIALS AND METHODS

TEST-RETEST DATASETS

The multiband test-retest pilot dataset was publicly available
from INDI (http://fcon_1000.projects.nitrc.org/indi/pro/eNKI_
RS_TRT/FrontPage.html). The dataset includes 24 subjects whose
phenotype information is presented in Table 1. All individuals
included in the sample underwent semi-structured diagnostic
psychiatric interviews and completed a battery of psychiatric,
cognitive and behavioral assessments. Written informed consents
were obtained from all participants. The study was approved by
the Nathan Kline Institute Institutional Review Board. Recently,
the test-retest resting-state functional MRI (rs-fMRI) data in this
dataset has been used to examine the reliability of regional func-
tional homogeneity (Zuo et al., 2013) and the reliability of global
hubs in human voxel-wise functional networks (Liao et al., 2013).
To exclude the potential effects of health issues, the data of seven
subjects with current/past psychiatric disorders and four subjects
without diagnostic information were discarded. Moreover, one
subject was excluded due to brain atrophy and one subject lacked
one repeated session; therefore, data from 11 healthy subjects (3

Table 1 | Summary of phenotype information of subjects.

ID Sex Agely) Current diagnosis
(N/A, no information)

Lifetime diagnosis
(N/A, no information)

21001 M 57 NO NO
21002° M B2 N/A N/A
21006° M 32 N/A N/A
21018° M 36 N/A N/A
210240 M 22 N/A N/A
1427581 F 27 NO NO
17936222 M 60 NO 305- Alcohol Abuse;

305.2- Cannabis Abuse;

19610982 F 21 296.20- Major 307.5- Eating Disorder
Depressive Disorder, NOS
Single Episode,
Unspecified;
305.2- Cannabis Abuse;
2475376* M 21 NO NO
2799329* M 30 NO NO
2842950* M 27 NO NO
3201815* M 48 NO NO
33133492 F 22 NO 296.26- Major
Depressive Disorder,
Single Episode, Full
Remission
3315657* M 19 NO NO
3795193* M 57 NO NO
3808535* M 25 NO NO
3893245° M 38  296.35- Major 305- Alcohol Abuse
Depressive Disorder,
Recurrent, In partial
remission
4176156* M 46 NO NO
42882458 M 22 NO 305- Alcohol Abuse;

304.3- Cannabis

Dependence;
311- Depressive Disorder
NOS
64719728 M 32 300.02-Generalized 303.9-Alcohol
Anxiety; Dependence, unspecified
7055197* F 22 NO NO
857466228 M 42 296.31- Major 305- Alcohol Abuse;

305.2- Cannabis Abuse;
304.2- Cocaine
Dependence;

304- Opiod Dependence;
314.01- ADHD Combined

Depressive Disorder,
Recurrent, Mild;
300.23- Social Phobia;

Type
8735778* F 31 NO NO
9630905* F 36 NO NO

The diagnostic information for each subject was collected using structured clini-
cal interview for DSM Disorder (SCID) by trained professionals and the numbers
are DSM-IV codes. “No” indicates no psychiatric disorder was identified during
the interview.

aSubjects with current/historical psychiatric disorders.

bSubjects without diagnostic information.

*Subjects used in the present study.
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females, mean age 32.9 £ 12.5 years) were left for further analyses
(marked in Table 1).

DATA ACQUISITION

Each participant received test-retest dMRI scans (at least 1 week
apart) using a Siemens Trio 3T scanner. The dMRI data were
acquired using a recently developed mEPI sequence (Moeller
etal., 2010; Xu et al., 2013): repetition time (TR) = 2400 ms, echo
time (TE) = 85ms, 64 slices, slice thickness of 2 mm, FOV =
212 x 180 mm?, voxel size of 2 mm isotropic, b value = 1500
s/mm?, 128 gradient directions with 9 b = 0 images, multiband
acceleration factor = 4, averages = 1, total acquisition time =
5:58 min. A T1-weighted image was obtained with an magneti-
zation prepared rapid gradient echo (MPRAGE) sequence [TR =
2500 ms, TE = 3.5 ms, inversion time (TT) = 1200 ms, acquisition
matrix = 256 x 256, voxel size of 1 mm isotropic]. Additionally,
the test-retest rs-fMRI data were also acquired, but were not used
in the present study. For each dMRI scan, the data quality was
checked by visual inspection to avoid the distortions caused by
magnetic field inhomogeneities.

DATA PREPROCESSING

The preprocessing of AMRI data consisted of the following steps:
eddy current and motion artifact correction, estimation of the
diffusion tensor, calculation of the fractional anisotropy (Smith
et al.). The eddy current distortions and motion artifacts in
the dMRI dataset were corrected by applying an affine align-
ment of each diffusion-weighted image to the b = 0 image. After
that, the diffusion tensor elements were estimated by solving
the Stejskal and Tanner equation; then, the reconstructed tensor
matrix was diagonalized to obtain three eigenvalues (A1, A2, \3)
and eigenvectors, and the corresponding FA of each voxel was cal-
culated. All of the processes were performed with the FDT toolbox
(Behrens et al., 2003) of FMRIB Software Library (FSL, http://
www.fmrib.ox.ac.uk/fsl) (Smith et al., 2004).

STRUCTURAL SEGMENTATION AND WM TRACTOGRAPHY

First, the structural T1-weighted image was first segmented
into gray matter (GM), WM and cerebrospinal fluid (CSF)
in the CIVET pipeline (http://wiki.bic.mni.mcgill.ca/index.php/
CIVET). Then the individual T1-weighted image was coregis-
tered to the b = 0 image through a linear transformation which
is applied to the segmented WM mask. Within each WM voxel,
eight seeds were started and evenly distributed over the volume
of the voxel. A streamline was started from each seed following
the primary diffusion direction from voxel to voxel, thus recon-
structing the WM fibers. The tractography was terminated if it
turned at an angle greater than 45 degrees (Mori et al., 1999).
Tens of thousands of streamlines were generated to etch out all of
the major WM tracts. Diffusion tensor tractography was imple-
mented with the Diffusion Toolkit (http://trackvis.org/) using
the “fiber assignment by continuous tracking” method (Mori
et al., 1999) and was visualized in the TrackVis program (http://
trackvis.org/).

