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EEG sleep spindles are short (0.5-2.0s) bursts of activity in the 11-16 Hz band occurring
during non-rapid eye movement (NREM) sleep. This sporadic activity is thought to play
a role in memory consolidation, brain plasticity, and protection of sleep integrity. Many
automatic detectors have been proposed to assist or replace experts for sleep spindle
scoring. However, these algorithms usually detect too many events making it difficult to
achieve a good tradeoff between sensitivity (Se) and false detection rate (FDr). In this
work, we propose a semi-automatic detector comprising a sensitivity phase based on
well-established criteria followed by a specificity phase using spatial and spectral criteria.
In the sensitivity phase, selected events are those which amplitude in the 10-16 Hz
band and spectral ratio characteristics both reject a null hypothesis (p < 0.1) stating that
the considered event is not a spindle. This null hypothesis is constructed from events
occurring during rapid eye movement (REM) sleep epochs. In the specificity phase, a
hierarchical clustering of the selected candidates is done based on events' frequency and
spatial position along the anteriorposterior axis. Only events from the classes grouping
most (at least 80%) spindles scored by an expert are kept. We obtain Se = 93.2% and
FDr = 93.0% in the first phase and Se = 85.4% and FDr = 86.2% in the second phase.
For these two phases, Matthew's correlation coefficients are respectively 0.228 and 0.324.
Results suggest that spindles are defined by specific spatio-spectral properties and that

automatic detection methods can be improved by considering these features.

Keywords: sleep spindles, detection,
learning, pattern recognition, sleep

INTRODUCTION

EEG sleep spindles are short bursts of oscillatory activity in the
11-16 Hz frequency band during NREM sleep, especially in stage
2 sleep. This sporadic activity is a topic drawing increasingly more
attention as it is thought to have an important role in the protec-
tion of sleep integrity and in the consolidation of new learning
(Steriade, 2006; Dang-Vu et al., 2010; Fogel et al., 2012). Usually,
the study of sleep spindles is time consuming due to the man-
ual processing it requires. Aside from preprocessing steps such as
sleep staging and artifact rejection, a polysomnographic expert
has to manually identify hundreds of spindle occurrences hidden
in whole-night EEG recordings, a tedious and error-prone task.
Over the years, many automatic detectors have been proposed to
assist or replace the experts in this task. These can be roughly
split in two classes. The first one transforms the recorded sig-
nal in a new function—the detection function—whose amplitude
is related to the probability of spindle activity. A simple thresh-
old (or a set of thresholds) is applied to this function to decide
on the presence or absence of spindle activity. This operation is
typically followed by some additional criteria such as rejection of

electroencephalography, time-frequency, hierarchical clustering, machine

small duration events, generally <500 ms to follow standard defi-
nitions of sleep spindle (Rechtschaffen and Kales, 1968; Iber et al.,
2007). Many systems following this general approach have been
proposed (e.g., Schimicek et al., 1994; Huupponen et al., 2007;
Devuyst et al., 2011; Babadi et al., 2012). In the second class of
detectors, EEG signals are segmented in a sequence of events (i.e.,
epochs that are potentially associated with spindle occurrences).
For each event, a set of features is extracted to better synthesize its
key characteristics. Then, two approaches can be used to classify
these events as spindles or non-spindles: supervised (guided by
pre-annotated spindles) or unsupervised (clustering techniques
finding regular subsets of events and selecting subsets that are
most likely to be associated with spindle activity). Here again,
many systems have been proposed in the literature (e.g., Acir and
Giizelig, 2004; Olbrich and Achermann, 2005; Ventouras et al.,
2005; Sinha, 2008; Ahmed et al., 2009).

However, the detection of an important proportion of false
positives is a persistent problem observed with these automated
detectors when compared to expert scoring. This issue has often
been hidden by reports of apparently highly specific systems
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which large numbers of false positives were masked by the impor-
tant asymmetry between spindle vs. non-spindle events (O’Reilly
and Nielsen, 2013; O’Reilly and Nielsen, in revision). Looking at
the false detection rate (instead of specificity) reveals this impor-
tant weakness. In this context, achieving a satisfactory tradeoff
between sensitivity (Se) and false detection rate (FDr) proved to
be challenging.

In this work, we propose a two-step detector which aims
to decrease the FDr by combining a sensitivity phase based on
well-established criteria to a specificity phase using spatial and
time-frequency criteria. This approach mixes both types of classi-
fication approaches previously described. In the sensitivity phase,
putative events are first detected from the wavelet representation
of the EEG recordings and then selected as those with large sigma
index—a measure proposed by Huupponen et al. (2007) as a ratio
of specific spectral bands—and high amplitude in the spindle
frequency band. The threshold used in this selection process is
based on the rejection of a null hypothesis (p < 0.1) stating that
the considered event is not a spindle. The non-parametric model
of the null hypothesis is constructed from events occurring in
spindle-free epochs, e.g., in REM stage. In the specificity phase,
hierarchical clustering of detected events is performed using the
spectral and the topographical (anterior vs. posterior localiza-
tion) properties of spindles. This spatio-spectral classification is
motivated by evidences of a dichotomy in sleep spindles: one class
occurs in frontal regions and has lower frequencies; another class
is characterized by higher frequencies and a more centro-parietal
topography (Werth et al., 1997; Zeitlhofer et al., 1997; Anderer
et al., 2001; De Gennaro and Ferrara, 2003; Martin et al., 2013).
Then, classes grouping a large proportion of events scored as spin-
dles by an expert are selected. In this phase, the detector tries to
reject as many false positives as possible—hence effectively bias-
ing the detection threshold toward specificity—without rejecting
too many true positives. Interestingly, parameters for such clus-
tering can be learned from a small sample of expert detections
and then be generalized automatically to the whole night.

