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Empathy is a multifaceted emotional and mental faculty that is often found to be affected
in a great number of psychopathologies, such as schizophrenia, yet it remains very difficult
to measure in an ecological context. The challenge stems partly from the complexity
and fluidity of this social process, but also from its covert nature. One powerful tool to
enhance experimental control over such dynamic social interactions has been the use
of avatars in virtual reality (VR); information about an individual in such an interaction
can be collected through the analysis of his or her neurophysiological and behavioral
responses. We have developed a unique platform, the Empathy-Enhancing Virtual Evolving
Environment (EEVEE), which is built around three main components: (1) different avatars
capable of expressing feelings and emotions at various levels based on the Facial Action
Coding System (FACS); (2) systems for measuring the physiological responses of the
observer (heart and respiration rate, skin conductance, gaze and eye movements, facial
expression); and (3) a multimodal interface linking the avatar’s behavior to the observer’s
neurophysiological response. In this article, we provide a detailed description of the
components of this innovative platform and validation data from the first phases of
development. Our data show that healthy adults can discriminate different negative
emotions, including pain, expressed by avatars at varying intensities. We also provide
evidence that masking part of an avatar’s face (top or bottom half) does not prevent the
detection of different levels of pain. This innovative and flexible platform provides a unique
tool to study and even modulate empathy in a comprehensive and ecological manner in
various populations, notably individuals suffering from neurological or psychiatric disorders.
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INTRODUCTION
Imagine a hospital ward for burned people, where a nurse comes
in to change the dressings of a patient. As she removes the
old dressing, the face of the patient writhes in pain, his body
stiffens and he moans. Yet the nurse seems insensitive to his
pain and continues her work. This fictional scenario illustrates
an extreme situation where healthcare professionals are con-
stantly faced with the pain and suffering of other people, and
yet, healthcare professionals are mostly able to function even in
this highly discomforting environment. Does this imply that they
lack empathy? Surely not, but it suggests that the response that
would typically be observed in non-medical personnel, aversion,
is somewhat reduced. A number of recent studies in cognitive
neuroscience have examined the brain response of people con-
fronted to the pain of others (Jackson et al., 2006; Lamm et al.,
2011; Guo et al., 2013) and suggested that observing pain engages
brain regions that are also involved in processing painful stimuli,
a phenomenon often referred to as “resonance.” Such resonant
patterns have been shown to be altered in medical personnel
(Cheng et al., 2007; Decety et al., 2010), and also in a number

of psychopathologies (Moriguchi et al., 2007; Bird et al., 2010;
Marcoux et al., 2014). While this experience-related change in
brain response (and in physiological responses, e.g., Hein et al.,
2011) can be well-adapted in some contexts, it might also lead in
other circumstances to suboptimal interpersonal interactions. For
instance, medical personnel should remain empathic, by regulat-
ing their own distress without changing their caregiving abilities.
In the context of schizophrenia, a reduction of empathy could
stem from dysfunctions at different cerebral levels, and could
interfere with rehabilitation and therapeutic processes. Thus, hav-
ing tools to better study the physiological correlates of empathy
could lead to new intervention avenues. These examples high-
light the need for an innovative tool, which could benefit from
the growing literature on the cognitive neuroscience of empathy
and the rapid technological advances in both computer animation
and measures of neurophysiological responses.

While empathy was initially designated as an ability to “put
oneself in the place of another,” as a transposition or men-
tal projection (Dilthey, 1833-1911), this view involves a dis-
sociation between the perception of emotion and cognition
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(Descartes, 1649). Most contemporary scholars now agree that
empathy is the product of both cognitive and emotional pro-
cesses, and that the line between the two is indeed difficult to
draw. Empathy is currently defined as “The naturally occurring
subjective experience of similarity between the feelings expressed
by self and others without losing sight of whose feelings belong
to whom” (Decety and Jackson, 2004). The empathy model
on which this work is founded is an extension of previously
described models, based on multiple fields of research which
include developmental, comparative, cognitive and social psy-
chology, as well as psychiatry and neuroscience (Decety and
Jackson, 2004; Decety et al., 2007). This model comprises three
major components: (1) an automatic and emotional compo-
nent referred to as affective sharing (resonance), (2) a deliberate
and controlled cognitive component called perspective-taking, and
(3) a hybrid component with automatic and controlled pro-
cesses, dubbed executive regulation, which modulates the other
components.

One obvious challenge in the study of empathy is that this
mental faculty relies largely on inner emotional and cognitive
processes, which can only be measured indirectly through largely
subjective verbal responses and behavioral measures (Lawrence
et al., 2004). Other measures such as psychophysical responses
(e.g., skin conductance) and changes in brain activity levels and
patterns [e.g., as measured with functional magnetic resonance
imaging (fMRI) or electroencephalography (EEG)] have been
identified as potential markers of the empathic response (Wicker
et al., 2003; Jackson et al., 2005; Marcoux et al., 2013) and have
the advantage of being objective. Studies combining several of
these markers are scarce, yet the convergence of multiple sources
of information seems to be the most promising route to grasp the
full complexity of empathy. Most studies still use relatively simple
visual stimuli and experiments based on a series of independent
short events, in which there is no feedback to the participant.
Participants in these studies observe a situation and are asked to
rate it on different features, but rarely does the situation change
according to the participant’s response. Such a form of interac-
tivity seems essential to the ecological study of empathy (Zaki
and Ochsner, 2012; Achim et al., 2013; Schilbach et al., 2013).
One way to improve this interactive factor in an experimen-
tal setting would be to alter the “other,” i.e., the person with
which one should empathize, in real time to provide feedback.
Research in computer science, through developments in virtual
reality, social gaming and affective computing research, is making
progress toward improved interactivity in experimental settings
(e.g., Vasilakos and Lisetti, 2010; Tsai et al., 2012; de Melo et al.,
2014; Gaffary et al., 2014). Affective computing research aims to
develop software that can better recognize and display emotions.
This type of technology can now be used in combination with the
objective neurophysiological markers of human empathy to pin-
point the most relevant and help study online changes in these
markers during social interactions.

The systematic study of empathy is limited by the fact that
this process may change based on context and on the individ-
uals present in the interaction. Indeed, the literature suggests
that empathic responses are different depending on the nature
of the relationship between the observer and the target (Monin

et al., 2010a,b). Thus, studying empathy systematically requires
flexibility both in the choice of markers and in the level of
experimental control over the context.

The aim of this article is to describe the recent method-
ological progress arising from the development of a uniquely
powerful interactive virtual reality platform for empathy research.
This platform, EEVEE, the Empathy-Enhancing Virtual Evolving
Environment, was developed in order to better understand the
different behavioral and physiological markers of human empa-
thy. EEVEE was designed based on three objectives: (1) to provide
a means to study empathy within an interactive, yet controlled,
social environment, (2) to identify the biomarkers that reflect the
different facets of the empathic response, and ultimately, (3) to
use this technology to train and improve empathy. EEVEE uses
avatars that dynamically respond to the user’s physiological feed-
back through the production of emotional facial expressions. At
this stage of development, EEVEE is geared toward expressions
of pain, as they have been a good model for the study of empa-
thy from a social and cognitive neuroscience perspective (Decety
and Jackson, 2004; Coll et al., 2011; Lamm et al., 2011). The use
of avatars instead of pre-recorded videos of facial expressions has
the advantage of being highly controllable. EEVEE can indepen-
dently change several features of the facial expression, thereby
producing different combinations of expressions of varying (and
measurable) intensity, duration, and context. EEVEE can also
alter these features in real time based on individual responses,
i.e., behavioral, neural and physiological markers. EEVEE has a
modular architecture enabling additional instruments and types
of neurophysiological measures to be added as they become
available.

