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Simple reaction time (SRT), the minimal time needed to respond to a stimulus, is a
basic measure of processing speed. SRTs were first measured by Francis Galton in
the 19th century, who reported visual SRT latencies below 190 ms in young subjects.
However, recent large-scale studies have reported substantially increased SRT latencies
that differ markedly in different laboratories, in part due to timing delays introduced by
the computer hardware and software used for SRT measurement. We developed a
calibrated and temporally precise SRT test to analyze the factors that influence SRT
latencies in a paradigm where visual stimuli were presented to the left or right hemifield
at varying stimulus onset asynchronies (SOAs). Experiment 1 examined a community
sample of 1469 subjects ranging in age from 18 to 65. Mean SRT latencies were short
(231, 213 ms when corrected for hardware delays) and increased significantly with
age (0.55 ms/year), but were unaffected by sex or education. As in previous studies,
SRTs were prolonged at shorter SOAs and were slightly faster for stimuli presented
in the visual field contralateral to the responding hand. Stimulus detection time (SDT)
was estimated by subtracting movement initiation time, measured in a speeded finger
tapping test, from SRTs. SDT latencies averaged 131 ms and were unaffected by age.
Experiment 2 tested 189 subjects ranging in age from 18 to 82 years in a different
laboratory using a larger range of SOAs. Both SRTs and SDTs were slightly prolonged (by
7 ms). SRT latencies increased with age while SDT latencies remained stable. Precise
computer-based measurements of SRT latencies show that processing speed is as fast
in contemporary populations as in the Victorian era, and that age-related increases in
SRT latencies are due primarily to slowed motor output.

Keywords: gender, timing, processing speed, motor, foreperiod, handedness, hemisphere, replication

Introduction

Simple reaction time (SRT) tests, where subjects simply respond as fast as possible to the occur-
rence of a stimulus, are among the most basic measures of processing speed. SRTs were first studied
by Francis Galton in the late 19th century (Johnson et al., 1985). More recent studies have shown
significant correlations between SRT latencies of processing speed and measures of fluid intelli-
gence (Deary et al., 2001; Sheppard and Vernon, 2008). Indeed, Jensen (2011) argued that SRT
latencies provide one of the most objective metrics for comparing processing speed, and hence
fluid intelligence, across different populations.
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In a recent historical meta-analysis, Silverman (2010) found
that SRT latencies have increased substantially since the Victorian
era. For example, in studies performed from 1884 to 1893,
Francis Galton recorded visual SRT latencies that ranged from
181 to 189 ms in subjects ranging in age from 18 to 60 years
(Johnson et al., 1985). These latencies are considerably shorter
than those reported in recent SRT studies (Lowe and Rabbitt,
1998; Deary et al., 2001; Deary and Der, 2005; Der and Deary,
2006). Given the correlation between SRTs and fluid intelligence
(Deary et al., 2001; Bugg et al., 2006), Woodley et al. (2013) con-
cluded that the slowed SRTs in recent studies reflected a system-
atic reduction in processing speed, and hence fluid intelligence,
in contemporary populations.

However, an alternative explanation of the apparent SRT slow-
ing is that the SRT latencies reported in recent studies have
been inflated by hardware and software delays in computer-
based paradigms (Dordonova and Dordonov, 2013). In sup-
port of this argument, contemporary studies using mechanical
SRT measurements (Montare, 2010; Eckner et al., 2011), includ-
ing SRT testing procedures similar to those used by Galton
(Dordonova and Dordonov, 2013), report SRT latencies similar
to those observed in the Victorian era.

This line of reasoning implies that SRT latencies have been
consistently overestimated in computer-based studies performed
over the past several decades. Table 1 provides a summary
of recent large-scale SRT studies: none of the contempo-
rary, computer-based studies reported SRT latencies as short
as those reported by Galton. However, mean SRT latencies
reported in recent studies vary widely (Table 1), ranging from
233 ms (Krieg et al., 2001; Vincent et al., 2012) to nearly 400 ms
(Bugg et al., 2006). These variations suggest that the magnitude
of SRT overestimation may vary as a function of the paradigm
and the computer system used for testing. One possible expla-
nation for these variations is variable timing delays introduced by
computer hardware and software that can increase measured SRT
latencies by up to 100 ms (Neath et al., 2011). Therefore, in the
current experiments, we used carefully calibrated computer hard-
ware and high-precision computer software (see methods) that

provided accurate computer-based SRT latency measurements,
enabling corrections for hardware and software delays.

The improved computer-based paradigm was used to ana-
lyze the effects of factors that have been found to significantly
influence SRTs, including age, sex, and education. Previous
studies have uniformly found significant age-related increases
in SRT latencies (Wilkinson and Allison, 1989; Fozard et al.,
1994; Inui, 1997; Anstey et al., 2005; Commodari and Guarnera,
2008; Deary et al., 2010; Godefroy et al., 2010; Era et al., 2011;
Dykiert et al., 2012a; see Table 1). Increasing age has also
been associated with increases in trial-to-trial SRT variance
(Dykiert et al., 2012a; Bielak et al., 2014). However, the nature of
age-related increases in SRTs remains incompletely understood.
Increasing age could influence SRTs at two possible processing
stages: (1) older subjects could take longer to detect a stimulus,
and (2) older subjects could take longer to produce a response
once a stimulus has been detected. In the current experiments, we
were able to divide the SRT into stimulus detection time (SDT),
the time needed to perceive the stimulus, and movement initia-
tion time (MIT), the time needed to depress the response button,
by subtracting an independent measure of MIT from the SRT of
each subject.

Previous studies have also reported significant SRT differ-
ences between the sexes, with men generally showing shorter-
latency SRTs than women (Krieg et al., 2001; Anstey et al.,
2005; Era et al., 2011; Dykiert et al., 2012b; Vincent et al., 2012),
although these effects are smaller and less consistent than
age effects (Sheppard and Vernon, 2008). In addition, subjects
with increased education generally have shorter-latency SRTs
(Krieg et al., 2001; Anstey et al., 2005), although such effects
are small or absent in some populations (Vincent et al., 2012;
Ritchie et al., 2013).

We also analyzed the effects of two stimulus variables; pre-
ceding stimulus onset asynchrony (SOA) and the hemifield
of presentation. When stimuli are presented at varying inter-
vals, SRT latencies are strongly influenced by the preceding
SOA, with shorter-latency SRTs obtained for stimuli delivered
at longer SOAs (Niemi and Naatanen, 1981). Some studies have

TABLE 1 | Studies of age-related changes in visual simple reaction time (SRT).