MATERIALS AND METHODS

PREPROCESSING

Signal mixture

A first preprocessing step consists in locally averaging the EEG
signals to obtain one highly informative signal out of the N, EEG
channels available. This is made possible by the fact that the spin-
dle activity is generally relatively synchronous across the scalp,
with maximal apparition delays between sensors generally below
25ms (O’Reilly and Nielsen, 2014b). We consider the following
virtual channel:

st — mTs (1)

where m is a vector of N, components specifying weights associ-
ated with every channel of this mixture. This vector is normalized
with a L} norm (i.e., elements sum to unity) and defines what
we call a montage. The S matrix has a dimension N, x N; and
is obtained by simply stacking together the signals from the N,
channels, each one containing N; time samples.

Time-frequency representation

Spindle activity was assessed in the time-frequency plane using
the Continuous Wavelet Transform (CWT). This transform is
defined as follows:

+oo .
Wab =5 [ ¥, 5@t

with a and b being parameters associated respectively with scale
(i.e., inverse of frequency) and time. S (w) = fj;o s(He ™t dt is
the Fourier transform of the signal s (), * indicates the complex
conjugate, and Wg ,, (w) is a wavelet in the frequency domain. For
this study, we used the Morse wavelet (Lilly and Olhede, 2009,
2010):

W, (@) = H(w) cp P e (3)

with cg, being an irrelevant normalization factor and H (w)
being the Heaviside function (null everywhere but for @ >0
where it is equal to 1). We set y = 20 and B = 10. These values
were found to provide the best tradeoff between time and fre-
quency resolution for sleep spindle representation. See Figure 1
for an example of time-frequency representation of a sleep spindle
using this transform.

Wavelet ridge and temporal markers in the time-frequency plane
Computing (2) produces a matrix W™ of CWT coefficients wi";)
at time ¢; and frequency f; = fo/a;, fo being the main frequency
of the wavelet Wg ,, (w). For each time sample, we considered the
local maximal amplitude along frequencies of the spindle spec-
tral band. We then computed the time course of those wavelet
maxima, i.e.,:

d(y) = max

‘WE,T) ' (4)
Named ridge (Delprat et al., 1992), this piecewise continuous
path across the time-frequency map W™ quantifies the power
of instantaneous frequency in the signal. To be sensitive to the
spindle frequency band, it was computed using frequencies sam-
pled from 10 to 16 Hz with 0.1 Hz resolution, resulting in Ny = 61
frequencies per time sample.

To allow for a parsimonious assessment of spindle features, the
ridge was first marked according to the local maxima of the d (tj)
function:

" =t et:d(t)d (1) <Oandd(t) >0}  (5)

with d being the time derivative of d. These maxima are consid-
ered as time markers for the putative events (i.e., one event is
counted for each item in the " set) in the time-frequency plane.

Feature computation for the sensitivity phase

Two features are computed for signal detection in the sensitiv-
ity phase. The first one is the ridge amplitude at the maxima:
J?Zmp =d (t,’,”“"), with n =1, 2,...,N and N being the num-
ber of elements in the #"%* set. The second feature is a spectral
sigma ratio similar to what was proposed by Huupponen et al.
(2007) but computed using the modulus of the activity in the
time-frequency space (|W(’”) |) in the 4-40 Hz range:
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FIGURE 1 | Example of sleep spindle (A) in time domain and (B) in the time-frequency plane.
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~sigma
X8 =

2max {|W| [10.5— 16 Hz; 6] }

= (6)
mean [IWI [4— 10Hz o] } + mean {IWI [20 — 40 Hz; 1] ]

This index increases with narrow band activity having a peak
in the 10.5 — 16 Hz band. Compared to the root-mean-square
amplitude of the activity in the sigma band—a measure often
used for spindle detection (e.g., Schimicek et al., 1994; Molle
et al., 2002; Clemens et al., 2005; Schabus et al., 2007; Warby
etal., 2014)—it has the advantage of penalizing muscular artifacts
(20 — 40 Hz) and signs of arousal (4 — 10 Hz). It might, however,
be adversely impacted by the increase of theta and beta activity
associated with sleep spindles (Vyazovskiy et al., 2004). This mea-
sure was chosen since it represents a state-of-the-art approach
for spindle detection and it has shown to perform reasonably
well in previous studies (Huupponen et al., 2007, 2008; Sheng-
Fu et al., 2012; O’Reilly and Nielsen, in revision). An example of
corresponding values is shown in Figure 2.