NETWORK NODE DEFINITION
To investigate the effects of different parcellation schemes on
the network topological architecture and reliability, we used

the two most common cortical parcellation methods (surface-
and volume-based parcellations) to define network nodes. Both
parcellation methods were based on the volumetric Automated
Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002)
in which 80 cortical areas were selected (Table 2).

1) Volume-based parcellation: the detailed procedure of the
volume-based parcellation has been previously described
(Gong et al., 2009a; Shu et al., 2011) and was performed using
SPM  software (http://www.fil.ion.ucl.ac.uk/spm/software/
spm8). Briefly, the coregistered T1-weighted image was non-
linearly normalized to the nonlinear asymmetric ICBM152

Table 2 | Cortical region-of-interest defined in the study.

Index Regions Abbreviation
(1,2 Precental gyrus PreCG
(3, 4) Superior frontal gyrus, dorsolateral SFGdor
(5, 6) Superior frontal gyrus, orbital part ORBsup
(7, 8) Middle frontal gyrus MFG

(9, 10) Middle frontal gyrus, orbital part ORBmid
(11, 12)  Inferior frontal gyrus, opercular part IFGoperc
(13, 14)  Inferior frontal gyrus, triangular part IFGtriang
(15, 16)  Inferior frontal gyrus, orbital part ORBInf
(17.18) Rolandic operculum ROL
(19, 20)  Supplementary motor area SMA
(21, 22)  Olfactory cortex OLF

(23, 24)  Superior frontal gyrus, medial SFGmed
(25, 26)  Superior frontal gyrus, medial orbital ORBsupmed
(27,28)  Gyrus rectus REC

(29, 30) Insula INS

(31, 32) Anterior cingulate and paracingulate gyri ACG
(33, 34) Median cingulate and paracingulate gyri DCG
(35, 36) Posterior cingulate gyrus PCG
(37,38)  Hippocampus HIP
(39,40)  Parahippocampal gyrus PHG
(41,42) Calcarine fissure and surrounding cortex CAL
(43,44) Cuneus CUN
(45,46)  Lingual gyrus LING
(4748) Superior occipital gyrus SOG
(49,50)  Middle occipital gyrus MOG
(561,52)  Inferior occipital gyrus 10G
(63,54)  Fusiform gyrus FFG
(55,56)  Postcentral gyrus PoCG
(57.58) Superior parietal gyrus SPG
(59,60)  Inferior parietal, supramarginal and angular gyri  IPL
(61,62)  Supramarginal gyrus SMG
(63,64)  Angular gyrus ANG
(65,66)  Precuneus PCUN
(67,68) Paracentral lobule PCL
(69,70)  Heschl gyrus HES
(71,72)  Superior temporal gyrus STG
(73,74)  Temporal pole: superior temporal gyrus TPOsup
(75,76) Middle temporal gyrus MTG
(7778) Temporal pole: middle temporal gyrus TPOmid
(79,80)  Inferior temporal gyrus ITG
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T1 template (Fonov et al., 2009) in the Montreal Neurological
Institute (MNI) space. The inverse transformations were used
to warp the AAL atlas from the MNI space to the diffusion
native space. Discrete labeling values were preserved with the
nearest neighbor interpolation method.

2) Surface-based parcellation: The surface-based parcellation was
performed using the CIVET pipeline (http://www.bic.mni.
mcgill.ca/ServicesSoftware/CIVET). A detailed description of
the analysis can be found in He et al. (2007). The T1-weighted
image was registered into the stereotaxic space using a lin-
ear transformation (Collins et al., 1994) and was further
segmented into GM, WM, CSF and background using an
advanced neural net classifier (Zijdenbos et al., 2002). The
internal surfaces of GM and the interface of WM and GM, each
consisting of 40,962 vertices in the brain per hemisphere, were
then automatically extracted using the Constrained Laplacian-
based Automated Segmentation with Proximities (CLASP)
algorithm (MacDonald et al., 2000; Kim et al., 2005).The labels
of the cortex were assigned by a surface-based AAL atlas on
the average 150 normal brains template (MacDonald et al.,
2000).

Using the above procedures, we obtained 80 cortical regions
(40 for each hemisphere; Table 2) of each subject in diffusion
native space through two parcellation methods, each represent-
ing a node of the network. In addition to the parcellation scheme
using 80 nodes in AAL template (L-AAL), we also used a high-
resolution (~1000 parcels) parcellation (H-1024) by randomly
subdividing the AAL atlas into 1024 regions with equal size both
in the volume and in the average cortical surface of 150 normal
brains. Therefore, for surface and volume-based parcellations,
both L-AAL and H-1024 WM networks with different nodal
scales were constructed (Figure 1).

NETWORK EDGE DEFINITION

Based on whole-brain tractography and cortical parcellation, two
regions were considered structurally connected if at least one fiber
streamline with two end points were located in these two regions.
For the weighted WM networks, we defined the fiber number
(FN) of interconnecting streamlines between two regions as the
weights of the network edges (Shu et al., 2011; Cheng et al., 2012;
van den Heuvel et al., 2012). Therefore, both L-AAL and H-1024
FN-weighted WM networks from surface- and volume-based
parcellations were constructed for each participant, respectively
(Figure 1).

NETWORK ANALYSIS

To characterize the topological organization of WM structural
networks, several graph measures were considered, as follows:
network strength (S,), global efficiency (Eglop), local efficiency
(Eloc)» shortest path length (Lp), clustering coefficient (Van Essen
et al.) and small-world parameters (X, y, and o) (Rubinov and
Sporns, 2010). For regional characteristics, we considered the
nodal strength and nodal efficiency (Achard and Bullmore, 2007).
Moreover, we investigated the rich-club organization of WM net-
works (van den Heuvel and Sporns, 2011). For a recent review on
the uses and interpretations of these network measures, refer to

Rubinov and Sporns (2010). See Appendix for the detailed defini-
tions and mathematical expressions of the graph metrics used in
the present study. All network analyses were performed using in-
house GRETNA software (http://www.nitrc.org/projects/gretna/)
and visualized using BrainNet Viewer software (http://www.nitrc.
org/projects/bnv/) (Xia et al., 2013).

