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This article presents a critical survey of the prevalent usage of the Montreal Battery of
Evaluation of Amusia (MBEA; Peretz et al., 2003) to assess congenital amusia, a neuro-
developmental disorder that has been claimed to be present in 4% of the population
(Kalmus and Fry, 1980). It reviews and discusses the current usage of the MBEA in
relation to cut-off scores, number of used subtests, manner of testing, and employed
statistics, as these vary in the literature. Furthermore, data are presented from a large-
scale experiment with 228 German undergraduate students who were assessed with
the MBEA and a comprehensive questionnaire. This experiment tested the difference
between scores that were obtained in a web-based study (at participants’ homes)
and those obtained under laboratory conditions with a computerized version of the
MBEA. In addition to traditional statistical procedures, the data were evaluated using
Signal Detection Theory (SDT; Green and Swets, 1966), taking into consideration the
individual’s ability to discriminate and their response bias. Results show that using SDT
for scoring instead of proportion correct offers a bias-free and normally distributed
measure of discrimination ability. It is also demonstrated that a diagnosis based on an
average score leads to cases of misdiagnosis. The prevalence of congenital amusia is
shown to depend highly on the statistical criterion that is applied as cut-off score and on
the number of subtests that is considered for the diagnosis. In addition, three different
subtypes of amusics were found in our sample. Lastly, significant differences between
the web-based and the laboratory group were found, giving rise to questions about the
validity of web-based experimentation.

Keywords: Congenital amusia, MBEA, SDT, web-based testing, prevelance

Introduction

Congenital amusia is a perceptual disorder that affects music and speech perception. Congenital
amusics do not suffer from a hearing deficit nor do they have any form of brain lesion (Ayotte
et al., 2002). Rather, the disorder is an innate one and the exact neural underpinnings are still
under investigation. Therefore, no neurological markers can be used to diagnose amusia. Instead,
research has revealed several behavioral markers, such as pitch perception deficits and a pitchmem-
ory deficit. The main tool used to diagnose amusia nowadays is theMontreal Battery of Evaluation
of Amusia (MBEA; Peretz et al., 2003), which was originally developed to confirm acquired amusia
in patients with brain lesions.
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In the present study, we first describe the set-up of the MBEA
and give an overview of its current usage and limitations. Section
“Materials and Methods” presents a large-scale study that com-
pares web-based with laboratory-based usage of the MBEA, and
evaluates the MBEA scores with data on musical performance
additionally obtained with a questionnaire. The results of this
experiment are presented in Section “Results.” A discussion of
the results is given in Section “Discussion.”

The Montreal Battery of Evaluation of
Amusia
The MBEA is a test battery developed with the main objective
of assessing the musical abilities of brain-damaged patients that
suffer from acquired amusia, but is nowadays used to diagnose
congenital amusia. It consists of six subtests, three of which test
melodic organization (scale, contour, and interval subtest), two
test temporal organization (rhythm and meter subtest) and one
tests melodic memory (memory subtest), based on a model of
music processing summarized by Peretz and Coltheart (2003).

All six subtests use a selection of musical phrases that were
specifically composed for this purpose according to the princi-
ples of theWestern tonal system. These phrases are monophonic,
i.e., they consist of a single voice, and they last 3.8–6.4 s (mean of
5.1 s) for all but the metric test, where they are polyphonic and
twice as long (with a mean of 11 s). The procedure is the same
for the first four subtests (scale, contour, interval, and rhythm):
The participants are presented with two practice trials and 31
experimental trials. A trial consists of a target melody and a com-
parison melody (thus a stimulus pair), which are separated by a
2-s silent interval. Each trial is preceded by a warning tone and
followed by a 5-s silent interval. Fifteen trials have comparison
melodies that are identical to the target melody and 15 have com-
parison melodies that are altered in one note with respect to the
target melody: In the scale subtest, the altered melodies violate
the key but keep the overall contour intact; in the contour sub-
test, they violate the contour while keeping the key intact; and
in the interval subtest, key and contour are kept intact but the
pitch interval is violated. For the rhythm subtest, the rhythmic
grouping of the comparison melody is changed by altering the
duration of two adjacent notes. In addition to those 30 trials, each
subtest contains a catch trial to ensure that the participants are
paying attention and not simply guessing. For the catch trial, the
pitch of the comparison melody was changed randomly, so that
there is a clearly noticeable difference between the two melodies.
For the first four subtests, participants are asked whether the two