The first part of this article describes EEVEE and its different
components. Then, a two-stage validation process is described, in
which the properties of different facial expressions of emotions
are demonstrated. A sample experiment follows, showing how
EEVEE can be used to test specific hypotheses regarding pain and
empathy. Finally, we discuss and provide examples of how EEVEE
can be used in real time.

DEVELOPMENT OF EEVEE
EEVEE consists of three main components (see Figure 1): (1) the
production, animation and display of responsive human avatars,
(2) the measure of neurophysiological and motor responses, and
(3) a multimodal interface for setting the parameters of the com-
putational integration and of the interaction between avatar and
participant within a scenario.

PRODUCTION, ANIMATION AND DISPLAY OF RESPONSIVE HUMAN
AVATARS
This component allows the production and animation of high-
resolution avatars to produce distinct sets of emotional expres-
sions based on the Facial Action Coding System (FACS), which
encompasses 45 facial muscle movements and 10 head move-
ments (Ekman et al., 2002; for pain, see Prkachin and Solomon,
2008). Six different avatars (male and female adults) can cur-
rently be selected (see Figure 2). Future versions of EEVEE will
allow users to change the avatar’s gender, age, and ethnicity
independently.
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FIGURE 1 | This figure shows that the EEVEE platform works on the

basis of an iterative loop between the observer and the avatar. The
two protagonists, real and virtual, interact in this paradigm through
expressions of their emotions. EEVEE project allows implementing new
physiological measures functions depending of their relevance and
availability. Currently, EEVEE focuses on Central Nervous System (CNS)
and Autonomic Nervous System (ANS) responses via heart rate Beat per
Minute (BPM), Electrocardiography (ECG), respiration (RESP),
Electro-Dermal Activity (EDA), and Automatic Facial Expression

Recognition (FACS). The sampling frequency depends on the physiological
signal being processed, and varies from 10 Hz (BPM) to 2000 Hz (EEG).
The main markers that are extracted include heart beat acceleration and
deceleration (BPM), RR interval and their standard deviation (ECG),
respiration acceleration, deceleration and apnea (RESP), skin conductance
level and skin conductance response’s amplitude and area under the
curve (EDA), facial action unit intensities (FACS). All of these data are
gathered by a system for physiological measurement (MP150, Biopac
Systems Inc.) and the FaceReader™ software encodes FACS information.

We implemented a methodology for scanning the head of a real
person using a high-resolution 3D scanner (Creaform Gemini™
with the Geomagic Wrap® software). Once scanned, these high-
resolution 3D models are transferred by wrap iterations on a
single basic low polygon model. This model is able to express a
variety of emotions by the use of motion captures (to simulate
natural movements of intermediate idle phases between expres-
sions), and blend shapes. Blend shapes (morph target animations)
are convex combinations of n base vectors and mesh formed
in the same topology. The movements of vertex points in xyz
space generate animations of shapes. In this first stage of devel-
opment, on the basis of the 3D model of a team member head, we
used 3ds Max® 2014 (Autodesk) to recreate a low-polygon mesh
model for real-time 3D use. Based on this, we created a highly
detailed and triangulated model in ZBrush® (Pixologic). This
high-resolution model was then used to generate a projection tex-
ture normal map (Sander et al., 2001), simulating facial detail in
the Unity 3D engine (Unity Technologies). The skin of the avatars
was produced by combining a Microsoft DirectX® 11 Shader
Model 5, using a diffuse texture of 4096 × 4096 pixels based on
RGB 173.100.68, and texture normal map of 4096 × 4096 pixels
integrating wrinkles to the expressions. A third 4096 × 4096 map

contains full texture in each RGB channel: three textures refer
to levels of specular, glossiness and depth sub surface scattering
(SSS) defining skin translucence. EEVEE display support includes
tessellations with displacement map and Phong smoothing, dif-
fuse scattering with separate weighted normal, Fresnel specular
reflectance, translucency, rim lighting and real time shadows from
two light sources (see Figure 3). Tessellation simulates a mesh of
a large volume on a low-polygon mesh, which results in the facial
shape of the avatar appearing less angular. Specular reflectance
and translucence simulate various aspects of skin gloss, grain,
depth and light absorption. Based on the modeling of a first
avatar generated with blend shapes, five other avatars were cre-
ated with very different physical characteristics, but all having the
same basic triangulation meshes with 5126 triangles. Importantly,
this technique allows the same blend shapes to be used for the
expressions of different avatars, while maintaining their idiosyn-
cratic aspect based on their own morphology. We also used a
skinning face of the basic avatar, on a bone network for the appli-
cation of facial motion captures made with a Vicon Bonita™
B10 system, using a 1.0 megapixel camera at 250 frames per
second. This skinning face allows the use of motion captures com-
bined with changes in vertex blend shapes. The avatars display
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FIGURE 2 | Examples of avatars’ emotional expression of emotions using the Facial Action Coding System principles. Top row (left to right): Fear,
Sadness, Pain, Anger, Joy, Disgust. Middle row: Neutral. Bottom row (left to right): Joy, Disgust, Fear, Anger, Sadness, Pain.

special wrinkles only when expressing emotions. Action units
(AUs) were created by modifying the vertex positions in our
main avatar by a developer with a FACS Coder certification.
These blend shapes were then exported to the Unity 3D engine
to be dynamically used on all avatars. The blend shapes produce
muscular facial movements, based on the muscular movement
anatomy described in the FACS Manual (Ekman and Friesen,
1978), and use dynamic normal maps to generate wrinkles asso-
ciated with the expression of emotions. These wrinkles were cre-
ated in ZBrush® from a 2048 × 2048 pixel normal map texture,
based on Ekman’s FACS. The intensity mapping for maximum
intensity (E) was determined with a top-down approach using
the FACS manual, interpreted for the bone and muscle struc-
ture of the human face used as a model in the original avatar.
Expression levels Neutral to E were linearly distributed between a
completely relaxed state (0%) and maximum expression inten-
sity (100%). The dynamic normal maps display the blending
of each of the two RGBa textures that produces four different
masks.

In this first phase of development, we created two different
environments within EEVEE: a hospital room (see Figure 4) and
a park (see Video 1 in Supplementary Material). These environ-
ments can easily be changed to other settings, depending on the
user’s objectives. They are entirely in 3D, are real-time ready, and
can be displayed through the Unity engine on a variety of screens,
or even in a more immersive display system such as a HMD
(head-mounted display) or a CAVE (computer assisted virtual
environment). A version of EEVEE was developed for the Oculus
Rift™ HMD (Oculus VR), which improves visual immersion, but
also comes with other restrictions, notably for the possibility of
using eye-tracking systems.