TRT RELIABILITY
To evaluate the TRT reliability of the network metrics between
two sessions, a measurement of ICC was employed. The ICC value
was calculated as (Shrout and Fleiss, 1979):

2 2

Obs — Ows

ICC= 5—————
o+ (m—1)o

where oy is the between-subject variance, o, is the within subject
variance, and m represents the number of repeated measurements
(here, m = 2).

ICC is a normalized measure which has a maximum of 1. The
ICC values were categorized into five common intervals (Landis
and Koch, 1977): 0 < ICC < 0.2 (slight), 0.2 < ICC < 0.4 (fair),
0.4 < ICC < 0.6 (moderate), 0.6 < ICC < 0.8 (substantial), and
0.8 < ICC < 1.0 (almost perfect). Negative ICCs, implying neg-
ative reliability (i.e., completely non-reliable), are theoretically
difficult to interpret (Rousson et al., 2002) and reasons for nega-
tive ICC values are unclear (Muller and Buttner, 1994). Therefore,
we set negative ICCs to zero, as suggested in other test-retest
studies using the ICC (Kong et al., 2007; Braun et al., 2012).

STATISTICAL ANALYSIS

To test the differences of the reliability of network properties
derived from different procedures of network construction and
the reliability differences across regions and edges, the repeated
ANOVA was performed with SPSS software (version 13.0; SPSS,
Chicago, Ill). Moreover, the correlation of the network metrics
between the two sessions was calculated by Pearson’s correlation
using an in house Matlab (The MathWorks, Inc.) program.

TRT RELIABILITY FROM CONVENTIONAL dMRI AND SUBSAMPLED
MULTIBAND dMRI

To compare the reproducibility of network metrics between
multiband dMRI and conventional dMRI, we further investi-
gated the TRT reliability of WM networks constructed from a
conventional dMRI dataset with 30 gradient directions (conv-
dMRI-30grad), Moreover, to remove the possible effects of the
number of gradient directions on the reliability and make results
more comparable, we also investigated the TRT reliability of WM
networks constructed from subsampled multiband dMRI data
with 30 gradient directions (multi-dMRI-30grad).

1) Conventional dMRI dataset: Eleven right-handed subjects (3
females, mean age 28.0 & 5.0 years) without history of neu-
rological or psychiatric disorders were included. Each partic-
ipant received test-retest dMRI scans (at least 1 week apart)
using a Siemens Trio 3T scanner at the Imaging Center for
Brain Research, Beijing Normal University. The dMRI images
were acquired using a single-shot twice-refocused spin-echo
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G L-AAL

H-1024

FIGURE 1 | The flowchart of the construction of four WM networks
under two parcellation methods and two resolutions. (1) The b =0
image (A) and the individual T1-weighted image (B) were coregistered
through a linear transformation. (2) The T1 images were then nonlinearly
normalized to the ICBM152 T1 template (D) in the MNI space. (3) Each vertex
on the average cortical surface of 150 normal brains was assigned with the
value of the label in the volumetric AAL (F) to generate an atlas of surface
parcellation (E). (4) The inverse transformations were used to warp the AAL
atlas to the native diffusion space. (5) Both surface and volume atlases were

subdivided into 1024 regions with equal size to define a high resolution nodal
scale. (6) The reconstruction of all WM fibers in the brain was performed
using deterministic tractography using the Diffusion Toolkit (C). (7) The
weighted networks of each subject were created by computing the number
of streamlines that connected each pair of brain regions. Both low- (L-AAL)
and high-resolution (H-1024) WM networks based on different parcellation
approaches (surface and volume) were constructed for each subject (H),
which are represented by the abbreviations of Surl, SurH, VolL, and VolH,
respectively.

conventional EPI sequence (TR = 8,000ms, TE = 89ms,
FOV = 282 x 282 mm?, voxel size of 2.2mm isotropic, b
value = 1000 s/mm?, 30 gradient directions with one b = 0
images, average = 2, total acquisition time = 8:06 min). The
T1-weighted images were acquired using a MPRAGE sequence
(TR = 2530 ms, TE = 3.39 ms, TI = 1100 ms, matrix size =
256 x 256, voxel size = 1 x 1 x 1.33mm”).

2) Subsampled multiband dMRI dataset: From the original
multiband dMRI data with 128 gradient directions, we
selected 30 diffusion-weighted images with uniformly dis-
tributed gradient directions and one b = 0 image to compose
a subsampled multiband dMRI data for each participant.

Based on the conventional and subsampled multiband dMRI
datasets, both the high- and low-resolution weighted WM
networks with surface and volume based parcellations were

constructed with the same procedures as performed for the orig-
inal multiband dMRI dataset (multi-dMRI-128grad). Then the
ICC values of the global network metrics from each dMRI dataset
were calculated.

TRT RELIABILITY OF BINARY WM NETWORKS

To remove the possible effects of the weighting scheme on the
inter-subject variability, both the high- and low-resolution WM
networks with surface and volume based parcellations from the
multiband dMRI were binarized and global metrics based on the
unweighted networks were calculated. Then the ICC values of the
global network metrics from two sessions were computed.

RESULTS
First, we examined the architectural characteristics of weighted
WM structural networks for the new multiband sequence. Then
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the TRT reliability of WM structural networks derived from the
multiband dMRI data was investigated and reported in four levels:
global metrics, regional metrics, structural connectivity and rich-
club organization.