melodies they hear are the same or different, following an AX
design. The last two subtests (meter and memory) follow a dif-
ferent design. In the meter subtest, 30 two-phrase sequences in
duple or triple meter are used, and the participants have to judge
whether the presented melody is a march or a waltz. The mem-
ory subtest presents again only single melodies, half of which
already occurred in the previous subtests, the other half is new,
and participants have to indicate for each melody whether they
have heard it before during the previous subtests or whether it
is new.

The MBEA was used by Peretz et al. (2003) to test 160 par-
ticipants without known neurological problems, who were not
selected for musical ability. For each participant, the number of
correct responses per subtest and an average score of the six
subtests was calculated. As cut-off scores for congenital amu-
sia, Peretz et al. (2003) propose 2 SD below the mean of the
160 participants, thus an average score below 21.6, or 76.6%, cf.
Table 1.

According to Peretz et al. (2003, p. 65), the MBEA subtests
provide a sensitive measure since less than 20% of the partici-
pants obtain perfect scores for each subtest, and only 3% of the
participants obtained a perfect score for all subtests (see Table 1
row 5), while less than 2% (three participants) had average scores
that were below 2 SD of the mean (Table 1 row 6). These aver-
age scores approximate a normal distribution, though the scores
for the individual subtests display a skew to the right. Peretz et al.
(2003) furthermore state that the MBEA displays test–retest reli-
ability, based on a retest of 28 participants 4 months after initial
testing, though the performance of these participants improved
(p. 66).

Peretz et al. (2003) validated the MBEA with two subtests
(melody and meter) of the Musical Aptitude Profile (MAP;
Gordon, 1965), a test battery widely used in North America to test
musical abilities. These two subtests, which were chosen because
they were closest in content and format to the MBEA, were
administered to 68 subjects. These participants obtained similar
levels of performance for the MBEA and the MAP, and the two
scores positively correlated (r = 0.53, p < 0.01).

Applications and Limitations of the MBEA
Currently most studies investigating congenital amusia utilize
the MBEA, including those performed by researchers who are
not associated with Peretz’ research group (Foxton et al., 2004,
2006; Patel et al., 2005, 2008; Douglas and Bilkey, 2007; Mandell
et al., 2007; McDonald and Stewart, 2007; Loui et al., 2008, 2009,

TABLE 1 | Montreal Battery of Evaluation of Amusia (MBEA) test scores for the six subtests and average score in the study by Peretz et al. (2003, p. 66).

Scale Contour Interval Rhythm Meter Memory Average

Mean correct responses 27 27 26 27 26 27 27

SD 2.3 2.2 2.4 2.1 2.9 2.3 1.6

Cut-off score (mean – 2 SD) 22 22 21 23 20 22 21.6∗

Cut-off in % 73.3 73.3 70 76.7 66.7 73.3 72.2∗

Participants with perfect score (%) 17 9 7 15 14 10 3

Participants below cut off (%) 3 1 1 1 1 1 2

∗Peretz et al. (2003, p. 69) list an average cut-off score of 23 and a cut-off percentage of 78%, which is probably due to a rounding error (see Wise, 2009, p. 115).
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2011; Nguyen et al., 2009; Tillmann et al., 2009, 2011a,b, 2012;
Wise, 2009; Jiang et al., 2010, 2012a,b, 2013; Liu et al., 2010,
2012a,b, 2013; Williamson and Stewart, 2010; Williamson et al.,
2010, 2011, 2012; Omigie and Stewart, 2011; Hamann et al., 2012;
Loui and Schlaug, 2012; Omigie et al., 2012a,b, 2013; Thompson
et al., 2012; Albouy et al., 2013a,b; Launay et al., 2014; Pfeifer and
Hamann, 2014).

The actual application of theMBEA differs in terms of number
of subtests, items, and cut-off scores that are employed, in their
mode of testing (web-based or in the laboratory) with or without
additional questionnaire, in their predictions on the prevalence of
amusia, and in whether they differentiate subtypes of amusia. In
the following subsections, we summarize and discuss the different
usages found in the literature.