PAIN FACIAL ACTIONS UNITS
The flexibility of the emotional expressions in EEVEE is a fun-
damental part of its development. The facial expressions of the
avatars are based on the Facial Action Coding System (FACS;
Ekman and Friesen, 1978), which is based in part on earlier
research by Carl-Herman Hjortsjö on facial imitation (Hjortsjö,
1969). Contractions and relaxations of the different facial mus-
cles create variations that are encoded as Actions Units (AUs). The
FACS describes 46 numbered AUs, each AU corresponding to the
contraction and relaxation of a muscle or muscle group. In the
case of pain for example, several AUs are mobilized: AU4 + (AU6,
AU7) + (AU9, AU10) + AU43 (Prkachin, 1992, 2009; Lucey et al.,
2011a). AU4 corresponds to the brow lowerer, glabellae, depressor
supercilii, corrugator supercilii; AU6 to the cheek raiser, orbicu-
laris oculi (pars orbitalis); AU7 to the lid tightener, orbicularis
oculi (pars palpebralis); AU9 to the nose wrinkler, levator labii
superioris alaeque nasi; AU10 to the upper lip raiser, levator labii
superioris, caput infraorbitalis, AU12 to the lip corner puller,
zygomaticus major; AU25 to lips part, depressor labii inferioris,
or relaxation of mentalis or orbicularis oris; and AU43 to the
eyes closing, relaxation of levator palpebrae superioris. The AUs
can be scored according to their intensity by appending letters
A–E (from minimal to maximal intensity) following this scale:
A’= trace; B = slight; C = marked or pronounced; D = severe or
extreme; E = maximum. Using this system, a face with the FACS
values AU4B + AU6E + AU7D + AU9C + AU10D + AU12D+
AU25E + AU43A, would result in a pain expression. We also use
the units AU51 (head turn left), M60 (head-shake side to side),
and M83 (head upward and to the side), to produce natural head
movements of the avatars (see Figures 2, 5). The timing of the
different AUs is currently the same, but further developments of
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FIGURE 3 | Dynamic normal maps generated for animating avatars using the Facial Action Coding System principles.

the system are expected to introduce variable timing of the dif-
ferent AUs of one emotion, which should help approximate the
natural dynamics of facial expression (Jack et al., 2014), as well as
allowing the study of the impact of changing inter-AU timing.

According to the FACS Manual, wrinkles are often one the first
indication of muscular contractions (Ekman et al., 2002). For
most AUs, wrinkles appear at the B intensity level. In order to
respect this natural dynamic, and in order to avoid the so-called
“Uncanny Valley” (Mori, 1970; Seyama and Nagayama, 2007) due
to cognitive incoherence during observation of emotional expres-
sions (wrinkles produced by the normal map would be seen very
late after users cognitively detected the movements produced by
the vertex blend shapes), blend shapes (BS) and dynamic normal
maps (DNM) were created following this rule: AU-A: 20% BS +
20% DNM; AU-B: 40% BS + 60% DNM; AU-C: 60% BS + 80%
DNM; AU-D: 80% BS + 100% DNM; AU-E: 100% BS + 100%
DNM.

MEASURES OF NEUROPHYSIOLOGICAL AND MOTOR RESPONSES
This component of EEVEE consists of a series of apparatus
that will allow real time measurement of behavioral and physi-
ological responses of the participants. A number of inputs have
already been integrated in EEVEE, and the number and types of
devices can be changed and optimized over time. The current ver-
sion of EEVEE uses an emotional face recognition tool (Noldus
FaceReader™), measures of heart electrical activity, respiration
rate, and skin conductance (MP150, Biopac Systems Inc.), as well
as eye-tracking and pupillometry (Smart Eye Pro, Smart Eye®).

The instant values for 19 of the FACS AUs and aggregated val-
ues for 6 mood expressions detected on the observed face are
acquired using Noldus FaceReader™ with the action units and
external data modules. This information is transmitted by TCP

protocol at 15 Hz. The MP150, Biopac Systems Inc. system is used
to acquire: electrocardiographic activity recorded with 3 AgCl
electrodes with 10% saline gel positioned using Einthowen’s tri-
angle; thoracic dilatation recorded by a stretch mesh strap and
transducer; and skin conductance recorded by 2 AgCl electrodes
with 0.5% isotonic gel positioned on the index and middle fin-
gertips. These three signals are sent by TCP protocol at a 120 Hz
sampling rate, then transformed respectively into heart rate vari-
ability measure (difference between the last R-R interval and its
previous value), respiration rate variability (difference between
the last respiratory cycle duration and its previous value), and gal-
vanic skin response (area under the curve for the last 4 s of a high
pass 0.05 Hz filter of the skin conductance). Smart Eye Pro, Smart
Eye® is used to acquire eye tracking data and pupil diameter for
both eyes at 120 Hz through TCP protocol, with the latter trans-
formed into a pupil diameter variation during the last second. All
the physiological data arrive independently to a dedicated server.

MULTIMODAL INTERFACE AND ONLINE COMPUTATIONAL
INTEGRATION
This component of EEVEE translates the different responses
(behavioral, physiological, neurophysiological) into vectors that
can modulate the motor responses of the avatars (facial expres-
sion, eye/head movements) thereby producing a truly interactive
task. The signal processing, feature extraction and scenario for the
avatars’ responses are configurable through a scenario designer
implemented in a standalone EEVEE application. All of these
parameters are being built into a modifiable, simple, and intu-
itive drag-and-drop interface. It is also possible to program more
complex scenarios, thus enabling a great variety of contexts. The
system is currently designed to project one avatar at a time, but
the projection of two avatars or more will be part of the next
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FIGURE 4 | EEVEE mirroring mode. (A) Raw live video feed, (B) mesh analysis and expression intensity levels from the FaceReader™ software, and
(C) avatar mirroring of the facial expression generated by EEVEE.

FIGURE 5 | Facial expressions of emotions displayed by one of the male avatars used in Experiment 1a. Top row (left to right): Neutral, Joy, Pain,
Sadness. Bottom row (left to right): Neutral, Fear, Disgust, Anger.

development phase. Depending on the interaction mode selected,
the avatar’s animation (facial features and posture) can be pre-
determined or triggered in real time to respond to the observer’s
behavior, posture or physiology. It is also possible to activate a
mirror mode for the avatar: recognizing and imitating the facial

expressions of the user (see description of the modes below; see
Video 1 in the Supplementary Material for a demo of the mir-
ror mode). A dedicated EEVEE server is used to collect, over the
network, all the data acquired through different application pro-
gram interfaces (APIs) and software development kits (SDKs),
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making it possible to display the avatar and collect the physiologi-
cal measures at different sites. The signals are then processed with
mathematical routines to extract their salient features and reduce
their bulk. Such signal processing includes Fourier transforms,
low and high pass filters, smoothing, interpolation, etc.

EEVEE can be used in different modes. In the Offline mode,
the animations for emotional behavior can be set in advance
in the scenario along with its time course and the multiple
cues (responses) from an observer watching the avatar can be
recorded for post-experiment analysis. In the Mirror mode,
EEVEE can be used to reproduce the movements and facial
expressions of the observer (by mimicking the AUs detected).
The Real-time EEVEE mode will use different combinations of
the observer’s responses to guide the avatar’s behavior (facial
expression, posture, eye activity, animation) and create an inter-
active exchange based on information not typically accessible
to people.

VALIDATION OF EEVEE
In order to validate the capacity for EEVEE’s avatars to convey
specific emotional content through facial expressions, two exper-
iments were conducted. A first two-step experiment was run in
which participants had to evaluate the avatars’ expressions. A
second experiment was conducted in order to test whether par-
ticipants could assign the target emotion, in this case pain, to
avatars whose face was partly masked. This latter experiment also
included facial expressions of emotions produced by real actors,
which allowed the comparison of pain detection in humans and
avatars.