Feature computation for the specificity phase

Two other features defined between 0 and 1 are computed in
the specificity phase. The first feature assesses the main frequency
mode of a putative spindle n:

;Cfreq_ f,;ﬂax_fl
h =

7
fo _fl @)

fi=10, fy;=16

i ’ and j is such that

where f"* = f; with i = argmax ‘w
lfiSNf

tj = t;™. Figure 3 summarizes important concepts introduced so

far.

The second feature captures the location of spindle activity
along the anteroposterior axis of the scalp. To compute this value,
we consider the first principal component (PC) of a 500 ms win-
dow centered around #**. This spatial eigenvector represents a
normalized topography over the channels, and its components
correspond to the relative weight for each channel. Being the

Frequency (Hz)

FIGURE 2 | lllustation of the variables entering in the computation of
Xn' 9™ as defined in (6). The time-frequency plane (|W|), in gray levels, is
represented by the modulus of wavelet coefficients computed for
frequencies between 4 and 40 Hz with 0.1 Hz resolution. The red dashed
line shows the ridge computed in the 10-16 Hz band whereas the solid red
line shows the d(t) function defined in (4). A maximum has been detected
at time t®* and the variation of the coefficients (i.e., the instantaneous
spectrum) at the time ¢ is shown by the solid blue line. From this
spectrum, we extract the average amplitude in two intervals (shown by
dashed boxes comprising respectively the low and the high frequencies) to
obtain a, = mean ‘W‘[A—m b tgﬂax]]/ and

ap = rm—:fan{|W|[20740 He: 17%%) } We further take the maximal amplitude in

the spindle band to obtain a, = max {|W|[wo,5f 16 Hz; 17 }

first PC, this topography picks the larger variability of the mul-
tivariate signal over the analyzed window. Then, the position of
the channel with maximal weight can be considered representa-
tive of the scalp localization of the event centered around ™.
Channel positions are specified as (x,, y,) coordinates in the
10-5 system (Oostenveld and Praamstra, 2001) mapped to a flat
top view of the scalp as specified in the EEG1005.lay montage
file of the FieldTrip software (Oostenveld et al., 2011). Only the
¥n value is used for spindle detection given the observation of
different types of spindles in relation with their anteroposterior
position (Dehghani et al., 2011; Martin et al., 2013; O’Reilly and
Nielsen, 2014b). The feature for localization along the medial axis
is defined as:
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F7
F8

FIGURE 3 | This figure summarizes various aspects of the proposed
methodology. The montage defined by the m vector is illustrated by the
leftward band displaying binary weights including frontal, parietal, and
central channels and excluding the other channels from the mixture.
Below the band, a scalp map shows the topological coverage of this
montage (red dots for included electrodes, pink for excluded). At the
right of the montage band, all available channels are stack in a matrix S.
The mixture signal s'™ is obtained by matrix multiplication of m and S

gm - fF - . 1
e R o
g 7

start gmax rend
tn tn tn

as described in (1). Applying the CWT to s and taking the modulus,
we obtain a time-frequency map )W‘m'} as shown. Using (4) on |W‘m’|,
we compute the d(t) detection function used to determine the times
gstart, ¢max - and o4, 35 is obtained as d (t7'%) and f7"** as f; with
i= argmax |W/(T'.

1<i<Nf

t= trmax

xmed =y, 405 (8)

such that it is normalized to the [0, 1] range.

Threshold computation
Two extra quantities are used to set thresholds needed by the algo-
rithm. Both are derived from information related to the timing
and space location of the spindles given a priori by a gold stan-
dard, typically an expert. The first one is a sleep stage related
feature, %;tage, which value is an integer between 0 and 5 (0: awake;
1: NREM1; 2:NREM2, 3:NREM3; 4:NREM4; 5:REM). This value
is defined on the current sleep stage at the moment of #]'**. The
second feature indicates whether an event occurred during a time
window associated with a spindle also visuallgf identified by an
expert on channels Fz, Cz, or Pz. That is, X5, 7 = 1 if £ is co-
occurring with a spindle labeled on any of these three channels.
Otherwise, a zero value is attributed.

It is worth highlighting that the proposed detection technique
rests on “point” features (i.e., features evaluated at a given point

in time) and not on features computed on time windows. Thus,
the detector set instantaneous markers for sleep spindles without
explicit duration.