Scoring and Subtests
All studies testing congenital amusia calculate a score based on
the sum of correct answers without distinguishing between dif-
ferent types of stimuli or answer categories. They usually also
calculate an average score but include different numbers of sub-
tests.

Isabelle Peretz and her colleagues use all six subtests of the
MBEA (Hyde and Peretz, 2003, 2004; Peretz et al., 2005, 2007,
2008, 2009, 2012; Hyde et al., 2006, 2007, 2011; Moreau et al.,
2009; Hutchins et al., 2010a,b; Nan et al., 2010; Cousineau et al.,
2012; Mignault Goulet et al., 2012; Hutchins and Peretz, 2013;
Moreau et al., 2013; Phillips-Silver et al., 2013) use all six sub-
tests of the MBEA. These studies use the scores by Peretz et al.
(2003) as cut-off score. In the early studies by Ayotte et al.
(2002) and Peretz et al. (2002) a cut-off score of 3 SD below
mean was used. As already pointed out by Wise (2009, p. 43),
it is not clear why this change from 3 to 2 SD was made,
but it resulted in more people being assessed as having amu-
sia.

The research group led by Lauren Stewart and her colleagues
uses only the first four subtests of the MBEA and calculates
the sum of the first three, pitch-based, subtests (McDonald and
Stewart, 2007; Liu et al., 2010, 2012a, 2013; Williamson and
Stewart, 2010; Williamson et al., 2010, 2011, 2012; Omigie and
Stewart, 2011; Omigie et al., 2012a,b, 2013; Thompson et al.,
2012). As cut-off score, they use 65 out of 90 correct answers on
the first three subtests (72% correct).

Several large-scale studies using all six subtests of the MBEA
employ cut-off scores that are based on the means they obtain for
their own participants. Cuddy et al.’s (2005) 100 control partici-
pants (subjects who reported not to be tone deaf) achieved lower
mean correct responses than the control group by Peretz et al.
(2003; 87% compared to 91%). As a result, Cuddy et al. (2005)
set their cut-off scores at 2 SD below the mean of their controls,
thus at 72%, resulting in 3–5% of the participants being diagnosed
as amusic (as opposed to 18% with Peretz et al.’s (2003) cut-off
scores). These scores are much lower than the ones obtained by
Peretz et al. (2003), with the exception of the score for the mem-
ory test, see Table 2 rows 1 and 2 compared to the last two rows.
Wise (2009), who uses 24 test items per subtest instead of 30, also
employs cut-off scores that lie 2 SD below the means of her own
24 controls (participants without self-reported problems in music
perception and performance). These scores were mostly lower
than the ones used by Peretz et al. (2003), cf. Table 2 rows 3 and 4.
In a study on the presence of amusia in native speakers of a tone
language, Nan et al. (2010) tested 117 Mandarin speakers with
no self-declared musical problems. Their cut-off scores are also
given in Table 2 (rows 5 and 6). These percentages are compara-
ble to the ones by Wise’s control participants (though markedly
lower for the meter subtest) and thus also lower than the original
scores proposed by Peretz et al. (2003).

Almost all studies use average cut-off scores to diagnose amu-
sics, i.e., the performance on an individual subtest does not
matter as much, especially when six subtests are used. An exam-
ple for this is the study by Ayotte et al. (2002), where the average
score of every amusic is 3 SD below the mean of the controls, but
when considered on individual subtests, none of the 11 amusics
failed all the subtests and some scored below the cut-off for only
two subtests.

The practice of adding up all correct responses to calcu-
late a score for the MBEA is criticized by Henry and McAuley
(2013), as it might misdiagnose people as amusics who have a
large response bias but normal discriminatory abilities. They pro-
pose the use of Signal Detection Theory (SDT; Green and Swets,
1966; Macmillan and Creelman, 2005), which is a psychophysical
approach to measuring performance that takes into account the
individual’s response bias and their ability to discriminate, both
important considerations for testing a population with a percep-
tual deficit. Henry andMcAuley (2013) compare the performance

TABLE 2 | MBEA cut-off scores for the six subtests and the average score by control subjects in the large-scale studies by Cuddy et al. (2005),
Wise (2009), Nan et al. (2010) and Peretz et al. (2003) (for comparison).