Study N Age range SRT (ms) SD (ms) IS-SD (ms) CV (%) Age slope SOA No. trials

Krieg et al. (2001) 4,896 20–59 233 96.5 0.34 2–5 s 40 (10)

Bugg et al. (2006) 196 20–89 397 142 32 (0)

Deary and Der (2005) 1,930 16–63 328 90 84 26% 1.70 1–3 s 20 (8)

Deary et al. (2001) 900 55 358 120 91 26% 1–3 s 20 (8)

Deary et al. (2011) box 150 18–80 256 38 50 20% 0.80 1–3 s 20 (8)

Deary et al. (2011) PC 150 18–80 274 49 45 16% 1.00 1–3 s 20 (8)

Dykiert et al. (2012b) 312 18–59 275 41 54 20% 0.50 1–3 s 20 (8)

Reeves et al. (2006) 2,261 17–46 285 67 94 33% 1.10 0.5–1.8 s 25

Vincent et al. (2008) 5,247 18–51 267 74 1.20 1–2 s 40 × 2

Vincent et al. (2012) 107,413 17–65 261 47 0.52 1–2 s 40 × 2

Experiment 1 1,469 18–65 231 27 40 17% 0.55 1–1.8 s 120 (20)

Experiment 2 189 18–82 238 28 53 22% 0.45 1–2 s 100 (20)

N, number of participants; SD, intersubject standard deviation; IS-SD, intrasubject (trial-to-trial) standard deviation; CV, coefficient of variation (IS-SD/SRT); Age-slope,
estimated rate of increase in SRTs in ms/year; SOA, range of stimulus onset asynchrony; No. trials, number of trials, with the number of practice trials in parentheses.
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also suggested that these foreperiod effects are altered in older
subjects (Bherer and Belleville, 2004; Vallesi et al., 2009), while
other studies find similar effects in subjects of different ages
(Greenwood et al., 1993).

Simple reaction time latencies to stimuli presented to the left
and right hemifield also vary: SRTs are slightly faster to stimuli
that are delivered to the visual field contralateral to the hand used
in responding, which directly activates the hemisphere control-
ling motor responses, and therefore avoids the additional delay
associated with callosal transmission (Clarke and Zaidel, 1989;
Bisiacchi et al., 1994; Brizzolara et al., 1994; Chaumillon et al.,
2014). Some studies have also suggested that aging has differential
effects on the two cerebral hemispheres (Berlingeri et al., 2013),
with greater age-related declines in right than left hemisphere
function (Benwell et al., 2014), with some studies reporting
disproportionate age-related SRT latency increases to stim-
uli presented in the left visual field (Robinson and Kertzman,
1990).

We analyzed the effects of age, education, sex, handedness,
SOA, and hemifield of presentation on SRTs in two large-scale,
computer-based experiments incorporating precise timing con-
trol. Experiment 1 examined SRTs in a population sample of
1469 New Zealand adults ranging in age from 18 to 65 years.
Experiment 2 examined an independent sample of 189 California
subjects ranging in age from 18 to 82 years.

Methods: Experiment 1

As shown in Figure 1, subjects responded as rapidly as possible
to stimuli presented to the left or right hemifield by depressing a
response button with the index finger of their dominant hand.
The task was designed to elicit SRTs with short latencies, and
incorporated a number of design features to assure precise SRT
measurement: (1) The response button was a computer gaming
mouse designed for ultrafast responding with minimum force,
displacement, and timing uncertainty; (2) Stimuli were large and
of high luminance and contrast; (3) SRT windowing functions
excluded response latencies less than 110 ms and greater than
1000ms; (4) Twenty practice trials were given to each subject, and
SRTs were gathered from 120 test trials; (5) Computer hardware
and software delays were measured.

Participants
We studied a subset of 1637 community volunteers in Rotorua,
New Zealand, who had participated in a study of the neu-
ropsychological and health effects of environmental exposure
to varying levels of naturally occurring hydrogen sulfide (H2S;
Reed et al., 2014). Because we wanted to compare performance
across several neuropsychological tests, we eliminated 75 subjects
who lacked complete data sets in the finger tapping (Hubel et al.,
2013a), SRT, or choice reaction time (CRT) tests (Woods et al.,
2015). We also eliminated 41 ambidextrous subjects whose fin-
ger tapping data had not been analyzed, 33 subjects who failed to
respond consistently to some types of stimuli in a separate CRT
task, and 19 subjects with unexplained poor accuracy on the SRT
test (the mean SRT hit-rate for these subjects was 65%).

FIGURE 1 | Stimuli and task. Stimuli were high-contrast bulls eyes
presented to the left or right hemifield for a duration of 200 ms at randomized
stimulus onset asynchronies (SOAs) that ranged from 1000 to 1800 ms in five
200 ms steps in Experiment 1, and from 1000 to 2000 ms in five 250 ms
steps in Experiment 2. Stimuli could occur in the visual hemifield ipsilateral
(shown) or contralateral to the responding hand. Subjects responded to all
stimuli as rapidly as possible by depressing the mouse button with the index
finger of their dominant hand (i.e., right-handed subjects depressed the left
mouse button and left headed subjects depressed the right mouse button).

Of the remaining 1469 participants, 40.1% were men, 10.8%
were left-handed by self-report (based on writing hand), and all
were between 18 and 65 years of age (mean age = 46.3 years.
for men, 45.4 years. for women). Participants had an average
U.S. equivalent of 12.6 years of education, including 77.1% who
had secondary school qualification, 48.4% of whom had a qual-
ification beyond secondary school, such as a bachelor’s degree
(12.2%), master’s degree (3.0%), doctorate (1.6%), or other trade,
technical, or professional qualification (31.6%). Most subjects
were of European background (80.0%) or New Zealand Maori
(15.5%), and 78.8% were employed. Institutional Review Board
approvals for study procedures were obtained at the University of
California, Berkeley and from the Northern Ethics Committee in
New Zealand. Prior written informed consent was obtained from
all participants. Subjects wore prescription lenses as required.