SENSITIVITY PHASE

The goal of this phase is to detect as many true spindles as
possible, missing only a small proportion, at the cost of a rel-
atively high amount of false positives. In this sensitivity phase,

we test the null-hypothesis stating that X5sifive — [Scﬁmp chfgm“]

is not associated with a spindle. For this assessment, a sam-
ple of the null-hypothesis, i.e., non-spindle events, is built from
xsensitiveof al] events with ,%¢ = 5. Although, it has been pro-
posed that isolated spindles can occur in REM (Rechtschaffen
and Kales, 1968), this is controversial. In the same line of
thought, sleep spindles could also be present in transition pages
marked as REM but containing some proportion of NREM
sleep. Nevertheless, presence of spindles in pages marked as REM
should be rare and should therefore have little impact on our
statistics.
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Decision thresholds are computed separately for both features.
This implicitly postulate statistical independence, a reasonable
hypothesis given the relatively low correlation reported (about
0.25 according to Huupponen et al., 2007) between these two
features. Two thresholds—t "™ and 7*%"@—are obtained as the
value of ¥ and 8™ at the (1 — «) percentile of the distribu-
tion of the non-spindle events. That is, we compute thresholds
that should fail to reject at most a proportion « of false positives.
As discussed in O’Reilly and Nielsen (2014a), such an approach
sets the expected false detection rate (FDr; complete definition in
Table 1, Section Performance Assessment) to:

ak

FDr = — 9
r P 9

with x being the proportion of false positives in the tested sam-
ple and Py, the proportion of the tested sample not rejected by
this threshold. Although we cannot compute the value for the FDr
because we lack an estimate for k', we can obtain an upper bound
FDr using:

o
Py,

FDr =

(10)

With these thresholds, we can now define a subset X of selected
candidates as:

X = (X} = [x e X ZMP > 0P gpg FiEma > rsigm] (11)

SPECIFICITY PHASE
Previous selection of events is used as input to the specificity
phase which tries to keep only selected candidates corresponding

Table 1 | Definition of performance metrics used in this paper.

Meaure Formula
oy Nrp
Sensitivity (Se) Se= — "
Y ®7 New + Nrp
e Nrv
Specificity (Sp) Sp=—"—
P Nep + Ny
False positive rate (FPr) FP, = L =1-5
Nep + Nrv
False Discovery Rate (FDr) FD, = L
Nep + Nrp
False positive proportion FPp = Nevt Nom
(FPD) FN P
N7p*N7n — Nep*N
Matthew'’s correlation MCC = TP TN PN

coefficient (MCC) (N TP + NFP)(NTP + NFN)
(N7wv + Ngp)(N7y + New)

2N7p
F1 score FF=erivv ———
"7 2N7p + Nep + New
X—(N N7p)N, )
Cohen « o= X (N A+ NrpINe

X — Ng?
X = (N7p + Ngp) (N7p + New)
+ (Nep + N7w) (New + N7w)

with spindles, as identified by an expert. A partition of selected
candidates in homogenous classes of events is performed using
the ascending hierarchical classification (AHC) algorithm (Timm,
2002). This technique starts with every item of X being considered
as a singleton class and iteratively regroups together the two most
similar classes until only one class regrouping all items is left. The
outcome of such a process can be represented as tree graph called
a dendrogram (see Figure 4 for an example). The AHC algorithm
is defined by a metric and a linkage criterion. The former defines
how we assess the distance between two items whereas the lat-
ter do the same for two classes of items. In our case, we used the
Euclidean distance as metric:

dsnm = |3 (440

i

(12)

where the i index iterates over elements of x, and x,, vectors. For
linkage criterion, we used the average distance d (x,, x,;) between
items of two classes A, B € X defined as:

1
LAB = e Do A m)

Xa €Axy€B

(13)

with |A| and |B| standing for the cardinality of classes A and B,
respectively. Figure 4 illustrates the use of the AHC algorithm.

The final clustering is obtained by cutting the dendrogram
at the maximal value of inter-class dissimilarity subject to the
inequality:

Bl _
— =T
4]

(14)
with A and B being respectively the largest and second largest
classes. This criterion tends to favor homogeneity of class sizes.
A value r = 0.6 was chosen in this study because it was found to
be a good tradeoff between accepting only equally sized classes
(i.e., r = 1.0) and allowing much disparate classes such as one big
cluster associated with a very small outlier class (i.e., r = 0.0).
Classes obtained that way are then sorted in descending order
according to their number of expert events (i.e., events scored
as spindles by the expert). For the specific detection, only events
belonging to the first Ny, classes are labeled as spindles, with
Niass being the smallest number of classes grouping at least 80%
of the expert events.

PERFORMANCE ASSESSMENT

For assessing performances, we used a terminology borrowed
from confusion matrices. Four classification outcomes can be
encountered in the dual-class problem considered here: true pos-
itives (TP), false positives (FP), true negatives (TN), and false
negatives (FN). If we consider a variable xffle“e‘i which takes 1
when the nth event is designated as a spindle by the algorithm
and otherwise takes 0, these four cases are obtained as follow:

~expert
" =

TP & xected — 1 A % 1 (15)

~selected ~expert
TN & X =0 A X, =

n

0 (16)
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FIGURE 4 | lllustration of the AHC algorithm. An example of 20 events right most pane shows the resulting dendrogram. The dendrogram is
characterized by the medial position and the frequency (both normalized to  sequentially split into more classes in a top-down fashion, stopping the
the unit range) is shown in the leftward pane. The middle pane shows the  decomposition as soon as we reach two classes since (in this specific
color coded distance matrix corresponding to these 20 events. Finally, the example) both contains 10 samples such that % = % >06=r.