Source Scale Contour Interval Rhythm Meter Memory Average

Cuddy et al. (2005) N = 100 Cut-off scores 20.1 19.4 18.6 20.2 15.1 22.7 21.5

Cut-off (%) 67.0 64.7 62.0 67.3 50.3 75.7 71.7

Wise (2009) N = 24 Cut-off scores 21.5 19.7 19.8 23.2 19.4 20.8 22.4

Cut-off (%) 71.5 65.7 66.1 77.4 64.6 69.3 74.6

Nan et al. (2010) N = 117 Cut-off scores 19.3 20.9 17.7 22.0 16.2 21.5 21.5

Cut-off (%) 64.2 69.6 59.0 73.3 53.9 71.8 71.7

Peretz et al. (2003) N = 160 Cut-off scores 22 22 21 23 20 22 21.6

Cut-off (%) 73.3 73.3 70 76.7 66.7 73.3 72.2

Not all studies provided cut-off scores both in absolute numbers and in percentage, the missing data were calculated by the present authors.
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of participants who completed the standard MBEA with the per-
formance of participants who additionally had to rate how con-
fident they were of their answers. With these confidence scores,
Henry and McAuley (2013) computed SDT scores and found a
potential misclassification of 33%.

A possible misdiagnosis of amusics could be ascribed to a high
rate in Type II error, thereby including individuals with a large
response bias who have otherwise normal perceptual abilities.
This would mean that by using SDT, a more rigorous standard
of diagnosis would be employed, leading to fewer Type II errors.
This consideration is especially important when (re-)assessing
studies that have obtained null results. It seems possible that
these studies included a large group of misdiagnosed individuals,
thereby tainting the results.

Wise (2009) andHenry andMcAuley (2010) point out the neg-
ative skew in the distribution of scores on the individual subtests,
and furthermore that most studies using the MBEA apply para-
metric statistics without testing whether their data are normally
distributed (exceptions are Douglas and Bilkey, 2007; Provost,
2011).

Some studies use MBEA subtests for screening, which could
lead to potentially higher MBEA scores in the later testing; recall
the improved performance by participants who were retested
after 4 months in the study by Peretz et al. (2003, p. 66). Such
a potential learning effect for participants screened with MBEA
subtests hinders the interpretation and cross-study comparison
of reported final scores.

As we could see, there is no agreement on the cut-off scores
and the number of employed subtests. Both vary considerably
across studies which makes cross-study comparisons difficult if
not impossible. In order to employ the MBEA as diagnostic tool,
a standardized usage would be necessary.

Web-based versus Laboratory Testing
In recent years, web-based research has become more and more
common. While the MBEA is mostly conducted in a laboratory,
some studies on congenital amusia employ web-based MBEA
subtests for pretesting, e.g., Lauren Stewart and colleagues, who
use a web-based pretest consisting of the scale and the rhythm
subtest of the MBEA.

Peretz et al. (2008) proposed a web-based amusia test based on
the MBEA. This test consists of three conditions with a total of 72
melodies based on 12 melodies from the MBEA. The task of the
experiment was to spot incongruities that were inserted in these
melodies and not a comparison of two melodies, as in the MBEA.
In one condition, off-beat tones or silences were inserted, thereby
altering the meter of the phrase. In the other two conditions, a
mistuned note or an out-of-key note were inserted, respectively.
Peretz et al. (2008) used the MBEA, on which this test is based,
to validate it by correlating the scores on the MBEA subtests with
scores in these subtests. Similar to the MBEA, the off-beat test
is shown not to be normally distributed. The average score is
described, but not statistically shown, to be normally distributed,
while visual inspection of the provided material also reveals a
skew in the data. They also mention discrepancies between the
two tests: 19% of people diagnosed as amusic would not be
diagnosed as such with the online test.

A discrepancy between web-based results and laboratory
results has often been observed in psychological research. Krantz
and Dalal (2000) comment that this does not demonstrate a lack
of validity of web-based experiments, since most variables seem
not to be influenced by varying environments. However, they also
point out that auditory research is an exception to this observa-
tion as a stable and quiet environment is crucial for the success of
this type of experiment. For the assessment of amusia with a web-
based version of the MBEA, this could mean severe misdiagnoses
of participants.