Apparatus and Stimuli
Simple reaction times were recorded as part of a 30 min.
cognitive assessment that included four other tests from the
California Cognitive Assessment Battery (CCAB): finger tapping
(Hubel et al., 2013a,b), CRT in a visual feature conjunction task
(Woods et al., 2015), digit span (Woods et al., 2011a,b), and an
adaptive Paced Auditory Serial Addition test. Testing was per-
formed in a quiet room using a PC controlled by Presentation
software (Versions 13 and 14, NeuroBehavioral Systems, Albany,
CA, USA). Participants practiced for 20 trials before the 120
test trials began, and sat 0.7 m from a 17′′ Samsung Syncmaster
LCD monitor, whose refresh rate was 60 Hz. The SRT test and
instructions are available online1.

1www.ebire.org/hcnlab/cognitive-tests/SRT
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Figure 1 shows the stimulus, a black-and-white bull’s eye
subtending 4◦ of visual angle. Stimuli were presented ran-
domly and equiprobably to the left and right hemifield,
3.6◦ from a central fixation cross that remained illuminated.
Because SRT latencies are influenced by stimulus contrast
(Pins and Bonnet, 1996; Ratcliff and Van Dongen, 2011) and
brightness (Ratcliff and Van Dongen, 2011; Parker, 2014), stimuli
were presented on a bright background (40 cd/m2) and were of
high contrast (dark rings were 0.16 cd/m2). Stimulus durations
were fixed at 200 ms. Five different SOAs were used, ranging
randomly from 1000 to 1800 ms in equiprobable, 200 ms steps.
Overall, 24 stimuli were presented at each SOA, half to the left
and half to the right hemifield. SRT testing required ∼4 min.

Timing Calibration: Hardware and Software
Delays
The precision with which reaction times are collected depends
on the computer hardware and software used for measurement
(Plant and Turner, 2009). There are two principal sources of
hardware delay, which aggregately can inflate true SRT values by
up to 100 ms (Neath et al., 2011). First, there is a delay in the
actual appearance of the stimulus after the computer video card
sends the stimulus image to the LCD monitor, which depends
on monitor electronics. We measured the delay for the Samsung
Syncmaster monitor with a photodiode (StimTracker, Cedrus,
San Pedro, CA, USA) and found a mean delay of 11.0 ms
(SD = 0.1 ms). Second, there is a variable delay between the
moment that the response button is depressed and the moment
that the response is registered by the device driver and detected
by the computer software controlling the experiment. For a USB
response device, the delay depends on the device design and the
device driver software that signals the event to the operating
system, and by the frequency with which the stimulus-delivery
software polls the driver to determine if a response has occurred.
While standard mouse drivers may introduce delays of 20 ms or
more before registering a response, software engineers attempt to
minimize such delays when designing mice for computer-gaming
applications by shortening the movement required for button
closure and writing device drivers with high USB sampling rates.
In the current experiment, we used a PC gaming mouse (Razer
Sidewinder, Carlsbad, CA, USA) that required minimal move-
ment (2mm) for button closure and interfaced with a device
driver with a 1.0 kHz USB sampling rate. We measured response
delays by disassembling the mouse and simulating button closure
with an electronic relay. The average response delay was 6.8 ms
(SD = 1.8 ms). Thus, total delays introduced by the video display
and mouse averaged 17.8 ms.

In addition to hardware delays, software interruptions can
introduce unpredictable delays that may increase SRT latencies
and latency variability. The frequency and duration of software
interruptions depends on both the design of the stimulus-delivery
software and the number and type of extraneous software pro-
cesses concurrently running on the computer. If a response
occurs during an interruption (i.e., when the stimulus-delivery
programming has been temporally halted), the occurrence of the
response will nevertheless be captured by the response driver,
but the latency of the response will not be calculated by the

stimulus-delivery program until it returns to execution and sam-
ples the response device. These timing interruptions must be con-
tinuously monitored throughout an experiment to assure timing
precision. Presentation software reports event-time uncertainties
for each event during an experiment by continuously sampling
the 100 kHz programmable clock. When an extraneous software
process interrupts the experiment, there is a corresponding gap
in the otherwise continuous event-timing record, and an event
occurring during the gap will show a corresponding increase in
event-time uncertainty. For example, if a response occurred dur-
ing a software interruption lasting 10 ms, its latency would be
reported as having occurred immediately after the gap, but the
associated event-time uncertainty would be 10+ ms. In the cur-
rent experiment, the PC was configured to minimize extraneous
software interruptions. The analysis of the event-time uncertain-
ties for all (264,566) events that occurred during the experiment
showed that software interruptions had a minimal influence on
measured SRT latencies: the median event-time uncertainty was
0.1 ms, with 99.9% of events showing event-time uncertainties of
less than 1.05 ms.

Data Analysis
A response window of 110–1000 ms was used. Responses outside
this range were categorized as false alarms (FAs). The failure to
respond during the 110–1000 ms interval following a stimulus
was categorized as a miss. Hit rate was defined as the percentage
of stimuli associated with valid responses. For each subject, hit-
rate, false-alarm rate, andmean SRT latency were calculated along
with intrasubject (trial-to-trial) SRT variance.

Statistical Analysis
Participants were classified into seven different 7-year wide age
ranges (e.g., from 18–24 years to 59–65 years). The results
were first analyzed using a multifactor mixed ANOVA with
Age-Group, Sex, SOA, and Hemifield (ipsilateral or contralat-
eral to the preferred responding hand) as independent vari-
ables. Separate ANOVAs were performed for mean SRT, hit rate,
intrasubject SRT SD, and intrasubject coefficient of variation.
Greenhouse-Geisser corrections of degrees of freedom were uni-
formly used in computing p values in order to correct for any
non-spherical covariation within factors or interactions. Effect
sizes are reported as ω2 values. Correlation analysis was also
used to analyze the effects of age, education, sex, and handed-
ness on SRTs, and to develop age-regression functions. When
correlations were significant, a 95% confidence interval range was
calculated with SPSS. Certain pairwise effects were analyzed with
Student’s t-test, using a model that assumes unequal variance in
the different subject groups when appropriate.