FP & xelected — 1 o 55 — (17)
FN & xclected — g p 30P" — 1 (18)

Counts of each outcome are labeled respectively Nrp, NN, NEp,
and Ngyn and are the constitutive elements of the metrics used to
score our algorithm (see Table 1). Here, we are measuring agree-
ment using a “by-event” approach (Warby et al., 2014) where
an agreement is marked if and only if a specific point (i.e., the
local maximum of the ridge) is within one of the spindle win-
dows scored by the expert. The total number of events N, (i.e.,
N, = N1p + Npp 4+ Npy + N7y) is defined by the segmentation
described in section Wavelet ridge and temporal markers in the
time-frequency plane.

IMPLEMENTATION
The detector has been implemented as a “process” in Brainstorm
(Tadel et al., 2011). The source code is available from the corre-
sponding author.

SAMPLE

We tested our algorithm on polysomnograms recorded in a
hospital-based sleep laboratory from 9 (7 women, 2 men) young
(mean = standard deviation: 22.6 &+ 2.4 years old) and healthy
subjects. Recording was performed at 256 Hz using a Vita-port-
3 System (low-passed at 70 Hz with 1-s time constant) and the
data were recorded using the Columbus software from TEMEC
Instruments (Kerkrade, Netherlands). We used a standard 10-20
EEG sensor grid (C3, C4, Cz, F3, F4, Fz, F7, F8, O1, 02, Oz, P3,
P4, Pz, T3, T4, T5, T6, Fpl, Fp2) with a 10kS2 ear-linked refer-
ence as well as bipolar chin EMG, ECG, and EOG. Sleep stages
were scored by a certified polysomnographer with 15 years of
experience according to modified rules of Rechtschaffen and Kales
(1968) adapted for 20-s epochs. Muscle artifacts were automati-
cally detected (Brunner et al., 1996) and visually confirmed. Sleep

spindles were scored by the same expert on Fz, Cz, and Pz chan-
nels in NREM sleep epochs. Spindle scoring was performed on
raw signals according to the rules of the AASM (Iber et al., 2007).
Sleep stage distribution per subject (Table S1) as well as num-
ber of spindles scored per derivation per subject (Table S2) are
provided as Supplementary Documents.

Every recording was sanctioned by the ethics review board of
the Hopital du Sacré-Coeur de Montréal and participants gave
informed consent.

RESULTS

SENSITIVE DETECTION

Montage selection

We tested six different montages to study their effect on the sen-
sitive detection: m; corresponds to frontal channels Fp1, Fp2, F7,
and F8; m; to occipital channels O1, O2, and Oz; m3 to channels
F3, F4, C3, C4, P3, P4, Fz, Cz, and Pz; my4, ms, and mg to only Fz,
Cz, and Pz, respectively. To avoid biasing toward some of these
selected channels, we used equal weights for every channel of the
montages (i.e., weights equal to 1/Nj where N; equals the number
of channels included in the montage).

Performance of the sensitive detection depends on the capacity
of the chosen montage to discriminate between the sleep spindles
(in red in Figure 5) and the non-spindle events (in black). For
example, the small overlap between these two sets of curves in 13
indicates a good discriminative power. We note that some sim-
pler montages (e.g., montages ms and mg using only Cz and Pz,
respectively) also show similarly good performances. Lower dis-
crimination is obtained using only Fz (m4) or using in general
only frontal and prefrontal () or occipital (#1;) scalp channels.
Results presented subsequently are obtained using ms3.

Performance evaluation
Results from a receiver operating characteristic (ROC) curve
analysis are presented in Figure 6.
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Amplitude (uV)

FIGURE 5 | Density plots with normalized maximal amplitude for the
distribution of sensitive detection features (amplitude and sigma
index) for six different montages. The head drawings show the
topographical coverage of each montage. Feature distributions are plotted

as three separate lines per subject: red for detected spindles
corresponding with expert scoring, black for events scored as spindles by
the algorithm in REM epochs only, and light blue for detected events
during REM and NREM sleep.

Averages and standard deviations (SD) of the performance
statistics are reported in Table 2 for the conditions S, = S, and
a = 0.1, with the second condition focusing slightly more on sen-
sitivity. One should note that this table do not report specificity
since this statistic has little value in evaluating spindle detec-
tors because it systematically takes high values given the small
proportion of positive to negative cases (i.e., spindle vs. non-
spindle) (O’Reilly and Nielsen, 2013). For the same reason, the
reader should be cautious in interpreting the ROC curves in
Figure 6 since only the portion with large specificity is mean-
ingful. Lower specificity are associated with prohibitively high
FDr, something not visible in ROC curve (O’Reilly and Nielsen,
2013).