CONSERVED TOPOLOGICAL ARCHITECTURE

For the L-AAL network constructed from surface- and volume-
based parcellations, the WM networks are sparse with a group
mean sparsity of 17.5 and 20.1%, respectively. For the H-1024
WM network, the sparsities are about 1.4 and 1.9% for differ-
ent parcellations. Low wiring cost of the structural connectivity
network is observed, consistent with findings from conven-
tional EPI sequence (Gong et al., 2009a; Bullmore and Sporns,
2012). Compared with random networks, the brain WM net-
works showed the similar shortest path length and higher clus-
tering (Table 3), suggesting a prominent small-world architec-
ture regardless of different strategies for network construction.
Together, these results indicate that WM networks obtained from
multiband dMRI data exhibit conserved topological architecture
as those derived from conventional dMRI data (Table 3).

TRT RELIABILITY OF GLOBAL NETWORK METRICS

Figure 2A shows the TRT reliability of global network metrics
under different procedure choices. Generally, most global net-
work parameters exhibited moderate to high reliability (ICC >

0.52) regardless of the construction procedure. Only the lambda
from L-AAL network with surface-based parcellation had a rela-
tively low reproducibility (ICC = 0.22). Global network measures
can be further classified into first and second order metrics where
the first order metrics include strength, Ly, Cp, global and local
efficiency, and the second order metrics include small-world
parameters (X, ¥, and o), which are normalized by the metrics of
random networks (Bassett et al., 2011). Using a repeated ANOVA
in which order was treated as a categorical factor and parcella-
tion and resolution were treated as repeated measures, we found
that the first order metrics, such as strength and efficiency, are
more reliable than the second order metrics (p = 0.0009, Partial
Eta Squared = 0.86) (Figure 2B).

Given that particular choices of construction options (i.e., cor-
tical parcellation and network resolution) can make significant
differences in network topological parameters, we next evalu-
ated which construction scheme performed the best at modeling
the brain networks from the perspective of TRT reliability. A
Two-Way repeated ANOVA in which parcellation and resolu-
tion were treated as repeated measures showed a significant main
effect of parcellation (p = 0.002, Partial Eta Squared = 0.81),
where post-hoc comparisons confirmed that the volume-based
parcellation yielded more reproducible results than the surface-
based parcellation (Figure 2B). Meanwhile, a significant main
effect of resolution was found, which revealed an increasing

Table 3 | Global properties of WM network constructed from mEPI sequence.

SurL SurH VolIL VolH
Session1 Session2 Session1 Session2 Session1 Session2 Session1 Session2
Sp 2994 3024 388 390 3786 3768 509 507
Egiob 205.3 211.2 9.92 9.84 2070 210.9 11.89 11.91
Eloc 245.9 250.6 25.56 25.75 302.7 306.1 28.07 28.15
Lo 0.006 0.006 0.10 0.10 0.005 0.005 0.086 0.085
Cp 68.67 68.99 8.46 8.57 80.20 81.25 8.49 8.50
S 1.20 1.18 1.44 1.46 1.21 1.18 1.49 1.48
3.71 3.73 31.59 31.77 3.35 3.38 22.18 22.26
o 3.10 3.15 21.96 21.79 2.78 2.86 14.91 15.06
A B I First order
ICC1 12 [ | Second order
3
° 1
o 0.8
14 0.8
= 0.6
8 0.6
5 =
° 04
6 0.4
2
S 0.2 0.2
o
@
. 0
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FIGURE 2 | The TRT reliability of global network properties. (A) The ICC of the effects of network construction procedures on the reliability of first
values of global network metrics from low to high were presented with order and second order graph metrics. The bars and errorbars represent the
colorbars from blue to red. Multiple network metrics showed moderate to mean values and standard errors, respectively, of the ICC values of first order
high reliability regardless of construction procedures. (B) Statistical analysis and second order network metrics.
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reproducibility of global metrics at finer spatial resolutions (p =
0.002, Partial Eta Squared = 0.82) regardless of parcellations
(Figure 2B). No significant interactions of parcellation x reso-
lution were found (p > 0.1) (Figure 2B).

TRT RELIABILITY OF REGIONAL STRENGTH AND EFFICIENCY

Figure 3 shows the nodal strength (A) and efficiency (B) of
all regions (averaged over subjects) from the surface- (top)
and volume-based parcellations (bottom). Between two sessions,
highly significant correlations of nodal properties across all nodes
were observed (all r > 0.94). Moreover, highly similar distri-
butions of hub regions (nodal strength > mean + std) were
observed between the two sessions, regardless of the network
construction procedures (Figure 3). For the L-AAL network, the
hub regions were mainly located in the bilateral middle tempo-
ral gyri, superior and middle frontal gyri, precuneus, precentral
gyrus, postcentral gyrus and supplementary motor area for both
parcellations. While for the H-1024 network from surface-based
parcellation, the hub regions were distributed in the bilateral
temporal gyri, superior and middle frontal gyri, precuneus,
anterior and median cingulate and paracingulate gyri, precen-
tal and postcentral gyrus, fusiform gyrus and insula. For the
volume-based parcellation, more regions in the bilateral tempo-
ral gyri, superior and middle occipital gyrus and fewer regions
in the superior and middle frontal gyri were identified as hubs

compared with the network from the surface-based parcellation
(Figure 3).

Figure 4 shows the TRT reliability of nodal strength (A) and
efficiency (B) under different construction procedures. Across
parcellations, most of regions of the L-AAL network exhibited
moderate to high reproducibility (surface: nodal strength ICC =
0.70; nodal efficiency ICC = 0.70; volume: nodal strength ICC =
0.75; nodal efficiency ICC = 0.75) except the right posterior
cingulate cortex, left insula, right superior parietal gyrus and
paracentral lobule. For the H-1024 network, the ICC values
across most regions also ranged from moderate to high (sur-
face: nodal strength ICC = 0.56; nodal efficiency ICC = 0.58;
volume: nodal strength ICC = 0.62; nodal efficiency ICC =
0.72). When categorizing the cortical regions into three regional
classes (primary, association and paralimbic) (Mesulam, 1998)
(Figure 5A), a repeated ANOVA was performed in which nodal
metric was treated as repeated measures while regional class,
parcellation and resolution were treated as categorical factors.
An interaction between regional class and network resolution
(p < 0.0001, Partial Eta Squared = 0.02) and a significant
main effect of regional class (p < 0.0001, Partial Eta Squared
= 0.37) in the L-AAL network were observed (Figure5B).
Further post-hoc comparisons showed that the association and
primary cortices exhibit a higher reliability than the paralim-
bic/limbic regions (p < 0.0001) for only the L-AAL network
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distribution of ICC values of nodal efficiency across regions. The plots
show the correlation between nodal efficiency and ICC values, with blue
dots representing the node and the red line representing the linear fit.
Notably, the nodal properties across all nodes were resampled into a
Gaussian distribution.