Results: Experiment 1

Figure 2 shows Experiment 1 SRT latencies (blue diamonds) as
a function of age, and Table 2 shows the different measures for
each of the seven age groups and for the entire experiment. An
ANOVA for repeatedmeasures showed a significant effect of Age-
Group on SRT [F(6,1462) = 15.52, p < 0.0002, ω2 = 0.06]. SRT
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FIGURE 2 | Simple reaction times (SRTs) as a function of age. From
subjects in Experiment 1 (blue diamonds) and Experiment 2 (open red
squares). Eight subjects from Experiment 1 with mean SRTs above 350 ms
are not shown. The linear trend line is from Experiment 1 data.

latencies were shorter than those seen for the other studies in
Table 1. SRT latencies increased from 217.8 ms (200 ms when
latencies were corrected for hardware delays) in the youngest
subject group, to 239.1 ms (222.3 ms, delay-corrected) in the old-
est subject group. However, the effect size of age was relatively
small: power analysis showed that a 99% probability of detecting
a significant (p < 0.05) effect of age would require 458 subjects.
Age-related slowing occurred throughout the age range, with sig-
nificant (p< 0.05, uncorrected) pairwise differences seen between
Group 1 (G1) and G3–G7, between G2 and G4–G7, between G3
and G5–G7, between G4 and G5–G7, and between G6 and G7.

Table 3 shows the correlation matrix for Experiment 1.
Regression analysis showed significant correlations between age

and SRT latencies [r = 0.24 (range 0.19–0.29), t(1469) = 9.47,
p < 0.0001], which showed an age-slope of 0.55 ms/year.
Intraindividual SRT SDs (mean 40.0 ms) also showed an effect
of Age-Group [F(6,1462) = 4.72, p < 0.03, ω2 = 0.02],
and increased weakly with age [r = 0.11 (range 0.06–17),
t(1469) = 4.24, p < 0.0001]. However, when intrasubject SRT
variance was normalized by each individual’s SRT latency,
the resulting intraindividual coefficient of variation (CV, mean
17.14%) did not change significantly with age [r = 0.04].

Hit-rate (mean 97.1%) was also affected by Age-Group
[F(6,1462) = 16.85, p < 0.0001, ω2 = 0.06], and there was a
significant correlation between age and hit-rate [r = 0.17 (range
0.12–0.22), t(1469) = 6.61, p < 0.0001]. Both effects were due
to reduced hit-rates in the youngest subject group (93.9%) com-
pared to the other groups (mean 97.2%), without significant dif-
ferences between any of the other groups. Hit-rate also correlated
with SRT latency [r = 0.25 (range 0.20–0.30), t(1467) = 9.89,
p < 0.0001]; i.e., slower subjects were slightly more accurate.
Multiple regression showed that both age and hit-rate were inde-
pendently associated with SRT latency [age, t(1466) = 8.27,
p < 0.0001; hit-rate, t(1466) = −8.38, p < 0.0001].

Subjects made an average of 3.87 FAs (3.2% of responses).
The FA distribution was highly skewed (median = 1.71%,
skew = 3.68), with 52.1% of subjects committing fewer than
2% FAs, and 5.7% of subjects producing more than 10% FAs.
There was a strong negative correlation between hit-rate and
FA-rate [r = −0.83, t(1467) = −57.00, p < 0.0001]: i.e., sub-
jects who made more FAs missed more targets. In addition,
increased FA rates were associated with shorter SRT laten-
cies [r = −0.25, t(1467) = −9.89, p < 0.0001] and increased
SRT variance [r = 0.27, t(1467) = 10.74, p < 0.0001]. This
likely reflects the occurrence of occasional anticipatory responses
within the SRT window, producing very short-latency hits that
would both reduce the mean SRT and increase mean SRT vari-
ance. Finally, younger subjects (who had lower hit-rates) made
more FAs, producing a negative correlation between age and
FA-rate [r = −0.14, t(1467) = −5.42, p < 0.0001].

TABLE 2 | Age-related changes in performance.

Age range G1: 18–24 G2: 25–31 G3: 32–38 G4: 39–45 G5: 46–51 G6: 51–58 G7: 59–65 Experiment 1 Experiment 2

N 86 115 201 273 276 272 246 1469 189

Mean age 20.8 28.6 35.5 42.3 48.6 55.0 61.6 45.8 41.0

% male 34% 36% 42% 37% 41% 44% 40% 40% 58%

SRT 217.9 221.0 224.8 227.7 233.6 236.4 239.1 230.8 237.8

SRT SD 19.5 22.8 23.4 26.6 27.2 27.0 28.1 26.8 27.8

IS-SD 39.4 37.2 37.1 39.1 41.4 40.2 43.2 40.0 52.7

CV 18% 17% 16% 17% 18% 17% 18% 17.1% 21.9%

Hit-rate 93.9% 96.7% 97.2% 97.2% 97.6% 97.6% 97.4% 97.1% 97.2%

VF-D 6.76 6.97 7.84 7.63 8.40 8.30 7.16 7.74 10.5

SDT 125.8 131.8 134.0 132.6 133.5 130.2 127.7 131.2 138.3

SOA-D 30.6 25.7 27.0 29.8 27.9 27.3 29.6 28.3 26.9

VF-D, absolute difference in SRTs for stimuli in the left and right visual fields; SDT, stimulus detection time (the difference between SRT and movement initiation time
measured in a finger tapping task); SOA-D, difference in SRTs following short (1000 ms) and long (1800 ms) SOAs. Physical calibration suggests that “true SRTs” are
reduced by 18 ms and SDTs by 11 ms. See Table 1 for descriptions of additional labels.
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TABLE 3 | Correlation matrix for Experiment 1.

Edu SRT Hit-rate AR-SRT CV SDT VF-D SOA-D MIT

Age 0.01 0.24 0.17 0.00 0.04 −0.02 0.03 0.01 0.33

Edu −0.05 0.09 −0.05 −0.06 0.01 −0.06 −0.06 −0.08

SRT 0.25 0.97 0.31 0.71 0.20 0.26 0.25

Hit-rate 0.21 −0.26 0.22 −0.10 −0.08 0.00

AR-SRT 0.31 0.73 0.20 0.27 0.17

CV 0.19 0.19 0.16 0.12

SDT 0.03 0.01 −0.51

VF-D 0.07 0.05

SOA-D 0.05

Given the sample size (N = 1466), correlations exceeding | r | = 0.07 are statistically significant with Bonferroni correction (p < 0.002). MIT, movement initiation time.
AR-SRT, age-regressed SRT latency z-score, using the age-regression function from Experiment 2. See Tables 1 and 2 for descriptions of additional labels.

We examined fatigue effects by comparing SRTs over succes-
sive blocks of 20 trials (e.g., 1–20, 21–40, etc.). SRTs increased
from 228.1 ms in the initial 20-trial block, to 237.2 ms in the final
20-trial block, producing a significant fatigue effect with small
effect size [F(5,8165)= 88.22, p< 0.0001,ω2 = 0.05]. The fatigue
effect did not correlate with age [r = −0.01], or with any other
demographic variable.