SPECIFIC DETECTION

Figure 7A shows the proportion of spindles scored by the expert
(green) and the proportion of total events (black) contained
in the four classes produced by the clustering algorithm. These
classes are sorted in decreasing number of expert events. Lines of
lighter color are used for individual subjects while darker lines are
used for the median across subjects. As specified in the Materials
and Methods section, events selected by the specificity phase are
those belonging to the first classes regrouping at least 80% of the
expert events. As can be seen, only one class is required to reach

this criterion. Except for S4, using only one class, we can keep
more than 80% of the expert events while keeping about only
50% of the total number of events initially selected in the pre-
vious sensitivity phase. In Figure 7B, classification performances
obtained with this criterion (white bars) are compared to the per-
formance obtained before the application of this criterion (black
bars).

It should be noted that results of Figure 7 are obtained using all
available expert scoring. This is in average 390 spindles per sub-
ject. We also tested whether the proposed algorithm could be used
with a reduced number of sleep spindles sampled by the expert.
Hence, bootstrapping over 500 repetitions has been performed
using randomly selected subsets of 1, 2, 4, 8, 16, 32, 64, and
128 scored events. Figure 8 shows the differential (partial minus
exhaustive scoring) in sensitivity and specificity. Subject S4 was
excluded from this analysis because the unusual clustering in four
equal size classes for this subject produced unstable results when
using small subsets of expert scorings. As can be seen, the per-
formances are not significantly degraded by partial scoring using
about 16 or 32 spindles visually scored by an expert.

CHARACTERISTICS OF DETECTED SPINDLES
This section compares automatically detected spindles with those
identified by the expert.
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Table 2 | Average + SD value for performance statistics when S, = S,
and when a = 0.1 for the sensitive and the specific phase.

Mesure Sensitive phase Specific phase
Se=5p oa=0.1 oa=0.1
Se 92.1+3.0% 93.2+4.8% 85.4+7.4%
FPr 7.9+2.7% 1M.0+£2.1% 45+1.7%
FDr 89.1+8.3% 93.0+4.2% 86.2+6.1%
FPp 1779.6 £1936.6% 2177.1£2110.3% 730.3+598.9%
McCC 0.284+0.13 0.234+0.08 0.324+0.08
F1 0.194+0.13 0.13+0.07 0.234+0.09
K 0.17+0.13 0.1140.06 0.2240.09

Frequency and medial position

Figure 9 shows the joint distribution of %Zeq and %7¢. The later
value varies between 0.15 (occipital) and 0.9 (pre-frontal). In gen-
eral, distributions of features after the sensitivity phase suggest
two classes of events, although the frontier separating these classes
is blurry and varies from subject to subject. From the literature,

we would expect a fast (higher frequency) centro-parietal (0.35 <
k,TEd < 0.5) class and a slow (lower frequency) frontal (%nmed >
0.5) class. This behavior is observed for subjects S1, S3, S4, and S9,
and to a lesser extent for S5 and S6. In S2 and S8, we do observe
fast and slow classes, but both in centro-parietal region. In S7,
the slow class is located in occipital region (X7 = 0.2) suggest-
ing alpha rhythm contamination. Actually, most spindles scored
by the expert tend to be in the fast centro-parietal class. Spindles
automatically scored after the specificity phase follow this trend
(comparison of results in second and third column of Figure 9).

Average spindle

Figure 10 shows the grand average for spindles scored by the
expert, spindles selected by the sensitive detection, and events
accepted during sensitivity phase but rejected by the specificity
phase. In Figure 104, the joint distribution for the frequency and
the medial position is shown. In Figure 10B, the average signal for
each channel is shown using a 5-s window centered around /'*.
Averages are first computed within subjects and then between
subjects. At each level, signals are time-aligned by maximizing the
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cross-correlation of the central 500 ms of activity in the 10-16 Hz
band. Figure 10C shows the first principal component (i.e., the
component with the highest variability) computed on the central
500 ms window of the between-subjects averaged signal (band-
passed in the 10-16 Hz band with a 5th order Butterworth filter).
Finally, Figure 10D shows the time-frequency plot computed
using the CWT (Morse wavelets with y = 20 and 8 = 20) of the
between-subjects average signal using the montage specified by
the topographic vector of the first principal component (i.e., as
shown in panel C).

Topographies in panel C and joint distributions in panel A
both tend to support the existence of two classes of events with
fast (13-14 Hz) centro-parietal activity and a slow (10-12 Hz)
more diffuse activity generally located in more frontal areas. The
expert visually scored mainly the first class and so did our specific
selection. Spindles are shown to be in phase with a ~1 Hz com-
ponent, reproducing the observations about slow wave/spindle

phase-amplitude coupling previously reported (Molle et al., 2002;
Kokkinos and Kostopoulos, 2011).