Use of Additional Questionnaires
In addition to testing with the MBEA, many studies report the
usage of a questionnaire pertaining to information on general
education, music education, language background, and musical
performance such as singing and dancing (Cuddy et al., 2005;
Wise, 2009; Provost, 2011). In most cases where a questionnaire
was used, it is not reported how it is analyzed in relation to the
MBEA results (e.g., Ayotte et al., 2002; Peretz et al., 2007; Liu
et al., 2012b). One of the exceptions is Peretz et al. (2008) with 101
items on demographic and music-related information. However,
only correlations between a small number of questionnaire items
(age, gender, years of education, and music training) and MBEA
test scores are reported.

Questionnaires could in principle provide valuable additional
information in the assessment of amusics with the MBEA, but
in order to evaluate their contribution more studies are required
that systematically analyze the correlation between the questions
used and the MBEA scores.

Prevalence
The MBEA is also used to estimate the prevalence of congeni-
tal amusia in the general population. Most amusia studies state
a prevalence of 4%, referring to Kalmus and Fry (1980) (e.g.
Ayotte et al., 2002; Foxton et al., 2004; Cuddy et al., 2005; Mandell
et al., 2007; Peretz et al., 2007, 2009; Liu et al., 2010, 2012b;
Tillmann et al., 2010; Williamson and Stewart, 2010; Omigie
and Stewart, 2011; Williamson et al., 2012; Omigie et al., 2013).
Kalmus and Fry (1980) introduced the Distorted Tunes Test
(DTT), consisting of 26 well-known tunes to assess congenital
amusia (or tone deafness as they called it). Incorrect notes were
inserted into 17 of these tunes. Kalmus and Fry’s (1980) crite-
rion for the presence of amusia was the inability to detect wrong
notes in at least three out of the 17 incorrect tunes. They tested
604 adults and based on this data they estimated a prevalence
of 4.2%.

Recently, Peretz (2013) stated 2.5% as the prevalence of amu-
sia in the general population, and added that the use of only the
MBEA scale subtest by Provost (2011) resulted in a prevalence
of 3.2%. Provost (2011) used the online study based on Peretz
et al. (2008) described in Section “Web-based versus Laboratory
Testing.” For the 1100 participants who completed the test and
fitted the age and education criteria, scores were considered indi-
vidually and any participant falling below the cut-off score on one
of the three subtests was considered amusic. This yielded a total
of 11.6% amusics, supporting the observation above that on-line
testing yields a higher prevalence of amusia.
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Henry and McAuley (2010, p. 414) point out that the MBEA,
just like other methods to assess the prevalence of disorders
(including dyslexia and dyscalculia), suffers from an arbitrary
cut-off problem and that a cut-off of 2 SD from the mean in nor-
mally distributed values (as claimed for the average score of the
MBEA) would by definition result in a 2.28% expected occur-
rence rate. The same criticism can be applied to the prevalence
proposed by Kalmus and Fry (1980), as their DTT shows the
same arbitrary cut-off score and lack of well-established psycho-
metric properties (Ayotte et al., 2002; Hyde and Peretz, 2004;
Henry andMcAuley, 2010). Henry andMcAuley (2010) therefore
propose to include structured interviews with participants for
predictions on prevalence (see Use of Additional Questionnaires
above).

Subtypes of Amusia
Wise (2009) and Henry and McAuley (2010) criticize the
widespread use of average scores for the MBEA, because this
practice ignores heterogeneous behavior of participants across
the six subtests. In the study by Ayotte et al. (2002) for instance,
only the scale subtest was failed by all congenital amusics (Wise,
2009, p. 43). Wise further reports that for the rhythm and the
meter subtest, half of the participants usually pass and more than
half pass the memory subtest. At the same time, participants have
been reported who only have problems with the rhythm subtest
(Peretz et al., 2003). All this points to the existence of several sub-
types of congenital amusia with a possible dissociation between
pitch- and rhythm-related deficits, as already suggested by Peretz
et al. (2003, p. 70). Some studies using the MBEA introduce the
amusic subtype of beat deafness (Phillips-Silver et al., 2011) or
dysrhythmia (Launay et al., 2014). Phillips-Silver et al. (2011)
report a single case of rhythmic deficits with intact pitch percep-
tion, while Launay et al. (2014) identify three such cases. The
opposite, intact rhythmic perception with impaired pitch per-
ception, has also been reported by Phillips-Silver et al. (2013).
Reports of a subtype with rhythm deficits are less frequent, pos-
sibly due to a low proportion of rhythm-related subtests in the
MBEA. Provost (2011) proposes four different subtypes: pitch-
deaf amusics, pitch-perception amusics, pitch-memory amusics,
and beat-deaf amusics. The latter classification does not include
an amusia type that has both a pitch perception and a rhythm