EXPERIMENT 1: VALIDATION OF THE AVATARS’ EXPRESSIONS
General objective
Our first experiment was twofold: Experiment 1a (negative emo-
tion discrimination) consisted in asking healthy adults to dis-
criminate between negative emotions depicted by four different
avatars (2 males; 2 females) displaying dynamic emotional expres-
sions; Experiment 1b (pain level discrimination) consisted in
asking the same group of adults to specifically evaluate pain
intensity in different pain expressions from the same avatars.

Experiment 1a: Negative emotion discrimination
Our goal in Experiment 1a was to determine whether people
could discriminate between four negative emotions (pain, dis-
gust, anger, and fear) depicted by avatars. Pain was the main
emotion of interest, but we used fear, anger and disgust as dis-
tractors with similar negative valence. These other expressions
have the advantage of containing part of the same set of action
units (AUs) as facial expressions of pain, such as nose wrinkler,
upper lip raiser, brow lowerer, and upper lid raiser (Kappesser and
Williams, 2002; Simon et al., 2008; see Table 1).

We expected that the participants would differentiate the
expressions by attributing more intensity to the target emotions.
We also expected that most expressions would lead to the attribu-
tion of more than one emotion, as emotions are less prototypical
than is often believed (see for instance: Du et al., 2014; Roy et al.,
unpublished manuscript).

Methods
Participants. The participants in this study were 19 adults (10
women) recruited through advertisement on the campus of
Université Laval. They were aged between 20 and 32 years (M =
22.6 years; SD = 2.93 years). Exclusion criteria consisted in hav-
ing a neurological or psychiatric disorder, a medical condition
causing pain, working in healthcare or with people suffering
from painful conditions, or having previously participated in
a study on pain expressions. The study was approved by the
Research Ethics Committee of the Institut de réadaptation en
déficience physique de Québec. Written informed consent was
obtained from all participants and they received 10$ for their
participation.

Material/Task. Participants were presented video clips of four
different avatars showing dynamic facial expressions. The clips
displayed the upper body, from the shoulders up, of avatars facing
the camera at a 5–10◦ angle (see Figures 4, 5), dressed neutrally,
without hats or accessories. Each clip lasted 3 s, and displayed
either neutral expressions or one of the following four nega-
tive emotions: pain, disgust, anger and fear. Each emotion was
shown at 5 levels (A, B, C, D, and E of the FACS; Ekman and
Friesen, 1978), and the neutral clip showed no facial contraction
for the whole 3-s clip. In each non-neutral clip, the expression
(AUs levels) linearly increased for 2 s from a relaxed state (neutral
FACS) to reach the target expression level (either A, B, C, D, or
E), which was maintained for 1 s (see examples in Supplementary
Material Videos 2–6).

Procedure. During the experiment, which lasted about 45 min,
participants were gathered in small groups of 1–8 individuals in
the front rows of a classroom and were asked to rate a series of

Table 1 | Action Units (AUs) typically recruited when expressing fear,

anger, disgust and pain, according to the Facial Action Coding

System (FACS).

Action Unit Fear Anger Disgust Pain

Inner brow raiser (AU1) X

Outer brow raiser (AU2) X

Brow lowerer (AU4) X X X

Upper lid raiser (AU5) X X

Cheek raiser (AU6) X

Lid tightener (AU7) X X X

Nose wrinkler (AU9) X X

Upper lip raiser (AU10) X

Lip corner depressor (AU15) X

Lower lip depressor (AU16) X

Lip stretcher (AU20) X

Lip tightener (AU23) X

Jaw drop (AU26) X

Eyes closed (AU43) X

*Total AUs 7 4 3 6

*Note that this list is inclusive and that there are individual differences in the

degree to which each AU is involved.
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video clips displayed on a large screen (175 × 175 cm) placed at
the front of the classroom, 3–5 m from the participants. They
were asked to rate each video on answer sheets that provided four
Visual Analogue Scales (VAS) for each video. After a short tutorial
block of 8 trials to familiarize participants with the clip presen-
tation pace and the rating scales, they were presented with four
blocks of 21 trials. Within each block (lasting about 7 min), the
order of presentation was pseudo-randomized (i.e., constrained
to avoid the repetition of three successive clips of the same gen-
der, emotion or level). During each trial, the 3-s clip was repeated
4 times, with an inter-stimulus interval (ISI) of 500 ms. In order
to identify the emotion or set of emotions they thought was
expressed in each clip, participants were instructed to rate the
intensity of each of four emotions displayed by the avatar by mak-
ing small vertical marks on four separate VAS labeled respectively
“Anger,” “Disgust,” “Pain,” and “Fear.” The order of the scales
within subject was kept constant for each item during the experi-
ment. The order was also the same across participants. This order
could have been varied across subjects to avoid potential order
effect from the list, but the clips themselves were randomized and
this is where an order effect would be most probable, if any. Each
VAS was 10 cm long, with anchors labeled 1 (extreme left) and 100
(extreme right). Participants were explicitly instructed to leave
the VAS blank if they thought one emotion was not expressed
in the clip, and leave all VAS blank if they did not detect any of
the four target emotions. For each VAS, the distance from the
left end of the line to the mark made by the participant was
measured in millimeters to provide an intensity score (out of
100), with any blank scale attributed a score of 0. A composite
score of Total Intensity was computed for each item by adding
the four scores provided for this item. An accuracy score was
computed for each item as the ratio of intensity for the target
emotion scale divided by the Total Intensity score for this item.
Additionally, a binary concordance score was computed for each
stimulus by comparing the maximum score on the four scales
and the emotion intended to be expressed by the avatar, indepen-
dently of the FACS expression level, giving a 1 if the scale with
the highest score was the intended target emotion and a 0 in any
other case. The proportion of concordant items for each category
of stimuli (Anger, Disgust, Pain, and Fear) was then computed
using, for each stimulus category, a repeated measures ANOVA on
the 4 VAS scores, taking together all expression levels and using
a Bonferroni correction for the post-hoc comparison of mean
VAS scores.

Results
The four categories of stimuli were scored (0–100) on average
higher on their respective (target) scale (Anger: M = 28.3, SD =
16.5; Disgust: M = 21.9, SD = 10.8; Pain: M = 31.3, SD = 4.3;
Fear: M = 55.0, SD = 4.4) than on the other scales (see Table 2
for scores of each emotion), confirming that the dominant
emotion was correctly detected in the stimulus set. However, sub-
jects often attributed some level of Disgust to both the Anger and
Pain stimuli (respectively M = 25.7 and M = 25.3), showing that
Disgust was the emotion more susceptible to be misread in the
stimulus set. Fear was the least ambiguous emotion; 73% of the
total intensity attributed to fear stimuli loaded on the fear scores,

Table 2 | Mean intensity scores on the 4 VAS for all 4-types of stimuli.

Average score given

Anger Disgust Fear Pain Total

Target stimuli Anger 28.3 25.7 6.9* 9.4* 70.4

Disgust 7.8* 21.9 4.6* 16.7 51.0

Fear 1.3* 6.1* 55.0 12.7* 75.1

Pain 13.6* 25.3 7.5* 31.3 77.6

Stars mark average scores on a VAS significantly different (Bonferroni corrected)

from the targeted Stimulus emotion, grayed on the same line.

while the accuracy scores were 40% for anger, 43% for disgust,
and 40% for pain.