(Figure 5B). Additionally, the relationship between the nodal
properties and their corresponding ICC values was investigated.
The correlation results indicated that under both low- and high-
resolutions, regions with higher nodal strength or efficiency
tend to have larger ICC values (all p < 0.001) (Figure4). In
other words, the properties of densely connected hub regions
show higher reproducibility than those of peripheral non-hub
regions.

When focusing on the effects of cortical parcellation and net-
work resolution on the reproducibility of nodal strength and
efficiency, a repeated ANOVA was performed in which nodal
metric was treated as repeated measure, parcellation and res-
olution were treated as categorical factors while the effect of
regional class was averaged. The L-AAL network showed higher
nodal ICCs than the H-1024 network (p < 0.0001, Partial Eta
Squared = 0.02) (Figure6). And the volume-based parcella-
tion yielded higher nodal ICCs than the surface-based parcel-
lation (p = 0.0003, Partial Eta Squared = 0.01) (Figure 6). An
interaction between nodal metric and network resolution (p =
0.001, Partial Eta Squared = 0.01) was observed and nodal effi-
ciency showed significantly higher ICCs than the nodal strength
(p < 0.0001, Partial Eta Squared = 0.06) in the H-1024 net-
work (Figure 6). Overall, the L-AAL network with volume-based

parcellation exhibited the highest reproducibility in terms of
nodal properties.

TRT RELIABILITY OF STRUCTURAL CONNECTIVITY

Figure 7A shows the average matrices of WM connections across
subjects for each session. Between two sessions, highly signifi-
cant correlations of edge weights across all edges were observed,
especially for the L-AAL network (all r > 0.9) (Figure 7B). To
assess the intra-session reliability of the WM connectivity, we first
detected significantly consistent connections across subjects, by
performing a nonparametric one-tailed sign test. For each pair of
brain regions, the sign test was performed with the null hypoth-
esis that no connection exists [“fiber bundle number = 0” (p <
0.05)]. Nonzero connections within either session groups were
detected and assigned the average edge weight (number of inter-
connecting streamlines between two regions) across subjects and
sessions to combine as a backbone network. Figure 8A shows the
reliability of edge weights of the backbone network under differ-
ent construction procedures. The histogram distributions of edge
ICCs are shown in Figure 8B. At least 52% of the edges of WM
networks under all construction methods exhibited moderate to
high ICCs. The average ICC values across all backbone connec-
tions were greater than 0.4 (SurL: mean ICC = 0.51; SurH: mean
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FIGURE 5 | The TRT reliability of nodal properties across different
regional classes. (A) The regions are shown in red, blue and green on a 3D
surface, indicating the association, primary and paralimbic/limbic cortices.
(B) Statistical analysis of the nodal reliability between regional classes in
the WM network. The bars and errorbars represent the mean values and
standard errors, respectively, of the ICC values of all regions in each
regional class. The ICCs of nodal strength and efficiency from surface- and
volume-based networks were represented by Sur_nStr, Sur_nEff, Vol_nStr,
and Vol_nEff, respectively.

ICC = 0.42; VolL: mean ICC = 0.51; VolH: mean ICC = 0.44).
A Two-Way ANOVA in which parcellation and resolution were
treated as categorical factors revealed that surface- and volume-
based parcellations have similar edge ICCs (p = 0.6), but the
L-AAL network showed higher edge ICCs than the H-1024 net-
work (p < 0.0001, Partial Eta Squared = 0.02). Additionally, we
found that the ICC values are positively correlated with the edge
weights (connection strength) (Figure 8C), suggesting that the
stronger connections tend to be more reproducible than the weak
ones.

TRT RELIABILITY OF RICH-CLUB ORGANIZATION

To quantify the reliability of the rich-club organization, we calcu-
lated the normalized rich-club coefficient (RC) of the backbone
network according to van den Heuvel and Sporns (2011) under
a range of thresholds. The normalized RC values were greater
than 1 under each network construction procedure (Table4),
suggesting a characteristic rich-club organization. Furthermore,
the nodes of the backbone network were classified into hubs
(nodal strength > mean + std) and non-hubs. Correspondingly,
edges were classified onto rich-club connections, which link
hub nodes to hub nodes; feeder connections, which link hub
nodes to non-hub nodes; and local connections, which link

I Sur_nStr
Sur_nEff
[JVol_nstr
0.8l Il Vo!_nEff
0.6} ]
(S
Q
0.4t
0.2}
0 L-AAL H-1024

FIGURE 6 | The effects of different parcellation and resolution on the
reliability of nodal strength and efficiency. The bars and errorbars
represent the mean values and standard errors, respectively, of the ICC
values of all nodal properties from different construction procedures. The
ICCs of nodal strength and efficiency from surface- and volume-based
networks were represented by Sur_nStr, Sur_nEff, Vol_nStr, and Vol_nEff,
respectively.

between non-hub nodes (Figure 9A). The reliability of the dif-
ferent hub categories of regions and edges were investigated using
a Three-Way ANOVA in which parcellaion, resolution and hub
category were treated as categorical factors. ANOVA analyses indi-
cated that the reliability of hub regions was higher than that
of non-hub regions (p < 0.0001, Partial Eta Squared = 0.01)
regardless of the construction procedure (Figure 9B), consistent
with the above finding that regions with higher nodal strength
tend to have greater ICC values. For the connections, a sig-
nificant effect of the edge category was observed (p < 0.0001,
Partial Eta Squared = 0.01), and post-hoc comparisons con-
firmed that the reliability of rich-club connections is significantly
higher than that of feeder (p = 0.0001) and local connections
(p < 0.0001), and the reliability of feeder connections is sig-
nificantly higher than that of local connections (p < 0.0001)
(Figure 9C).