Spindles across sleep cycles

Figure 11 shows how the proportion of spindles in each of the
fours first sleep cycles evolves for 1) events selected by the expert,
2) events selected by the specific detection, 3) events rejected
by the specific detection. Sleep cycles were defined according to
Aeschbach and Borbely (1993): one cycle is a sequence of a NREM
period followed by a REM period. The NREM period starts at the
first epoch of NREM sleep and terminates at the first REM epoch.
The REM period terminates only if the next 15 min are free of
REM epochs. At least four cycles were present in every subject.
As can be seen, in both expert scoring and detector expert class,
spindles show a similar trend with an increasing density from the
beginning to the end of the night. The non-expert class shows an
inverse tendency.
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DISCUSSION

The goal of this study was to tackle the problem of high false
detection rates in sleep spindle scoring. The strategy adopted
was to split the problem in two steps, a sensitive detection
(unsupervised) and a specific detection (supervised). In the
following sections, we discuss various aspects of our method
and results.

DETECTION MONTAGE

The approach described in section Montage selection provides
the possibility of compressing a multivariate signal (coming from
different channels) into a univariate signal using a specific mon-
tage. In this study, based on standard definition of spindles
(Rechtschaffen and Kales, 1968; Iber et al., 2007) and on the
current knowledge on spindle topography, we favored a mon-
tage weighting equally frontal (F3, Fz et Fz), central (C3, Cz, C4)
and parietal (P3, Pz, P4) channels and excluding the others. This

montage failed to show a clear superiority compared to mon-
tages using single channels (e.g., Cz or Pz). One should note,
however, that our gold standard (i.e., expert scoring) assessed
spindles only on Fz, Cz, and Pz, a fact that could have con-
tributed in favoring montage using only these channels. Also,
further work is needed to confirm whether an improved detec-
tion can be achieved by tailoring more accurately the montage.
Nonetheless, the approach has interesting applications for future
developments as it provides a great flexibility to apply arbi-
trary montage to EEG signals, as shown for computation of
Figure 10D.

ADAPTIVE SEGMENTATION AND TIME-FREQUENCY REPRESENTATION
In our method, we proposed an adaptive segmentation that split
the whole night in a sequence of contiguous events. This seg-
mentation was performed using the ridge of the continuous
wavelet transform of the time series for the chosen montage.
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position. (B) Average spindle. (C) Topography of the first principal component
obtained through PCA. (D) Time-frequency plane for the average spindle,
using the montage specified by the topography shown in (C).

For simplicity, and because it provides a good tradeoff between
temporal and spectral resolution, the Morse wavelet was used.
Its parameters (y = 20 and S = 10) were chosen using visual
inspection. One should note, however, that g is the most sen-
sitive parameter. Large values tend to over-smooth and reduce
the temporal resolution whereas too small values tend to under-
smooth resulting in appearance of amplitude modulation of the
time-frequency plane at higher frequencies (closer to the spin-
dle band). Higher values for 8 might be adequate in more noisy
environments—such as for EEG signals collected during func-
tional magnetic resonance imaging (fMRI)—to shift the tradeoff

between temporal resolution and noise rejection.

CHARACTERISTICS OF SELECTED SPINDLES

Most spindles scored by the expert were rapid (>13 Hz) and in the
centro-parietal region of the scalp. The usual slow/fast dichotomy
was not observed (see Figure 9). This result could be attributed
to a specific detection bias of this expert and needs to be cor-
roborated by looking at scorings from other expert. Notably,
however, this slow-fast dichotomy has mostly been reported in
studies using automated spindle detections. Since experts score
spindles with enough amplitude to be visually discriminated from
background activity, part of the false positives could also be
false negatives from experts. Also, in post-hoc investigations, we
noted that spindles detected in Fz are simultaneously detected in
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the fast centro-parietal class, which tends to indicate that spin-
dles detected in Fz are observations of the same phenomenon
producing faster and stronger spindles in Cz and Pz.

The coupling observed here and elsewhere (Molle et al., 2002,
2011) between the phase of a slow ~1Hz oscillation and the
amplitude in the spindle band (see Figure 10B) warrants fur-
ther investigation on spindle relationship with other frequency
bands. Aside from slow waves, spindles have also been reported
to be coupled with gamma (30-100 Hz) oscillations (Ayoub et al.,
2012). This kind of features might be useful in increasing speci-
ficity of future detectors.

Spindle distribution across the first four sleep cycles behaved
similarly for the class of spindles selected by the specific detec-
tion and the expert detection (fast spindles occurring in more
posterior locations) and is shown to increase progressively across
the night. This profile agrees with the evolution of the sigma
band (12-14.75 Hz) reported by De Gennaro and Ferrara (2003).
Events not selected at the specificity phase are generally slower
with more anterior localization and have an inverse tendency:
their density decreases across night. De Gennaro and Ferrara
(2003) have reported that the power in the delta band (0.5-
4.75Hz) shows a similar trend, motivating the investigation of
whether events in these classes are coupled with the activity
in this lower frequency band. Also, since spindles have been
detected on all NREM states, a more thorough analysis would
be necessary to disambiguate the role of sleep stages in this
trend.

DEPENDENCE ON EXPERT SCORING

The proposed system is semi-automatic, requiring an expert
for stage scoring and partial spindle annotation. Stage scoring
is a standard operation generally performed before manual or
automatic spindle detection. However, if one does not want
to score whole nights, only some spindle-free epochs (such as
REM epochs) can be scored manually and fed to the algorithm.
Alternatively, automatic sleep scoring algorithms can be used
(Anderer et al., 2005). Although these algorithms do not perform
as well as experts, they should be reasonably accurate to discrim-
inate some classes of spindle-free epochs (wake, REM) vs. epochs
possibly containing spindles (NREM stages).