The correlations between the mean ratings of emotions pro-
vided by the participants and the targeted intensity defined as
the percentage of the maximum FACS intensity (A = 20, B =
40, C = 60, D = 80, E = 100) were high and significant for
all emotions (Anger: r = 0.77, p = 0.00005; Disgust: r = 0.88,
p < 00001; Pain: r = 0.85, p < 00001; Fear: r = 0.94, p < 00001).
The total intensity score captured some extra variance not cap-
tured by the specific intensity, as most participants scored each
clip on several emotion scales rather than only one, and some-
times misattributed the dominant emotion. This led to higher
correlations between the total rating scores and the targeted inten-
sity of the facial expression (Anger: r = 0.88, Disgust: r = 0.92,
Pain: r = 0.93, Fear: r = 0.90; all p < 0.00001).

The proportions of concordant items were very different across
the four emotions, ranging from 45 to 100% (Anger: 55%,
Disgust: 65%, Fear: 100%, Pain: 45%), suggesting that fear stimuli
were all unequivocal, while over half of the Pain stimuli elicited
another emotion (Disgust) more intensely than Pain. Overall,
Fear was the clearest facial expression, being always detected when
present and rarely detected when other facial expressions were
displayed. In contrast, Disgust was the most confused emotion
overall and it was the emotion most often incorrectly attributed to
the Pain clips. Conversely, Pain was the emotion most frequently
incorrectly attributed to the Disgust clips. This implies that, for
experiments in which it is important to discriminate pain from
other emotions, some additional tuning of the avatars will be nec-
essary. As only one AU is common to these two emotions (see
Table 1), a detailed analysis of the time-course and intensity of
this AU is warranted. Moreover, one potential source of ambi-
guity between emotions could be related to the linearity applied
to each emotion. It might be the case that the differential timing
between AUs is essential for some emotions but not others.

Experiment 1b: pain level discrimination
In Experiment 1b, our goal was to establish the relative accuracy
of the levels of pain expression as modeled from levels of the Facial
Action Coding System (Ekman et al., 2002).

Methods
After Experiment 1a, participants were asked to complete an
assessment of only the Pain clips. Thus, the same 20 pain clips
(four avatars, five pain levels each) previously presented were
shown again using the same procedure. This time participants
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were asked to rate only the level of pain they detected in each clip,
following the same procedure as in the first part of the experi-
ment, but using only one VAS. This second step in the validation
procedure was undertaken because pain will be the target emo-
tion used by EEVEE in interactive paradigms. First, a correlation
between the mean pain ratings and the target pain intensity was
computed. Then, we entered the Pain evaluations into a mixed-
effects ANOVA with Level (5 pain intensities: A, B, C, D, and E)
and Stimulus Gender (female or male) as within-subject factor,
and Participant Gender (female or male) as between-subject fac-
tor. Post-hoc comparisons were performed with Student’s t-test
with Bonferroni correction, unilateral for Pain Levels tests, and
bilateral for Gender tests.

Results
The Three-Way ANOVA revealed a significant effect of Pain Level
[A: M = 7.4, SD = 8.4; B: M = 23.3, SD = 13.5; C: M = 32.6,
SD = 15.7; D: M = 58.5, SD = 23.4; E: M = 78.3, SD = 19.8;
F(4, 17) = 265.9, p < 0.001], and all 5 levels were statistically dis-
tinct [A vs. B: t(18) = 21.8, p < 0.00001; B vs. C: t(18) = 4.9,
p = 0.0001; C vs. D: t(18) = 17.8, p < 0.00001; D vs. E: t(18) =
8.5, p < 0.00001]. No main effect of Participant Gender on
the pain ratings was observed [female: M = 37.5, SD = 29.1;
male: M = 42.7, SD = 31.7; F(1, 17) = 1.4, p = 0.26]. There was,
however, a significant main effect of Stimulus Gender show-
ing that the pain of male avatars was rated higher than that
of female avatars [female: M = 36.4, SD = 29.5; male: M =
43.5, SD = 31.0; F(1, 17) = 15.3, p < 0.001], but there was no
interaction between Participant Gender and Stimulus Gender
[F(1, 17) = 0.68, n.s.], or between Participant Gender and Pain
Level [F(1, 17) = 1.9, n.s.; see Figure 6].

However, the interaction between Pain Level and Stimulus
Gender was significant [F(4, 17) = 5.1, p = 0.001), showing that
the pain of male avatars was rated significantly higher than that of
female avatars at FACS levels B and D [A: t(18) = 0.08, p = 0.94;

FIGURE 6 | This figure shows the significant interaction between

within-subjects factors Pain Level (5 levels: A, B, C, D, E) and Stimuli

Gender (2 levels: female, male) [F(4, 17) = 5.1, p = 0.001]. Asterisks mark
pain levels for which the male avatar stimuli receive significantly higher pain
evaluation than female avatar stimuli (5 post-hoc tests, unilateral Bonferroni
corrected T -tests α = 0.01).

B: t(18) = 3.39, p = 0.003; C: t(18) = 0.45, p = 0.66; D: t(18) =
3.58, p = 0.002; E: t(18) = 1.98, p = 0.06]. Finally, the interaction
between Pain Level, Stimulus Gender and Participant Gender was
not significant [F(4, 17) = 0.59, p = 0.57].

Discussion of Experiment 1
This experiment showed that while pain intensities are correctly
estimated both when pain clips are presented alone (Experiment
1b) and among clips of other emotions (Experiment 1a), partic-
ipants detected on average a mixed set of emotions in all clips.
Although the accuracy of emotion detection was somewhat lower
than anticipated for all emotions other than fear, the ambigu-
ity caused by the Disgust expression is consistent with what has
been reported in the literature about this emotion when expressed
either by humans or avatars (Noël et al., 2006; Dyck et al., 2008;
Sacharin et al., 2012; Roy et al., 2013; Roy et al., unpublished
manuscript). The difference between emotion detections could
be related to the timing of the different action units as much as
the distinct AUs. This will need further investigation for which
the platform will be most useful. The study design, which pro-
posed four rating scales at once, might have contributed to the
attribution of multiple types of emotion to most clips. However,
recent research suggests that human emotions are complex (not
one-dimensional), and this is often reflected in facial expressions.
Someone can be joyfully surprised, for instance, or angrily sur-
prised, and not show exactly the same pattern of AUs (Du et al.,
2014). This suggests that multidimensional evaluation of emo-
tions and facial expressions could be more ecological, and reflects
the fine-grained analysis needed in social interaction situations.
Overall, the validation of the avatars was shown to be rather accu-
rate but not entirely specific, suggesting that the intensities of the
different AUs composing each emotion can be extracted even in
the presence of extra AUs (noise). By introducing different con-
traction levels on different parts of a face, we may be able to
accentuate the facial features that are specific to an emotion over
the features that are common to multiple emotions, and attain
greater specificity in future experiments. Furthermore, we could
use software such as Noldus FaceReader™ to help validate the
avatar expressions and refine them in an iterative fashion.