TRT RELIABILITY FROM CONVENTIONAL dMRI AND SUBSAMPLED
MULTIBAND dMRI

Figure 10 shows the TRT reliability of global network met-
rics from the conventional dMRI and subsampled multiband
dMRI datasets. A significantly progressive increase of ICC val-
ues in the global network metrics from the conventional dMRI,
the subsampled multiband dMRI to the original multiband
dMRI was identified by a repeated ANOVA (p < 0.0001, Partial
Eta Squared = 0.54). The conventional dMRI dataset showed
an overall decrease of reproducibility in all network metrics
regardless of the construction procedures, except for the low-
resolution network with volume-based parcellation. The subsam-
pled multiband dMRI data also exhibited significantly decreased
reliability than the original multiband dMRI, especially in the
small-world parameters from the volume-based low-resolution
networks.
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two sessions, high correlations of connection strength across all edges were
shown in the plots (all p < 10719). The blue dots represent the edge weights
and are linearly fitted with a red line.

Table 4 | RC and normalized RC of the WM backbone networks under a range of thresholds.

Threshold RC Normalized RC

SurL SurH VolL VolH SurL SurH VolL VolH
Mean 0.67 0.71 0.72 0.68 1.14 1.1 1.27 1.09
Mean + 0.5 std 0.54 0.65 0.53 0.56 1.15 1.21 1.256 1.18
Mean + 1.0 std 0.53 0.61 0.35 0.48 1.21 1.31 0.99 1.29
Mean + 1.5 std 0.49 0.57 0.27 0.40 1.10 1.40 - 1.35

TRT RELIABILITY OF GRAPH METRICS OF BINARY WM NETWORKS
Figure 11 shows the TRT reliability of global network metrics for
both binarized and weighted WM networks from the multiband
dMRI dataset. Lower ICC values of the global network metrics
were found for the binary networks compared with the weighted
WM networks by a paired two-sample ¢-test (p = 0.002, Partial
Eta Squared = 0.27).

DISCUSSION

In the present study, we investigated the reliability of weighted
WM structural networks constructed from multiband dMRI data
with two repeated scanning sessions. Our primary results can be
summarized as follows: First, conserved topological architecture
of WM structural networks constructed from the mEPI sequence

was observed, such as low wring cost, small-worldness and highly
connected hub regions. Second, most of the weighted WM net-
work metrics exhibited a high TRT reliability, especially the first
order metrics are more reliable than the second order metrics
(a partial eta squared value around 0.8), suggesting the poten-
tial utility in clinical applications of the new sequence. Third,
different procedures of network construction have an effect on
the network reliability. For example, networks with volume-
based parcellation and high spatial resolution are more reliable
than those with surface-based parcellation and low resolution,
respectively. Moreover, WM networks from the multiband dMRI
showed higher reproducibility compared with those from the
conventional dMRI. Additionally, the network reliability varies
across regions and edges, although with relatively low effect sizes
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strength (edge weight) and ICC values is shown in the plot. The blue
dots represent the edge weights and are linearly fitted with a red line.
Notably, the connection strengths across all edges were resampled into
a Gaussian distribution.

(partial eta squared values less than 0.1). These findings provide
reference and guidance for the future network studies using this
new sequence.

Generally, the ICC values obtained in our study are compara-
ble with the findings of previous WM network studies (Vaessen
et al., 2010; Bassett et al., 2011; Cheng et al., 2012; Buchanan
et al., 2014). Compared with the conventional dMRI, the multi-
band dMRI data showed higher reliability of global metrics of
WM networks, and with a large effect size (Partial Eta Squared =
0.54). For the mEPI sequence, the high reproducibility of net-
work metrics may be attributed to the relatively short scan time
that can minimize the effects of head motion and can increase
the reliability of fiber orientation estimation from the dMRI data
with hundreds of gradient directions. However, the differences
in the subjects and acquisition parameters (e.g., different slice
thickness of T1 images) between the conventional and multiband
dMRI datasets may have an effect on the comparison of the TRT
reliability. Future comparisons with the same cohort and same
acquisition parameters should be warranted.

The comparisons of parcellation methods and network res-
olutions offer certain insights into network reliability. First, in
all cases, networks with volume-based parcellation showed better
TRT reliability than the surface-based parcellation, in terms of

both the global (Partial Eta Squared = 0.81) and local ICCs
(Partial Eta Squared = 0.01). These results may be due to
more WM seed voxels in volume-based parcellation. More WM
seed points produce more robust tractography results, which
can be supported by the findings of improved TRT reliabil-
ity of structural networks seeding from WM rather than GM
(Buchanan et al., 2014). However, investigation of other parcella-
tion approaches merits further investigation; notably, approaches
based on the individual landmarks of gyri and sulci without a
template (Hagmann et al., 2008) may reduce the bias caused by
registration errors. Second, the high resolution network exhib-
ited an overall higher TRT performance than the low resolution
network in terms of global network metrics with a large effect
size (Partial Eta Squared = 0.82), whereas the low resolution
performs better in terms of local (region and edge) properties
with a relatively low effect size (Partial Eta Squared = 0.02).
Consistent with our findings, Bassett et al. (2011) also found
an increasing reproducibility of global metrics in all atlases at
finer spatial resolutions. For the local properties, ROIs in low-
resolution networks with bigger size are more possible to be
connected by larger fiber tracts, avoiding the contamination from
different structures, whereas smaller ROIs in high-resolution net-
work are more easily impaired by the false positive streamlines
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with a lower SNR ratio but a more homogeneous fiber distri-
bution (Parker et al., 2003). Therefore, specific methodological
choice will affect the applicability of network topology-related
approaches.