Subjects were slightly faster (by 0.61 ms) when responding to
stimuli presented in the visual field contralateral to the respond-
ing hand [F(1,1468) = 5.23, p< 0.05ω2 < 0.01]. This small effect
was not significantly affected by age [r = −0.05, t(1467) = −1.92,
p < 0.06]. The mean difference between SRT latencies to stimuli
presented in the left vs. right visual field was 0.56 ms. This differ-
ence was marginally reduced with age [r = −0.06, t(1467) = 2.30,
p < 0.03]; i.e., this effect was opposite the prediction that older
subjects would show a greater increase in slowing for stimuli
presented to the left visual field. The absolute value of the dif-
ference in SRT latencies to stimuli in the two visual fields was
also small (7.74 ms) and did not vary with age [r = 0.03] or sex
[r = 0.01].

Simple reaction times did not differ significantly betweenmale
and female subjects [F(1,1467)= 2.83, p< 0.10], nor were signifi-
cant sex differences seen in trial-to-trial SRT variance [r = −0.01]
or CVs [r = 0.01]. Education did not significantly influence SRT
latencies [r = −0.05, t(1467) = 1.92, p < 0.06], but was weakly
associated with increases in hit-rate [r = 0.09, t(1467) = 3.46,
p < 0.001], reduced SRT variance [r = −0.07, t(1467) = 2.69,
p< 0.01], and reduced CVs [r = −0.06, t(1467) = 2.30, p< 0.03].
Handedness did not influence SRTs [r = −0.02], SRT variance
[r = −0.04], or SRT CVs [r = −0.03].

Stimulus onset asynchronies had a highly significant effect on
SRTs [F(4,5848) = 1419.79, p < 0.0001, ω2 = 0.49], as shown in
Figure 3. SRTs were prolonged (by roughly 15%) at the shortest
SOA. The SOA effect size was large, and power analysis indi-
cated that a 99% probability of detecting a significant (p < 0.05)
effect of SOA would require only 10 subjects. Age did not alter
SOA effects, with the Age-Group × SOA interaction failing to
reach significance [F(24,5848) = 2.09, p< 0.06]. RT variance also
increased at the shortest SOA [F(4,5848) = 126.47, p < 0.0001,
ω2 = 0.08], again without a significant Age-Group × SOA
interaction.

FIGURE 3 | Mean SRTs as a function of preceding SOA. From
Experiment 1 and Experiment 2. Error bars show 95% confidence intervals. X,
SOA step size (200 ms in Experiment 1 and 250 ms in Experiment 2).

We found a significant correlation [r = 0.25 (range 0.20–0.30),
t(1,1469) = 9.89, p < 0.0001] between SRT latencies mea-
sured in the current experiment and MIT, the time needed to
depress the response button that had been previously measured
in a self-paced finger tapping task conducted on the same day
(Hubel et al., 2013a). SDT latencies, obtained by subtracting MIT
latencies from SRT latencies, averaged 131.2 ms (SD = 30.2 ms).
Figure 4 shows SDT latencies as a function of age. Unlike SRT
latencies, SDT latencies did not increase with age [r = −0.02],
nor did they differ significantly between male and female sub-
jects [r = 0.05]. Finally, comparisons of the correlations of age
with MIT latency and age with SRT latency showed significantly
larger correlations of age with MIT latency [r = 0.33 vs. r = 0.24,
z = 2.65, p < 0.01].
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FIGURE 4 | Stimulus detection time (SDT) as a function of age. SDT
was derived by subtracting the movement initiation time in a speeded finger
tapping test from SRTs. The linear trend line is from Experiment 1 data.

Discussion: Experiment 1

The mean SRT latencies of 231 ms obtained in the current study
were substantially shorter than those reported in most previ-
ous computerized SRT studies (Table 1). When corrected for the
hardware delays associated with the video display and mouse
response (17.8 ms), “true” SRTs in Experiment 1 ranged from
200 ms in the youngest subject group to 222 ms in the old-
est, i.e., 15–30 ms above the SRT latencies reported by Galton
for subjects of similar age (Johnson et al., 1985). However, based
on Galton’s notebooks, Dordonova and Dordonov (2013) argued
that Galton recorded the shortest-latency SRT obtained out of
three independent trials per subject. Assuming a trial-to-trial SRT
variance of 50 ms (see Table 1), Galton’s reported single-trial
SRT latencies would be 35–43 ms below the mean SRT laten-
cies predicted for the same subjects; i.e., the mean SRT latencies
observed in Experiment 1 would be slightly less than the mean
SRT latencies predicted for Galton’s subjects. Therefore, in con-
trast to the suggestions of Woodley et al. (2013), we found no
evidence of slowed processing speed in contemporary popula-
tions.

Simple reaction time SDs were substantially reduced in com-
parison to those of previous studies, ranging from 18% to 55%
of the variances reported in Table 1. Intrasubject (trial-to-trial)
SRT variance was also reduced, ranging from 44% to 69% of the
values reported in previous studies. Within- and between-subject
variance measures were likely reduced by the increased precision
of SRT measurement, as well as by the number of practice trials,
the number of test trials, and the windowing functions used for
SRT measurement.

Aging Effects
Mean SRTs increased with age, with significant differences
seen between most adjacent age groups. The age-regression

slope of 0.55 ms/year fell within the range of SRT/age slopes
reported in previous studies (range 0.34–1.7 ms/year, see
Table 1). In addition, we found that the youngest subject group
made more errors, consistent with suggestions that older sub-
jects are generally more conservative than younger subjects
(Forstmann et al., 2011). However, a multiple regression anal-
ysis indicated that SRTs showed a highly significant influence
of age, even after the influence of hit-rate had been factored
out2.

Stimulus detection times averaged 131 ms and did not change
with age, suggesting that the rate of accumulation of sensory
information (Miller and Ulrich, 2003) was not age-sensitive. The
results are consistent with previous modeling studies which show
that older subjects accumulate sensory information as rapidly
as young subjects, but are delayed in responding (Ratcliff et al.,
2001). Interestingly, SDT latencies (120 ms after correcting
for display delays in the monitor) were similar to the laten-
cies of early cortical components of the visual evoked potential
(Yordanova et al., 2004), which, like SDTs, appear to have sta-
ble latencies across the adult life span (Emmerson-Hanover et al.,
1994).