perception deficit and rather focuses on different pitch abili-
ties.

This overview shows that even though there is large overlap
in the proposed subtypes of amusia, clear-cut definitions for such
subtypes are still missing. Furthermore, we can conclude that it is
advisable to use cut-off scores of single subtests instead of aver-
age scores in order to advance further research on subtypes of
amusia.

Materials and Methods

Participants
Two hundred and eighty first year undergraduate students in
general linguistics at the Heinrich Heine University Düsseldorf
participated in our study. The participants were not pre-
selected for the presence or absence of musical disorders
such as amusia, or specific levels of musical experience. All
participants gave informed written consent to participate in
this study and received course credit for their participa-
tion. All data were collected in accordance with the decla-
ration of Helsinki. The participants took a hearing test and
answered a detailed questionnaire about their linguistic and
musical background (experience with and attitude to music
and dance, in performance and perception). An intelligence
test was not performed as all participants were university stu-
dents and expected to have an average to high level of intelli-
gence.

A total of 52 students were excluded from data analysis. Eight
did not have normal hearing as assessed by pure tone audiom-
etry at 250–8000 Hz. Normal hearing was defined as a mean
hearing level of 20 dB or less in both ears. Forty-five partic-
ipants had a different native language than German. In order
to keep the variance between participants as little as possible,
these participants were excluded as well. Of the remaining 228
participants, 117 completed a web-based version of the MBEA
at home and 111 a computer-implemented version in a sound-
attenuated booth in our laboratory. Participant details can be
found in Table 3. The last row in this Table shows that the two
participant groups did not differ significantly in their characteris-
tics.

TABLE 3 | Descriptive statistics and results of t-tests comparing laboratory and web-based participant characteristics.

Group Age Years of
education

Years of music
education

Handedness Gender

Laboratory Mean 22.7 14.4 5.9 101 right
7 left

3 ambidextrous

90 female
21 male

Range 20–35 12–23 0–12

Web-based Mean 22.0 14.7 6.3 107 right
9 left

1 ambidextrous

99 female
18 male

Range 19–36 12–22 0–17

Total Mean 22.3 14.6 6.1 207 right
16 left

4 ambidextrous

188 female
39 male

t-test means t 1.82 –1.06 –0.82 – –

p 0.71 0.29 0.41 – –

t, test statistic of the independent samples t-test; p, probability value.
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Procedure
All participants completed the MBEA. Half of them completed
a computer-implemented version in a sound-attenuated booth,
where the stimuli were presented over AKG K 601 headphones
using Praat (Boersma and Weenink, 2011) on a Windows XP
computer. These participants could adjust the volume to a com-
fortable level and had unlimited time. The other half completed a
web-based version of the MBEA. This group was informed before
the experiment that they should use headphones and take the
test in a quiet environment without any distractions. The on-
screen instructions for both groups were identical. For the first
four and the sixth subtest, participants received two examples
with feedback before the beginning of each subtest. For the fifth
(meter) subtest, participants received four examples, instructing
them what a march and a waltz sound like. A detailed descrip-
tion of the MBEA stimuli and the general procedure was given in
Section “The Montreal Battery of Evaluation of Amusia.”

The laboratory group took part in the MBEA, filled in the
questionnaire and took the hearing test in the same session, which
lasted about 70 min. The web-based group completed the MBEA
online at home. At a later point, these participants came to the
laboratory for the hearing test and to answer the questionnaire.
A test administrator was always present to answer clarification
questions about the questionnaire. At the end of the session, par-
ticipants were allowed to ask questions about the nature of the
study and a couple of weeks later they were informed about the
group results.