Moreover, the weighting scheme also has an effect on the
network reliability. We found the binary WM networks showed
poorer reliability than the weighted networks. The increased reli-
ability of weighted networks may be partly due to the increased
inter-subject variability introduced by the weighting scheme,
which contains both real connectome differences and other
biases, such as the effects of brain size on the fiber tractog-
raphy. Binary network can partly overcome such problem by
avoiding the variability in fiber numbers, which also has its own
drawbacks, such as how to threshold the network (Buchanan
et al., 2014; Duda et al., 2014). Detailed investigation of the

effects of different weighting schemes on the reproducibility
of graph metrics for the multiband sequence is needed in the
future.

On a more methodological note, we found significant differ-
ences in reliability between graph metrics. For global metrics,
the first order graph metrics (such as shortest path length and
efficiency) were more reliable than second order metrics (such
as small-world parameters), with a large effect size (Partial Eta
Squared = 0.86). This result is consistent with the findings
from MEG data (Deuker et al., 2009), but in contrast with
results obtained from rs-fMRI data (Braun et al., 2012). The
worse reliability of second order metrics may be caused by the
normalization of the metrics of random networks, which may
also indicate an increased sensitivity to measurements such as
short term changes in the WM structure (Tang et al., 2010).
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networks showed lower ICC values compared with those of the
weighted networks.

For nodal metrics, the nodal efficiency is more reliable than
the nodal strength, especially for the high-resolution WM net-
works, with a relatively low effect size (Partial Eta Squared =
0.06). However, a previous rs-fMRI study (Wang et al., 2011)
showed that the nodal degree showed higher reliability than
other nodal metrics in the binary functional networks. These
results suggest that the reliability of the same graph metrics
can be influenced by the imaging modalities, strategy of nodal
or edge definitions and network construction procedures. In
future studies, selecting specific metrics with high reliability for
specific modality and methodological choice should have high
priority.

The reproducibility varied across regions and exhibited spa-
tially heterogeneous distribution. We found that most of the
regions (>75%) showed moderate to high reproducibility under
all construction methods, except several regions located in the
left olfactory cortex, left insula, left middle temporal gyrus, right
gyrus rectus, right orbital frontal gyrus, right posterior cingu-
late cortex, right superior parietal gyrus and paracentral lobule.
Some of those regions were also identified as showing poor
estimated ICC values in a recent test-retest study of the dMRI
network obtained from conventional EPI sequence (Buchanan
et al., 2014). Bassett et al. (2011) also found certain less repro-
ducible regions in the inferior temporal and occipital cortices.
These similar results revealed that certain regions with inher-
ent instability are driven by anatomy or technique limitations,
such as magnetic susceptibility (Vargas et al., 2009). Moreover,
we found that the more densely connected regions tend to
have higher reliability, due to less influence by the bias from
noise or limitations of tractography algorithms. In future stud-
ies with mEPI, results regarding these regions especially which
showed low reliability in our study should be interpreted with
caution.

According to the functional roles in information processing
(Mesulam, 1998), the brain regions can be categorized into three
classes, including association, primary and paralimbic/limbic
regions. For the low-resolution WM network, the ICCs of asso-
ciation and primary regions were significantly higher than the
paralimbic/limbic regions (Partial Eta Squared = 0.37) and 72%

of regions that show low ICC values were located in the paral-
imbic/limbic cortices. This result may be induced by the smaller
ROI size in the paralimbic/limbic regions in the AAL template
(surface: association = 2.9 x 10° mm?, primary = 2.7 x 10°
mm?, paralimbic/limbic = 1.4 x 10> mm?; volume: associa-
tion = 1.9 x 10* mm?, primary = 1.8 x 10* mm?, paralim-
bic/limbic = 8.9 x 10> mm?). As mentioned above, the smaller
ROI size can be easily biased by the image noise, partial vol-
ume effects and registration errors. Another possible reason is
the high anatomical variability of paralimbic/limbic tracts, such
as the uncinate fasciculus and cingulum bundles (Burgel et al,,
2006).

For the structural connectivity, the reliability varies across
edges. There are several sources that contribute to the varia-
tion of the edge weights (number of streamlines). Image noise,
spatial resolution, dMRI gradient encoding, and partial volume
effects may affect the quality of fiber quantification. The trac-
tography algorithm (Bastiani et al., 2012), including the number
of random seeds in fiber tracking, can also have a slight effect
on the variance of the network. Specifically, fewer random seeds
will lead to a larger variance in the number of fibers from fiber
tracking, although the effect in this study was diminished by
choosing eight seeds per voxel in fiber tracking. In addition, the
reliability of network construction also relies on the accuracy
of parcellation and the mapping during image registration. The
parcellation can have errors due to SNR limitations of the T1-
weighted image or the algorithm itself. The registration between
the T1-weighted image and the dMRI image can also have errors
due to image distortion and partial volume effects. All of these
factors affect the TRT reliability of the structural connectivity and
networks.

Importantly, we investigated the reliability of the rich-club
organization of WM networks. First, we found hubs regions and
rich-club connections were more reliable than non-hub ones with
a low effect size (Partial Eta Squared = 0.01). This is consis-
tent with the findings of positive correlations between ICCs with
nodal strength and edge weights. As the hub regions are more
densely interconnected than the other brain regions and have a
large influence on overall network organization, hubs are essential
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in supporting the performance of high cognitive functions of the
human brain by integrating specialized brain regions into coordi-
nated networks (van den Heuvel and Sporns, 2013). Buckner et al.
(2009) demonstrated that the topography of human brain cortical
hubs is highly similar across populations and robust against task
states, therefore reflecting a stable property of brain functional
architecture. Previous studies consistently revealed similar and
stable hub distributions of WM networks across subjects from
different samples (Hagmann et al., 2008; Gong et al., 2009a;
Zalesky et al., 2010; Bassett et al., 2011; van den Heuvel and
Sporns, 2013). This result is also in parallel with the findings from
functional MRI data (Wang et al., 2011; Liao et al., 2013), which
indicate that the reliable regions qualitatively tend to serve as hubs
in intrinsic functional brain networks. The high reliability of hub
regions and rich-club connections indicated that rich-club orga-
nization is a stable metric with commendable potential utility in
clinical applications.