As for partial spindle scoring, our results suggest that only 20
spindles per subject are sufficient to benefit from the supervised
classification. Thus, the expert scoring burden is relatively small
with this detector. Of course, as for any supervised system, the
scoring will be as biased as the expert. Thus, using expert consen-
sus (Warby et al., 2014) on small number of spindles instead of
single-expert scoring is worth more investigation. Another future
avenue is to automate the clustering using some a priori knowl-
edge instead of expert scoring. To implement this, we could for
example take advantage of the fact that events detected by the
sensitivity phase naturally tend to show two classes plus some out-
liers. Using the k-mean clustering algorithm with k = 2 to extract
the centroid of the two classes and reject outliers that are not close
enough to these centers is likely to give interesting results.

GOLD STANDARD IN SPINDLE SCORING

It should be noted that the performance assessment reported
in this study is limited by the relatively low reproducibility of
our gold standard: expert scoring. With relatively low inter-rater
agreement between expert scorers (around 86% in Campbell
et al., 1980); 61 & 6% and Cohen « of 0.52 4 0.07 (Wendt et al.,
2014); around 0.2 and 0.4 Cohen x in DREAMS and MASS open-
access databases, respectively (O’Reilly and Nielsen, in revision),
development of automated detectors will stay rather limited until
the subjective assessment of spindle by experts is transcended and
supplanted by a more robust, objective, and commonly agreed
upon gold standard (O’Reilly and Nielsen, in revision).

CLUSTERING

The clustering algorithm has shown to be able to dichotomize
sleep spindles in the fast/slow classes reported in the literature for
all but one subject. Topography of spindles is not always stable
across time and the clustering might be sensible to this inho-
mogeneity. The properties of the clustering process will require
more investigation on larger samples to better understand when
it fails, what it indicates, and how it can be corrected. Also,
although both fast and slow classes are generally correctly identi-
fied, the slow class was rejected by our automated system because
our expert ignored tentative spindles from this class. Whether
this behavior is typical in expert scoring is still to be evaluated.
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Similarly, whether some variables (e.g., the expert) impact on the
minimal number of scored spindles needed to obtain a reliable
clustering is still an open question. In our investigation, only a
small number of spindle per subject (about 20) were shown to
be sufficient.

Furthermore, given the somewhat low inter-rater agreement
between experts reported in literature (Wendt et al., 2014), using
an expert consensus measure could present great advantages
(Warby et al., 2014). One should note, however, that such a
strategy would probably bias scoring toward classes with high
amplitude and high signal-to-noise ratio.

CONCLUSION

The principal contribution of this paper is to propose a two-
step methodology to address first the sensitivity and second the
specificity of spindle detection. For this last step, we proposed an
unsupervised clustering using spectral and positional (along the
medial axis) features to take into account the fast-posterior/slow-
anterior spindle dichotomy followed by a supervised class selec-
tion. Some other original contributions proposed in this paper
are: (1) the compression of channel arrays into a univariate sig-
nal using a fixed montage, (2) using the ridge of a time-frequency
map to segment the signal and transform it into a detection func-
tion, and (3) using p-values for setting selection thresholds, based
on a null-hypothesis elaborated from the spindle-free periods
during sleep (e.g., REM).

Acceptable classification results have been obtained with Se =
85.4%, FDr = 86.2%, and MCC = 0.32. Although these results
are similar to those available in literature, a more thorough com-
parison is not reported here since such an analysis would be
unreliable due to the large confounding impact of using differ-
ent expert scorings. For example, MCC has been shown to vary
between 0.25 and 0.55 for a same detector depending on the
database and the expert scoring (O’Reilly and Nielsen, in revi-
sion). Also, the assessment methodology would not be completely
comparable because of the use of a particular segmentation
paradigm impacting on the counts of positive/negative events. A
more thorough assessment performed with comparison against
other standard detection algorithms on an open-access database
(e.g., O'Reilly et al., 2014) is warranted. Such an assessment is
however outside of the scope of the present paper and is a topic
for future investigations.

Nevertheless, it appears that there is room for improvement
since the obtained agreement is below what is expected from
experts. The proposed system might be enhanced by adding spe-
cific features that are known from literature to be associated
with sleep spindles such as circadian and homeostatic influences
(Knoblauch et al., 2003), phase coupling with slow oscillations
(Molle et al., 2002), age (Martin et al., 2013), and so on. A
thorough analysis of whether adding such features can indeed
improve spindle detection would however be necessary since cor-
relations between spindles and these other variables are emerging
when averaging over a large number of events. Thus, they might
prove not to be specific enough to improve detection of single
events and can even have a detrimental impact on automatic
detection, as formalized by the No Free Lunch theorem (Wolpert
and Macready, 1997).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fnhum.
2015.00070/abstract
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