Scoring
The MBEA uses a same-different paradigm for the first four sub-
tests. In such a test design, participants respond to two different
types of trials (stimulus pairs) in two different ways: A stimu-
lus pair where the comparison melody differs from the target
melody is considered a hit when it is correctly identified, and a
miss when it is not correctly identified. A stimulus pair with two
melodies that are the same is considered a correct rejection (CR)
when it is identified as identical, and scored a false alarm (FA)
when it is incorrectly identified as different; see the overview in
Table 4.

Following Henry and McAuley (2013), these scores were also
applied to the metric subtest, where trials with a march were
treated as different and trials with a waltz as same stimulus
pairs, and to the memory subtest, where trials with already used
melodies were treated as different and those with new melodies
as same stimulus pairs.

Poor performance on the MBEA can occur for different rea-
sons: It can be caused by a high number of FAs, a high number
of misses or a combination of both. We therefore performed not
only a conventional analysis of the MBEA by calculating the sum

TABLE 4 | Overview of stimulus types and possible responses.

Stimulus pair Response

Different Same

Different Hit (H) Miss (M)

Same False alarm (FA) Correct rejection (CR)

of correct responses, but also employed the SDT measures d′, as
a measure of sensitivity, and criterion location (c), as a measure
of participants’ response bias. Both rely on hit rate (HR) and false
alarm rate (FAR). d′ is equally dependent on H and FA and allows
for the fact that sensitivity should increase when H increases and
decrease when FA increases. It is calculated by subtracting the
inverse of the normal distribution functions of FA from H, con-
verting them into a SD unit (z-scores), cf. (1), and therebymaking
the measure comparable across tasks (Macmillan and Creelman,
2005). A d′ score of 0 means a participant is unable to discrim-
inate between stimuli, and the higher the d′ score (and thus
the sensitivity), the better the participant discriminates between
stimuli.

(1) d′ = z(HR) – z(FAR)
(2) Criterion Location: c = –0.5·(z(HR) + z(FAR))

The second measure, c, is the participants’ response bias,
i.e., the tendency to favor one of the two possible responses
(Macmillan and Creelman, 2005) and is calculated as in (2).
Positive c values correspond to a tendency to respond ‘same’ and
negative values correspond to a tendency to respond ‘different.’

Results

Several analyses were performed on the data. First, the results
of the web-based group and the group tested in the laboratory
were analyzed and compared. In Section “Prevalence,” the cut-
off scores of our sample and the prevalence that we found are
compared to the cut-off scores by Peretz et al. (2003). Section
“Subtests” discusses the use of combined subtests for our data.
Section “Scoring with Signal Detection Theory” shows the result
if SDT was applied and discusses the differences in preva-
lences. Resulting subgroups of amusia are discussed in Section
“Subtypes.” This is followed by an analysis of the questionnaire
items in relation to the MBEA scores in Section “Questionnaire.”

Web-based versus Laboratory Testing
The web-base tested group and the group tested in the labora-
tory were analyzed separately, by computing the sum of correct
responses, cf. Table 5.

Visual inspection of histograms indicated that the data
for the individual subtests and for the average of all sub-
tests are not normally distributed, for an example illustration
see Figure 1.

The calculation of skew and Kolmogorov–Smirnov tests
yielded significant results as well (for exact values see Table 6).
All subtest scores and the average scores exhibit a negative skew
and are visibly shifted toward the right. In addition, the vari-
ances between the groups are significantly different for four of
the six subtests as revealed by Levene’s test and therefore the
assumption of homogeneity of variance is also violated for these
four tests (for exact values see Table 6). For these reasons, addi-
tional non-parametric tests were performed. Mann–Whitney-U
tests revealed significant differences between the web-based and
the laboratory group in four out of six subtests. The contour and
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TABLE 5 | Sum of correct responses for the web-based and laboratory groups (absolute numbers, with maximum of 30 per subtest).