There are some methodological issues need to be addressed.
First, we included only 11 subjects in the present study, large sam-
ples with more subjects in practical studies is necessary to obtain
sufficient statistical power. Second, investigation of the effects
of different acquisition parameters, gradient sampling schemes
and advanced diffusion modeling approaches, such as application
of higher order models to disentangle crossing fiber structures
(Tournier et al., 2008), on the reproducibility of network metrics
for this new sequence would be interesting, but was unfortunately
outside the scope of this paper. Finally, when considering the
influence of potential variations in WM structure, it is important
to consider the tradeoff between the reliability and sensitivity
of network metrics. In future studies, several measures (e.g.,
the coefficient of variation) can be further developed to com-
prehensively characterize the sensitivity of network metrics over
scanning sessions (Lachin, 2004; Bassett et al., 2011).
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APPENDIX

NETWORK STRENGTH

For a network (graph) G with N nodes and K edges, we calculated
the strength of G as follows:

Sp(G) = % > s

ieG

where S(i) is the strength of a node, which is the sum of the edge
weights wy; (fiber number) linking to node i. The strength of a
network is the average of the strength across all of the nodes in
the network.

SMALL-WORLD PROPERTIES

Small-world network parameters (clustering coefficient, Cp, and
shortest path length, L,,) were originally proposed by Watts and
Strogatz (1998). In this study, we investigated the small-world
properties of the weighted brain networks. The clustering coef-
ficient of a node i, C(i), which was defined as the likelihood of
whether the neighborhoods were connected with each other, was
computed as follows:

2
C(i) = E i) 3
(1) ki(ki — 1) & (Wl]W]kal)

where k; is the degree of node i and w is the weight, which is scaled
by the mean of all weights to control each participant’s cost at
the same level. The clustering coefficient is zero (C(i) = 0) if the
nodes are isolated or have just one connection, i.e., kj = 0 or kj =
1. The clustering coefficient, C;, of a network is the average of
the clustering coefficient over all nodes and indicates the extent
of the local interconnectivity or cliquishness in a network (Watts
and Strogatz, 1998).

The path length between any pair of nodes (e.g., node i and
node j) is defined as the sum of the edge lengths along this path.
For weighted networks, the length of each edge was assigned by
computing the reciprocal of the edge weight, 1/wj;. The shortest
path length, L, is defined as the shortest length among the lengths
of all possible paths between node i and node j. The shortest path
length of a network was computed as follows:

1
Ly(G) = ———— L;
»(G) NW—Ui;G j

where N is the number of nodes in the network. The L, of a
network quantifies the ability for information to propagate in
parallel.

To examine the small-world properties, the clustering coef-
ficient, Cp, and the shortest path length, L;, of the brain net-
works were compared with those of random networks. In this
study, we generated 100 matched random networks that had the
same number of nodes and edges and the same degree distri-
bution as real networks (Maslov and Sneppen, 2002). Notably,
we retained the weight of each edge during the randomiza-
tion procedure such that the weight distribution of the net-
work was preserved. Furthermore, we computed the normalized

Ly, A= LI’f“l /L;“”d, and the normalized C,, y = C;ml /C;“”d,

Lmnd Cmnd

where and are the mean C, and the mean L, of
100 matched random networks, respectively. Importantly, the
two parameters correct the differences in the edge number and
degree distribution of the networks across individuals. A real
network would be considered small-world if y > 1 and X ~ 1
(Watts and Strogatz, 1998). Thus, a small-world network not
only has a higher local interconnectivity but also has a short-
est path length approximately equivalent to random networks.
These two measurements can be summarized into a simple
quantitative metric, small-worldness, o = y /A, which is typically
greater than 1 for small-world networks (Humphries and Gurney,
2008).

NETWORK EFFICIENCY

The global efficiency of G measures the global efficiency of
the parallel information transfer in the network (Latora and
Marchiori, 2001), which can be computed as follows:

1 1

N(N-1) 452G Lij

Eglob(G) =

where Lj is the shortest path length between node i and node j
in G.

The local efficiency of G reveals how much the network is fault
tolerant and shows how efficient the communication is among
the first neighbors of the node i when it is removed. The local
efficiency of a graph is defined as follows:

1
Epe(G) = N ZEgloh(Gi)
ieG

where G; denotes the subgraph composed of the nearest neigh-
bors of node i.

REGIONAL CHARACTERISTICS

To determine the nodal (regional) characteristics of the WM net-
works, we computed the nodal strength and efficiency. The nodal
strength S(i) is defined as the sum of all of the edge weights
between this node and all of the other nodes in the network.
The nodal efficiency, Eoda1 (i) is defined as (Achard and Bullmore,
2007):

. 1 1
Epodal(i) = —— Z b
N=1, Fcli

where Lj; is the shortest path length between node i and node j in
G. Ejodal (1) measures the average shortest path length between a
given node i and all of the other nodes in the network.

RICH-CLUB ORGANIZATION

A “rich-club” in networks is defined as the phenomenon that the
high-degree nodes of a network tend to be more densely con-
nected among themselves than is expected by chance (Colizza
et al., 2006; McAuley et al., 2007). The brain’s rich-club has been
described previously (van den Heuvel and Sporns, 2011; van den
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Heuvel et al., 2012; Collin et al., 2014). For the weighted networks,
the rich-club coefficient (RC) ¢ (k) (Opsahl et al., 2008) is given
by the following equation:

Wok
E-k . ranked
22w

¢ (k) =
where E.  denotes the subset of the edges between the hub nodes
with a strength > k, W. denotes the total sum weights of this
subset, and Wianked denotes the ranked collection of weights in

the network, with weights W representing the number of fiber
streamlines of the edges. ¢ (k) was normalized relative to the
Drandom (k) of a set of comparable random networks (n = 1000)
of equal size and degree sequence, providing a normalized RC
(Colizza et al., 2006; McAuley et al., 2007):

¢norm(k) = ¢(k)/¢mnd0m(k)

Here, the threshold k is defined as the mean plus one standard
deviation (mean + std) of nodal strength across regions.
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