EXPERIMENT 2
Objective and hypotheses
The specific objective of this second experiment was to evaluate
whether different parts of the face, namely the eyes and the mouth
region, have the same efficacy in communicating pain informa-
tion. We expected that masking part of the facial expressions
would result in observers attributing less intensity to the pain
displayed in both human and avatar models. We also expected
that masking the eyes would result in lower estimates of pain
intensity than masking the mouth region, based on at least one
study suggesting that the eyes communicate mostly the sensory
component of pain while the mouth region is more associated
with its affective component (Kunz et al., 2012).

Methods
Participants
A total of 36 participants (20 women) were enrolled in this
experiment through emails sent to Université Laval students and
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personnel. Their ages ranged from 20 to 35 years old (M =
24.2, SD = 4.3). Exclusion criteria included having a neurolog-
ical or psychiatric disorder, a medical condition causing pain,
working in healthcare or with people suffering from pain, or
having previously been enrolled in a study conducted by a mem-
ber of our laboratory. The study was approved by the Research
Ethics Committee of the Institut de Réadaptation en Déficience
Physique de Québec. Written informed consent was obtained
from all participants, who received a 10$ compensation for their
participation in the study.

Material/Task
Human clips were taken from a validated set (Simon et al., 2008).
Four models (2 males, 2 females) depicting 3 levels of pain inten-
sity (Low, Medium, High) plus a Neutral expression, for a total of
16 different clips. Based on Experiment 1’s results and previous
work by others (e.g., Simon et al., 2008), Low, Medium, and High
pain from the human clips were matched by 4 avatars (2 males,
2 females) depicting equivalent expressions, which corresponded
to FACS levels B, C, and D respectively, plus a Neutral clip. The
minimal and maximal expressions (FACS levels A and E) were
not used, as they are less frequently encountered in real life, not
well represented in this human data set, nor in naturalistic data
sets involving patients (e.g., Lucey et al., 2011b). Thus, the exper-
iment comprised 16 clips for each model type (Avatar, Human).
This set corresponded to the Unmasked condition (see examples
in Supplementary Material Videos 7–10). The Mouth Mask and
Eyes mask conditions were produced by adding a static gray rect-
angle (mask) over the mouth or the eye regions, respectively, to
each clip of the original unmasked set (see Figure 7).

Procedure
The four categories of clips, namely Human-Unmasked (16 clips),
Human-Masked (32 clips: 16 clips with eyes masked, 16 clips with
mouth masked), Avatar-Unmasked (16 clips), Avatar-Masked (32
clips: 16 clips with eyes masked, 16 clips with mouth masked)
were evaluated separately in four different blocks. The block order
was counterbalanced: about half the participants started with the
unmasked blocks (21 out of 36 participants) while the other
half started with the masked blocks. Also, the model type was
counterbalanced across participants, with half of the participants
starting with the human blocks and the other half starting with
the avatar blocks. The order of presentation of the clips within a
block was pseudo-randomized, and constrained by rules to avoid
more than three successive clips of the same of gender, level, or
mask within the same block. In this experiment, each clip was
presented twice in each trial, with a 2-s black screen following
each presentation. As with Experiment 1b, in the non-neutral
clips the pain expression linearly increased in intensity for 2 s
from the relaxed state (FACS neutral) to reach the maximum
expression level (either Low, Medium or High pain), which was
maintained for 1 s. Participants were instructed to rate the level
of pain they detected in the clip, using the same procedure and
pain visual analog scale (VAS) described in Experiment 1b. A
Two-Way ANOVA with Model Order (2 levels: Avatars first or
Humans first) and Mask Order (2 levels: non-masked or masked
blocks first) as within-subjects factors was conducted to rule out

FIGURE 7 | Stimuli used in Experiment 2 showing facial expressions of

pain from one of the male avatars. All stimuli were presented in three
conditions: No Mask (top row), Eyes Mask (middle row), and Mouth Mask
(bottom row).

order effects. A mixed-design ANOVA was conducted to rule out
participant or stimulus gender effects, with Participant Gender
(2) as between-subject factor and Stimulus Gender (2) as within-
subject factor. To rule out possible primacy effects, a mixed design
ANOVA was conducted only on the first block from each par-
ticipant, with Pain Level (Low, Medium, High) as a repeated
measure, and Type order (Avatars or Humans first) and Mask
order (unmasked stimuli or masked stimuli first) as between sub-
jects factors. A mixed-design ANOVA was then conducted using
a Type(2)∗Level(3)∗Mask(3) design to compare the effect of the
three types of masks (No Mask, Eyes Mask, Mouth Mask) on pain
evaluations at low, medium and high pain, in avatars and humans.
For this last ANOVA, post-hoc Student’s t-tests were conducted
to compare pain intensity ratings in the three mask conditions
at each pain level, for both human and avatar models, using a
Bonferroni-corrected threshold of p < 0.0028 (18 tests, p < 0.05
family-wise error), unilateral.

Results
First, an ANOVA on pain evaluations with Mask Order and
Model Order as within subjects factors was conducted, and
showed no effect of Mask Order [F(1, 32) = 0.31, n.s.], Model
Order [F(1, 32) = 0.44, n.s.] or interaction between these 2 fac-
tors [F(1, 32) = 1.1, n.s.]. Then a second ANOVA with Participant
Gender as between subjects factor and Stimulus Gender as
within subject factor showed no effect of Participant Gender
[F(1, 34) = 0.17, n.s.], but a significant effect of Stimulus Gender
[female pain: M = 34.8, SD = 28.4, male pain: M = 38.2, SD =
29.5; F(1, 34) = 56.9, p < 0.001]. No significant interaction was
found between these two factors [F(1, 34) = 0.1, n.s.]. The
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Type∗Level∗Mask ANOVA on the first blocks showed no effect of
Mask Order [F(1, 32) = 0.03, n.s.], Model Order [F(1, 32) = 0.68,
n.s.] or interaction between these 2 factors [F(1, 32) = 0.3, n.s.].

The Type(2)∗Level(3)∗Mask(3) ANOVA yielded a significant
main effect of Pain Level [Low: M = 30.2, SD = 19.3; Medium:
M = 47.6, SD = 20.8; High: M = 63.9, SD = 22.8; F(2, 70) =
380.8, p < 0.00001]. The main effect of Mask was not signifi-
cant [No Mask: M = 46.5, SD = 25.4; Mouth Mask: M = 48.3,
SD = 24.7; Eyes Mask: M = 47.0, SD = 25.2; F(2, 70) = 1.40,
n.s.], nor was the main effect of Model Type [avatars: M =
47.4, SD = 23.5; humans: M = 47.1, SD = 26.7; F(1, 35) = 0.2,
n.s.]. The interaction between Model Type and Pain Level was
marginally significant [F(2, 70) = 3.0, p = 0.073]. The way the
stimuli were masked also interacted significantly with the type
of model [Type∗Mask: F(2, 70) = 8.7, p < 0.001] and the level
of pain presented [Level∗Mask: F(4, 140) = 3.1, p = 0.02]. There
was also a significant three-way interaction [Type∗Level∗Mask:
F(4, 140) = 6.5, p < 0.001).