Other studies have also suggested that aging effects on SRT
latencies are largely the result of slowed motor output. For exam-
ple, previous electrophysiological studies have found age-related
reductions in corticospinal excitability (Levin et al., 2011). In
addition, in an SRT task where subjects were required to lift their
finger and press a target button following the appearance of a
stimulus, Era et al. (2011) found larger age-related changes in the
movement phase than in the detection phase. These results imply
that SRT tasks that place greater demands on motor respond-
ing, for example, by using response buttons that require greater
force or displacement for button closure, may enhance the appar-
ent magnitude of age-related slowing, thus contributing to the
variability of the age-slopes seen in Table 1.

As in previous studies (Deary and Der, 2005; Der and Deary,
2006; Dykiert et al., 2012a), we found significant increases in SRT
variance with age. However, we found no significant age-related
changes in the CV, which remained considerably smaller than
those reported in previous studies, even in our oldest subject
group. One possible explanation is that older subjects require
more training to become familiar with the SRT task. As a result,
brief tests with limited pre-test training may disproportionately
increase variance in older subjects.

SOA and Hemifield Effects
Stimulus onset asynchrony effects did not differ with age, sug-
gesting that temporal expectancy effects are preserved during
normal aging. This finding contrasts with some previous reports
(Bherer and Belleville, 2004; Vallesi et al., 2009), but is consistent
with others (Greenwood et al., 1993).

2Experiment 1 data was gathered as part of a study investigating the health effects
of chronic exposure to low-level H2S (Reed et al., 2014), which revealed small but
significant beneficial effects of H2S, such that persons in the highest two quartiles
of exposure had SRTs that were 1.8 ms faster than persons in the lowest exposure
quartile. Since age was weakly correlated with exposure (r = 0.035), the age regres-
sion reported here may slightly underestimate the effect of age on SRT in non-H2S
exposed populations.

Frontiers in Human Neuroscience | www.frontiersin.org 7 March 2015 | Volume 9 | Article 131

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Woods et al. Simple reaction time

Both visual-field asymmetries and the absolute value of visual
field asymmetries were small and not age-sensitive. SRT latencies
showed only a small reduction (<1 ms) for stimuli presented in
the hemifield contralateral to the responding hand, as reported in
previous studies (Chaumillon et al., 2014). The latency difference
was considerably less than the hypothesized latency (10+ ms)
required for transcallosal transmission (Caminiti et al., 2009).
The small magnitude of the contralateral advantage suggests that
visual SRTs may depend on bilateral visual representations at
cortical or subcortical levels, rather than on unilateral cortical
stimulus processing and transcallosal communication.

Sex Differences
We found no significant differences between male and female
subjects in SRT latencies, SRT variance, CVs, SOA effects,
or hemifield effects. A number of previous large-scale stud-
ies have found longer SRT latencies in female subjects, along
with increased variance and CVs (Fittro et al., 1992; Fozard et al.,
1994; Anstey et al., 2005; Dykiert et al., 2012b; Vincent et al.,
2012). However, other studies have failed to find significant
sex differences (Annett and Annett, 1979; Gottsdanker, 1982;
Der and Deary, 2006).

As with aging effects, sex differences may be sensitive to
response demands, such as the force or distance needed for but-
ton closure. It is well established that the speed of finger tapping
is reduced in female subjects, due primarily to an increase in the
time that the response button is held down (Hubel et al., 2013a).
In a recent study, Era et al. (2011) found larger sex differences
in the movement phase than in the detection phase of reac-
tion time studies. Thus, SRT studies that minimize the difficulty
of button closure may also reduce sex differences. In addition,
sex differences are reportedly reduced with increased familiarity
with the task, and may disappear with more extensive practice
(Reimers and Maylor, 2006).

Experiment 2: A Replication

Previous large-scale SRT studies using apparently similar
paradigms and subjects have widely varying SRT latencies
(Table 1). For example, two studies performed by the same lab-
oratory (Deary et al., 2001, 2011) reported mean SRT latencies
that differed by more than 80 ms. Since the mean SRT latencies
in Experiment 1 were less than the latencies of most previous
studies, a replication of the results in a separate population was
needed to evaluate generalizability. Therefore, in Experiment 2,
we compared the results of Experiment 1 with the results from
a separate population of 189 subjects ranging in age from 18 to
82 years, tested on a different continent.

Methods: Experiment 2

The methods of Experiment 2 were similar to those in
Experiment 1, with two minor modifications. First, SOAs were
increased in steps of 250 ms rather than 200 ms, so that SOAs
ranged from 1000 to 2000 ms in Experiment 2 rather than 1000

to 1800ms, as in Experiment 1. Second, the SRT test included 100
rather than 120 test trials, while the number of practice trials (20)
remained the same.

Participants
We studied 189 subjects in Experiment 2, whose demo-
graphic characteristics are summarized in Table 2. Subjects were
recruited from advertisements in the San Francisco Bay Area on
Craigslist and from pre-existing control populations, and under-
went testing with the entire California Cognitive Assessment
Battery (CCAB)3. Subjects were required to meet the follow-
ing inclusion criteria: (a) fluency in the English language; (b)
no current or prior history of psychiatric illness; (c) no current
substance abuse; (d) no concurrent history of neurologic dis-
ease known to affect cognitive functioning; (e) on a stable dosage
of any required medication; (f) auditory functioning sufficient
to understanding normal conversational speech and visual acu-
ity normal or corrected to 20/40 or better. Subject ethnicities
were 64% Caucasian, 12% African American, 14% Asian, 10%
Hispanic/Latino, 2% Hawaiian/Pacific Islander, 2% American
Indian/Alaskan Native, and 4% “other.”

All subjects signed written consent forms approved by the
institutional review board (IRB) at the Veterans Affairs Northern
California Health Care System (VANCHCS), and were compen-
sated for their participation. Unlike the subjects in Experiment
1, who had been recruited as a community sample with balanced
age distributions, the age distribution of subjects in Experiment
2 was bimodal: 104 subjects were below the age of 35 years,
24 subjects were between the ages of 35 and 59 years, and 61
subjects were between the ages of 60 and 82 years. The sub-
jects were slightly younger, on average, than those in Experiment
1 [t(1656) = 4.70, p < 0.0001], and slightly better educated
[t(1656) = 8.64, p < 0.0001], with an average of 14.6 years
of education. Experiment 2 subjects were predominantly male
(58% vs. 40% in Experiment 1). The 45 subjects over the age of
65 years were particularly well-educated (15.1 years of education).
In order tomake comparisons between the results of Experiments
1 and 2 with different subject age distributions, we used the age-
regression equation from Experiment 1 and calculated z-scores in
both experiments based on Experiment 1 values.

Identical computer hardware and software were used in the
two testing laboratories so that the measured hardware delays
were identical to those in Experiment 1. However, because the
test computer in Experiment 2 was disconnected from the net-
work, timing uncertainties due to operating system interruptions
were reduced compared to those of Experiment 1: median event-
time uncertainties for 62,400 events averaged 0.1 ms (range
0.1–32.0ms), withmore than 99.9% of events showing event-time
uncertainties of less than 0.3 ms.

3The CCAB included the following computerized tests and questionnaires: finger
tapping, simple reaction time, Stroop, digit span forward and backward, phone-
mic and semantic verbal fluency, verbal list learning, spatial span, trail making,
vocabulary, design fluency, the Wechsler Test of Adult Reading (WTAR), visual
feature conjunction, risk and loss avoidance, delay discounting, the Paced Auditory
Serial Addition Task (PASAT), the Cognitive Failures Questionnaire (CFQ), the
Posttraumatic Stress Disorder Checklist (PCL), and a traumatic brain injury (TBI)
questionnaire.
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Results: Experiment 2

The results of Experiment 2 are summarized in Table 2,
and data from Experiment 2 (red squares) are included in
Figures 2, 3, and 4. Mean SRTs averaged 237.8 ms, 7 ms greater
than the mean SRTs of Experiment 1. Applying the age-regression
function from Experiment 1 revealed that the SRTs in Experiment
2 were 9.7 ms above predicted values, producing a small, but
significant difference in age-corrected SRT latencies between the
two experiments [F(1,1656) = 23.24, p < 0.0001, ω2 = 0.01]. In
contrast, hit-rates were virtually identical in the two experiments
(97.1 vs. 97.2%).

The correlation matrix for Experiment 2 is provided in
Table 4. As in Experiment 1, there was a significant correlation
between age and SRTs [r = 0.35 (range 0.21–0.48), t(187) = 5.11,
p < 0.0001], reflecting an age-slope of 0.45 ms/year. There was
also a significant correlation between age and inter-trial SD
[r = 0.33 (range 0.20–0.47), t(187) = 4.78, p < 0.0001]. However,
unlike Experiment 1, there was a significant correlation between
age and the CV [r = 0.27 (range 0.13–0.41), t(187) = 3.84,
p < 0.0002].

As in Experiment 1, education had no significant effect on SRT
latency [r = −0.06, t(185) = −0.82, NS], nor were there signif-
icant effects of education on hit-rate, intrasubject SRT latency
variance, CVs, or SDTs. Similarly, there were no significant sex
differences in SRT latencies, intrasubject SRT variance, CV, or
SDTs. However, there was a significant sex difference in hit-rate
in Experiment 2: female subjects had slightly higher hit rates
than men [r = −0.23 (range −0.09 to −0.37), t(187) = 3.23,
p < 0.002].

Figure 3 shows the effects of preceding SOAs on SRTs.
SOA effects were similar to those seen in Experiment 1
[F(4,752) = 125.22, p < 0.0001, ω2 = 0.40], with SRT latencies
reduced by 26.9 ms at the longest compared to the shortest SOA
(versus 28.3ms in Experiment 1). As in Experiment 1, SOA effects
did not change with age [r = 0.05, t(187) = 0.70, NS].

Subjects were slightly faster to respond to stimuli in the
visual field contralateral to the responding hand [by 2.6 ms,
F(1,188) = 9.36, p < 0.003, ω2 = 0.04]. The average difference
between SRT latencies in the left and right hemifield remained
small (3.1 ms) and was not significantly correlated with age

[r = 0.06, t(187) = 0.82, NS]. The absolute value of intrasubject
differences in SRTs to stimuli in the left and right visual fields
also remained small, although it was slightly larger than the dif-
ferences seen in Experiment 1 [10.5 vs. 7.7 ms, F(1,1656) = 25.59,
p < 0.0001, ω2 = 0.01].

Figure 4 shows SDTs from individual subjects in the two
experiments. SDTs were 7 ms longer in Experiment 2 than
Experiment 1 [F(1,1656) = 8.97, p < 0.003, ω2 < 0.01 ]. As in
Experiment 1, SDT latencies did not change significantly as a
function of age [r = −0.05, NS]. In contrast, MITs increased with
age [r = 0.43 (range 0.30–0.56), t(187) = 6.51, p < 0.0001] and,
as in Experiment 1, showed a greater correlation with age than
SRTs, although the difference in correlation coefficients did not
reach significance [z = 0.91, p < 0.19].

There were several other small but significant differences
between Experiment 1 and Experiment 2. Overall, higher values
were seen in Experiment 2 for intrasubject SRT latency vari-
ance [F(1,1656) = 114.21, p < 0.0001, ω2 = 0.06] and CV
[F(1,1656) = 132.49, p < 0.0001, ω2 = 0.07]. There were also two
salient differences in the correlation matrices of the two exper-
iments. Hit-rate increased with age in Experiment 1 [r = 0.17,
z = 4.68, p < 0.0001], but declined with age in Experiment 2
[r = −0.19, t(187) = 2.65, p < 0.005]. Moreover, hit-rate was
not significantly correlated with SRT latencies in Experiment 2
[r = −0.07, NS], unlike the apparent speed/accuracy trade-off
[r = 0.25] seen in Experiment 1.

Discussion: Experiment 2

Experiment 2 replicated the results of Experiment 1: mean SRTs
differed by only 7ms (230.8 vs. 237.8ms) between the two studies,
and by less than 10ms when SRT latencies were corrected for age.
The population standard deviations (28 vs. 27 ms) were also very
similar in the two studies. The small difference in mean SRTs in
the two experiments likely reflected the slightly increased mean
and dispersion of SOAs in Experiment 2 (Niemi and Naatanen,
1981). Increased SOA dispersion may also have contributed to
the increase in Experiment 2 intrasubject SRT variability and CV,
which may also have been inflated due to the slight reduction in
the number of test trials.

TABLE 4 | Correlation matrix for Experiment 2.