The effect of masking on pain intensity ratings depended
on both the type of model and the pain level presented (see
Figure 8). Because of the large number of t-tests performed
(18), only significant differences are presented here. For avatars,
intensity ratings for the Low pain level stimuli were signifi-
cantly higher with the Eyes Mask than with the Mouth Mask
[t(35) = 3.28, p = 0.002]. For the Medium pain stimuli, inten-
sity ratings for avatars were lower in the Mouth Mask than in
the No Mask condition [t(35) = 4.43, p = 0.0001]. For human
stimuli, at Low and Medium pain levels, intensity ratings in the
Mouth Mask condition were significantly higher than in the No
Mask condition [Low pain: t(35) = 4.45, p = 0.0001; Medium
pain: t(35) = 3.54, p = 0.001]. At Medium pain, ratings in the
Mouth Mask condition were also significantly higher than in the
Eyes Mask condition [t(35) = 3.37, p = 0.002]. Masking did not
have any significant effect on pain evaluation in the High pain
condition for either avatar or human models. All other compar-
isons were non-significant. Thus, overall, masking the eyes or
mouth region had different effects on human and avatar pain
expressions; the pain evaluation in humans tended to increase
when the mouth was masked, while no clear pattern emerged
in avatars.

Discussion of experiment 2
Based on previous literature, it was expected that masking part
of the facial expressions of pain would reduce intensity ratings
for all stimuli, with eyes masks leading to the lowest evaluations.
However, the main findings from Experiment 2 suggest a different
and more complex pattern, with a significant three-way interac-
tion between Mask, Model Type and Pain Level indicating that
the effect of masking on perceived pain intensity varied accord-
ing to both the type of model (avatar or human) and the level of
pain displayed (low, medium, high). For high pain stimuli, mask-
ing part of the model’s face (either the eyes or the mouth) had no
effect on the participants’ evaluations of pain intensity displayed,
regardless of whether the model was an avatar or a human. For
low and medium pain stimuli, while there was an effect of mask-
ing on perceived pain intensity, it was different for avatars and
humans. For human stimuli, in line with our hypotheses, masking
the mouth region resulted in higher intensity ratings than when
the whole facial expression was perceived. For avatars however,
masking the mouth led to lower perceived intensity compared to
the non-masked presentation for medium pain stimuli, while no
difference was found between these two conditions for low pain
stimuli. Taken together, these results suggest that different facial
areas could convey information best for different levels of pain. In
this study, the eyes appeared to convey more intensity in human,
but not in avatar models.

The differences observed between the two model types are not
completely unexpected, as the facial expressions of the avatars
were not based on the human models that were used in this
study, but were created from the general and analytic principles
of the FACS. Furthermore, the intensity was modified by chang-
ing all AUs equally, which may not be how the intensity of pain
expressions varies in humans. In fact, it is likely that the dif-
ferent AUs involved in a given expression follow different time
courses and that different emotions have different level spans for
each AU, which would guide our attention to the specific aspects
of emotional facial expressions. EEVEE is a valuable tool in the
exploration of how fine-grained changes in facial expressions
and micro-expressions can affect the communication of pain and
other emotions. One caveat to note is that the human stimuli used
in the current study may not be the best standard for natural facial

FIGURE 8 | This figure shows the significant interaction between

within-subject factors Model Type (2 levels: avatars, humans), Pain

Level (3 levels: low pain, medium pain, high pain) and Mask (3

levels: no mask, mouth mask, eyes mask) [F(4, 140) = 6.41,

p = 0.001]. Asterisks mark mask level for which evaluations at this pain
level are significantly different from pain evaluation at other mask levels
(18 post-hoc tests, with unilateral Bonferroni corrected T -tests
α = 0.0028).
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expressions, as they show actors pretending to be in pain. While
these stimuli are well validated, it will also be important to exam-
ine how the avatar stimuli created for EEVEE compare to natural
facial expressions of emotions. While a set of well-validated stim-
uli presenting natural facial expressions of pain is available (Lucey
et al., 2011b), this step may require improved modeling of facial
activity in ecological facial expressions of other emotions. The
finding that pain intensity ratings were significantly higher for
male than for female models will need to be explored further,
because even if this pattern was found in actors (Simon et al.,
2006), it also seems to be inconsistent with some data suggest-
ing that male pain is often underestimated compared to female
pain (Robinson and Wise, 2003).

GENERAL DISCUSSION
The objective of this article was to present the development of
a new VR platform, the Empathy-Enhancing Virtual Evolving
Environment (EEVEE) to study empathy in an interactive envi-
ronment and to foster the interest for collaborative work in this
domain. At this stage of development of EEVEE, we have success-
fully created a novel avatar architecture that can independently
modulate in real time different components of its facial expression
based on the FACS (Ekman et al., 2002). The first series of vali-
dation experiments showed that the avatars can produce distinct
negative emotions that people can correctly identify, including
pain, which is not always part of experimental emotion stim-
uli sets. Moreover, people readily recognized changes in intensity
levels implemented through a nonlinear combination of blend
shapes and animation. Not surprisingly, the more intense the
emotion, the better it was identified. Note that informal debrief-
ing about the avatars also taught us that the use of expression lines
and wrinkles added realism to the avatars. Some refinements are
still required, notably between disgust and other emotions, for
which it will be important to conduct further experiments. Single
emotion experiments can readily be launched with high confi-
dence in the ability of avatars to express a specific emotion. For
instance, the last validation experiment provided sample data on
the detectability of pain faces when part of the face is covered.
The first interesting finding was that the gender of the model
affected pain intensity ratings in that higher ratings were pro-
vided for male than female avatars and actors. Interestingly, this
finding is consistent with brain imaging data showing that male
facial expressions of pain yield more activation in emotion related
circuits (amygdala) than female facial expressions of pain (e.g.,
Simon et al., 2006) and extends it to avatars. The fact that the
male and female avatars were based on the same mesh and used
the same scale to modify the facial expression adds to the argu-
ment that this difference between intensity ratings of FACS-based
expressions cannot be attributed to differences in the intensity of
the expression per se, but rather points to a socio-cultural bias
through which we attribute, for equivalent pain faces, more pain
to male models. The main findings related to the masking pro-
cedure showed that at high pain levels, masking the eyes or the
mouth does not change the accuracy of the evaluation, either
for avatars or for real actors mimicking pain faces. At low and
medium levels of pain the pattern was more complex; for instance
at medium levels of pain, masking the eye area tended to yield

lower pain ratings for avatars, but higher pain ratings for human
faces, compared to the unmasked condition.

Overall, these validation experiments are encouraging and
confirm the potential of EEVEE for a number of experiments
in which the parametric modulation of dynamic facial expres-
sions is essential. Future developments will include refinements
in the avatars’ expressions, the creation of novel avatars (of dif-
ferent age, gender, and ethnic background) and environments.
These improvements will be based on a series of planned experi-
ments, which will target different questions such as the influence
of context (such as hospital room versus office) on the perception
of an avatar’s emotions. EEVEE also offers much more than new
avatars as the platform is now ready to record a number of behav-
ioral and physiological responses of the observer, synchronized
with the expression of the avatars. This allows the deployment
of experiments documenting the different markers that are asso-
ciated with the resonance response when observing emotions in
other people. Ongoing pilot work simultaneously recording heart
rate, respiration rate, skin conductance, facial expressions and
eye movements (via eye-tracking) in participants observing the
emotional avatars will provide a first set of data to explore inter-
individual similarities and differences in the physiological basis of
empathy (Jauniaux et al., 2014, MEDTEQ meeting, Quebec City,
October 2014).