Edu SRT Hit-rate AR-SRT CV SDT D-VF D-SOA MIT

Age 0.16 0.35 −0.19 −0.08 0.27 −0.07 0.05 −0.05 0.43

Edu −0.06 −0.10 −0.13 −0.11 0.01 −0.03 −0.02 −0.06

SRT −0.07 0.91 0.35 0.58 −0.02 0.15 0.31

Hit-rate 0.01 −0.44 0.09 −0.19 0.08 −0.17

AR-SRT 0.25 0.65 0.30 0.18 0.14

CV 0.02 0.12 0.50 0.32

SDT 0.12 −0.04 −0.60

DVF −0.19 −0.07

D-SOA 0.17

Given the sample size (N = 189), correlations exceeding | r | = 0.20 are statistically significant with Bonferroni correction (p < 0.002). See previous tables for descriptions
of additional labels.
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Highly significant age-related SRT slowing was also seen in
both studies, with correlation coefficients of moderate magnitude
[r = 0.24 and r = 0.35] and similar slopes (0.55 ms/year and
0.45 ms/year). In both experiments, SDT latencies did not change
systematically with age. Since the MIT was estimated from a sep-
arate finger tapping task, any changes in the SRT latencies would
be included in the SDT, i.e., the SRT-MIT difference. Therefore,
the SDT would be expected to increase with SOA manipulations
that prolong SRTs (Anstey et al., 2005). In both experiments,
MITs showed greater correlations with age than did SRTs. Other
factors, including sex and education, had minimal effects on per-
formance in either experiment. Finally, the preceding SOA had a
strong influence on SRT latencies in both experiments (effect sizes
of 0.49 and 0.40), with SRTs being prolonged by 28 and 27 ms,
respectively.

Importantly, SRT latencies across the two experiments were
more consistent than in previous large-scale SRT replications,
with the small differences in SRT latencies largely explained
by the change in the range of SOAs. Other experiments,
using apparently similar SRT paradigms and apparatus, have
obtained more disparate results. For example, using a similar
paradigm, Deary and Der (2005) reported mean SRTs of 328 ms,
Deary et al. (2001) reported mean SRTs of 358 ms, Deary et al.
(2011) reported mean SRTs of 256 ms, and Dykiert et al. (2012b)
reported mean SRTs of 275 ms. As seen in Table 1, the mean SRTs
from Deary et al. (2001) were roughly 2.7 SDs above the mean
SRTs collected by Dykiert et al. (2012b). SRT latency replicabil-
ity was better in studies with the ANAM military test battery. In
the largest study, Vincent et al. (2012) reported SRTs of 261 ms,
while Reeves et al. (2006) tested a population with a slightly lower
mean age and reported SRTs of 285 ms; the SRT latency differ-
ences between these two studies, 24 ms, was more than three
times the differences that we observed, and was accompanied by
relatively large differences in both population standard deviations
and age/SRT slopes. In contrast, the differences in SRTs between
Experiment 1 and Experiment 2 were small in both absolute and
age-corrected magnitude, and both experiments produced simi-
lar population SDs and age/SRT slopes. This suggests that the use
of high-precision computer hardware and software can improve
the precision and replicability of SRT latency measures.

General Discussion

Delay-corrected SRT latencies were substantially shorter (213
and 220 ms in Experiments 1 and 2, respectively) than the SRT
latencies reported in other large-scale computer-based studies,
but were similar to the SRT latencies reported both by Galton
(Johnson et al., 1985) and contemporary researchers using non-
computerized measures (Eckner et al., 2011; Montare, 2013).
Thus, unlike Woodley et al. (2013), we found no evidence of
slowed processing speed in the contemporary populations that
we tested.

The origin of the large variations in SRT latencies seen in
recent computerized studies remains obscure. Differences in
computer hardware and software (Plant and Turner, 2009) can,
in some circumstances, add up to 100 ms to mean SRT latency

measurements (Neath et al., 2011), and software interruptions
could also increase latencymeasures and trial-to-trial SRT latency
variability. In addition, visual SRTs are influenced by the SRT
windowing function, the temporal pattern of stimulus delivery,
stimulus luminance and contrast, and by the force and distance
needed to activate the response button. Many of these variables
have not been reported in previous SRT studies, and may have
differed in experiments that used apparently similar methods.

The Effects of Age on SRT Latencies
We found highly significant correlations of moderate magnitude
between age and SRT latencies in both studies. The rate of age-
related SRT slowing that we observed (mean 0.50 ms/year) was
similar to that of Dykiert et al. (2012a), but considerably less than
the slowing observed in other SRT studies (Deary and Der, 2005;
Reeves et al., 2007; Vincent et al., 2008; Deary et al., 2011). We
also found significant age-related increases in SRT variance, and,
in Experiment 2, increases in the CV as well, consistent with
previous reports (Dykiert et al., 2012a).

The nature of aging effects was further clarified by analyzing
SDT latencies, which were not influenced by age in either study.
This suggests that the age-related slowing of SRTs was largely due
to the additional time required by older subjects to depress the
response button, a hypothesis supported by stronger correlations
observed in both studies between age and the MIT than between
age and SRT latencies.

Sex Differences
Sex differences have been found in mean SRTs and intrasub-
ject SRT variability in a number of previous studies (Deary et al.,
2001; Der and Deary, 2006; Dykiert et al., 2012b). In contrast,
we found no sex differences in SRT latencies, nor did we find
significant sex differences in intrasubject reaction time variance
in either experiment. In this regard, Silverman (2006) reviewed
studies of sex differences in SRTs performed throughout the 20th
century. He found that the magnitude of reported sex differ-
ences declined markedly by the late 20th century, and speculated
that reduced sex differences reflected increased opportunities for
female participation in fast-action sports and driving.

Conclusion

When measured with high-precision computer hardware and
software, SRTs were obtained with short latencies (ca. 235 ms)
that were similar across two large subject populations. When cor-
rected for hardware and software delays, SRT latencies in young
subjects were similar to those estimated from Galton’s histori-
cal studies, and provided no evidence of slowed processing speed
in modern populations. SRTs to lateralized stimuli had slightly
shorter latencies when the stimuli were presented in the visual
field contralateral to the responding hand. However, the latency
differences (<3 ms) were smaller than the delays expected from
transcallosal transmission. SRTs increased with age at a rate of
∼0.5 ms/year, but were not significantly influenced by education
or sex. The latency of stimulus detection, estimated from the
difference in SRTs and movement initiation times measured in a
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finger tapping task, was stable across adulthood, suggesting that
the age-related slowing of SRTs primarily reflected slowed motor
output.
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