EEVEE IN REAL TIME: PROOF OF CONCEPT
In parallel to the refinement of the avatars, we have also begun
the next development stage of EEVEE, which involves the mod-
ulation in real-time of an avatar’s facial expression based on an
observer’s physiological responses. The current version of EEVEE
can process online data recorded from a participant and modulate
the facial expression of the avatar in response to it (see Video 1 for
an example of changes in the avatar based on a participant’s facial
expression). Such a set-up can be used for instance to train peo-
ple to react more (or less depending on the context) to emotional
facial expressions (see part III in Future Directions).

FUTURE DIRECTIONS
In our laboratory, at least three main research themes are cur-
rently benefiting from the development of this platform: (1) pain
communication and empathy, (2) the study of social cognition
deficits in people with psychiatric and neurological disorders, and
(3) the development of means to optimize empathy.

Pain communication and pain empathy
The added value of EEVEE for research on pain communica-
tion (Hadjistavropoulos et al., 2011) is immense. For instance,
EEVEE will enable the systematic investigation of neurophysi-
ological parameters of pain decoding by making it possible to
manipulate and adapt the model in pain online. This will allow
the identification of the most robust biomarkers of empathy for
pain, and reveal different combinations of markers for different
groups of individuals. EEVEE will also enable changes in the rela-
tionship between the observer and the target in pain by using
specific avatars of known people (spouse, family member, friend,
etc.) or people with a specific role toward the observer (physi-
cian, nurse, psychologist, etc.). We will be able to control several
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important variables by using avatars to compare for instance the
neurophysiological and prosocial responses to seeing one’s spouse
compared to a stranger in pain (Grégoire et al., 2014). Finally,
EEVEE will help the systematic study of inconsistencies between
multiple emotional cues (e.g., voice vs. facial expression) and the
detection of very low levels of expressions found in certain clinical
populations (e.g., premature newborns, people with dementia),
which can have a huge clinical significance.

Social cognition deficits
A second research axis where EEVEE could lead to important
advances is the study of empathy in clinical populations show-
ing empathy deficits, including schizophrenia, autism, personality
disorders and traumatic brain injury. This axis is complementary
to the first as it is based on the same models of empathy and also
uses the pain of others as a model to trigger emotional responses.
Initial studies have led to a number of discoveries, notably that
people with high traits of psychopathy show a greater resonance
response during the observation of pain (but still less empathy)
than people with low traits (Marcoux et al., 2013, 2014), sug-
gesting that they do detect pain in others. EEVEE could help
determine, through controlled social scenarios, which component
of empathy is specifically affected in this population. Research
conducted with people having a first episode of psychosis shows
that they have low to moderate levels of social cognition deficits
on pencil and paper tests, which does not seem to reflect the
full range of social interaction difficulties from which they typ-
ically suffer. EEVEE would help demonstrate more specifically
which neuro-cognitive processes underlie these deficits and how
they impact actual social interactions. EEVEE will provide sev-
eral advantages, such as the possibility to introduce conflicting
information in a controlled manner (for example, the avatar
saying something but displaying an incongruent facial expres-
sion), to modulate affective content in a supervised environment,
and to place participants in varied and complex ecologically-
relevant social situations (such as familiar or less familiar, formal
or informal) to study the full range of human social interactions.

Optimizing empathy
EEVEE can also be used as an intervention tool by exploiting
the changes in a participant’s physiological and neurophysiolog-
ical responses to modify the avatar’s facial expression, as well as
their behavioral and communicative responses, so as to steer the
participant toward an empathic response (a form of bio/neuro-
feedback). For instance, a participant could see the avatar of
his spouse, who suffers from chronic pain, displaying different
levels of facial expressions of pain, which will be modulated
according to a predetermined combination of neurophysiologi-
cal parameters (e.g., gaze directed at the right facial features, skin
conductance showing elevated affective response, etc.). The avatar
would then express relief only when the participant’s responses
are compatible with an empathic state, but not with high levels
of anxiety and distress. Verbal cues can be added periodically to
add reinforcement. The same type of design could also be applied
to parent-child dyads or healthcare professionals and patients.
EEVEE will thus make an excellent platform to train health-
care professionals to detect and manage pain. Other groups have

recently reported encouraging findings using cognitive strategies
with nurses (Drwecki et al., 2011) and computerized training
with physicians (Tulsky et al., 2011). In combination with neuro-
stimulation techniques (see Hétu et al., 2012), EEVEE will allow
for a greater range of behavioral changes, by targeting specific
behaviors and triggering online stimulation to modify the cor-
tical excitability of subjects. A simple design has shown that
transcranial Direct Current Stimulation (tDCS) applied to the
dorsolateral prefrontal cortex can change the way people rate
static pictures of pain (Boggio et al., 2009). A better understand-
ing of this process, with a controlled and ecological interface such
as EEVEE, would allow the systematic investigation of different
stimulation paradigms that can promote certain behaviors and
reduce others. These examples underline the great potential of
EEVEE to lead to personalized training programs complementary
to cognitive approaches.

CONCLUSION
EEVEE was designed as a flexible and powerful tool to study
the different processes underlying human social interaction, with
special emphasis on empathy. While EEVEE will help uncover
the neurophysiological basis of these complex processes, it also
has great potential for the study of human-machine interactions.
Although considerable work has been done in the development
of valid and finely modeled static and dynamic avatar facial
expressions (see for example FACSGen, in Krumhuber et al.,
2012), no freely accessible system, to the best of our knowledge,
has combined physiological measures and facial expressions of
avatars into a dynamic social interactive tool. The addition of
new inputs (e.g., postural analysis and speech recognition) and
outputs (speech production), as well as the implementation of
machine learning algorithms on the large quantity of data that
will be generated, will bring EEVEE to the next level. Already,
EEVEE is a unique platform for studying empathy in a number
of populations suffering from neurological and psychiatric disor-
ders. Currently, the platform allows the production of different
levels of facial expressions of the following emotions for four dif-
ferent avatars (2 males, 2 females): Pain, Anger, Disgust, Fear, Joy,
Surprise, Sadness. These avatars can currently be shared with the
scientific community as separate video clips by contacting the cor-
responding author. Once the complete platform is compiled in an
executable format, it will be made available through the corre-
sponding author’s website. Making this platform available to the
scientific community is a priority for our team as this will propel
its development and the likelihood that it will contribute directly
to improving social interactions in humans, which in turn can
improve the quality of life of many different clinical populations.
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Demo | Video 1 demonstrates the interactions between an avatar in the

EEVEE platform and the FaceReader™ software. The avatar mirrors the

pain action units (AU 6, 7, 9, 10, and 43) of the participant as detected by

FaceReader™. As described in Section Pain Facial Actions Units, the

blendshape’s value increase linearly depending of the FACS’ intensity and

the blendshape’s value is interpolated over time.

Examples of emotions | This video set illustrates the different emotions

used in Experiment 1 (anger, disgust, fear, pain, plus neutral) expressed by

one of the avatars at level D (80% of maximum Action Units intensity):

Video 2 = Anger Level D; Video 3 = Disgust LevelD; Video 4 = Fear

LevelD; Video 5 = Pain LevelD. Video 6 = Neutral.

Pain levels | This video set illustrates different levels of pain (B = 40%,

C = 60%, D = 80% of maximum Action Units intensities) used in

Experiment 2 and expressed by one avatar: Video 7 = Pain LevelB;

Video 8 = Pain LevelC; Video 9 = Pain LevelD; Video 10 = Neutral.
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