Group Scale Contour Interval Rhythm Meter Memory Average

Web-based Mean 24.97 23.86 23.21 24.87 24.09 26.34 24.56

SD 3.03 3.38 3.89 3.80 5.29 3.09 3.94

Laboratory Mean 24.95 24.68 24.32 25.84 26.07 27.51 25.56

SD 2.73 3.01 3.29 2.64 3.65 1.77 3.09

FIGURE 1 | Histograms of proportion correct for the Memory subtest for laboratory (left) and web-based group (right). Both exhibit a significant negative
skew (the web-based group additionally exhibits a significant kurtosis), thus are deviating from a normal distribution. For statistics, cf. Table 6.

interval subtest and the average of all subtests reached signifi-
cance at p < 0.05 and the meter and memory subtests reached
significance at p < 0.01 (for values see Table 6). Due to the sig-
nificant differences between the web-based and the laboratory
group, the data from the two groups were not collapsed, and only
the data from the group tested under laboratory conditions were
further analyzed.

Prevalence
The means of the sum of correct responses, SD, and different cut-
off scores are given in Table 7. The average values are calculated
by averaging the scores of all participants across all subtests, it is
not an average of the means or SD. The pitch average is an average
of the scores for the scale, contour, and interval subtest.

Based on the average of all subtests, 5.4% of the laboratory-
tested participants would be diagnosed as amusics because their
scores fall below a cut-off score of 71.2% (our mean – 2 SD). If
the cut-off score by Peretz et al. (2003) were applied, 9% of our
sample would be categorized as amusic. However, the prevalence
is different when considering the subtests individually: If only
individuals who fell below the cut-off score on every subtest are
considered amusic, then the prevalence with the cut-off scores
based on our data sinks to 0, and with Peretz et al.’s (2003) cut-off
scores it sinks to 4.5%.

Subtests
We were further interested in an average score for all three pitch-
based subtests, as this is often used in the literature. In our sample,
the average cut-off score of the pitch-based subtests is 65.7%,
yielding 6.3%, (in absolute numbers 7) amusics, while Peretz

et al.’s (2003) cut-off scores give a prevalence of 13.5%. We also
investigated how many subtests contributed to the pitch aver-
age score per subject: Of the seven amusics below our cut-off
score, one fell below the individual cut-off scores on all three
subtests, four fell below on two subtests and two fell below the
cut-off score on only one subtest. We then considered again all
participants that failed at least one of the three pitch-based sub-
tests, i.e., not only the pitch average, which yielded a total of
13.5% or 15 individuals. It is to be noted that these are not the
same 15 individuals that are categorized as amusic when using
Peretz et al.’s (2003) pitch average cut-off score. The same anal-
ysis based on Peretz et al.’s (2003) cut-off scores yielded 26.7%
who fell below the individual cut-off scores on all three subtests;
60% fell below on two subtests and 13.3% fell below the cut-off
score on only one subtest. Again, when considering all individ-
uals who fell below the cut-off score on at least one of the three
pitch-based subtests, 35% (39 individuals) appear to be affected. It
is to be noted, however, that a correlation analysis of the scores of
the different subtests yielded no statistical reason to use an aver-
age score of the three pitch based subtests. Their scores correlated
just as highly with the temporal subtests and the memory subtest
as with each other. The scores on the contour subtest, for exam-
ple, are highly significantly positively related to the scores on all
other subtests (contour and scale. τ = 0.233, p < 0.001; and inter-
val τ = 0.443, p < 0.001; and rhythm τ = 0.273, p < 0.001; and
meter τ = 0.249, p < 0.001; and memory τ = 0.199, p < 0.001). A
pitch average score can therefore only be motivated by the same
component that is supposed to be tested by all three pitch-based
subtests but not by a correlation between the scores on these
subtests.
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Scoring with SDT
A further analysis was carried out using SDT, in order to
inspect whether the obtained scores are tainted by response bias.
Therefore, the means and SD of d′ and c were calculated for every
subtest, cf. Table 8 and Figure 2. An analysis of skew and kur-
tosis of d′ showed that the scores on all subtests are normally
distributed.

The previous categorization based on our cut-off scores was
kept for this analysis: The group which scored below our cut-
off score was labeled “amusic,” while the group that scored below
Peretz et al.’s (2003) cut-off scores (cf. Table 7) was labeled “amu-
sic Peretz et al. (2003).” Our amusic group was a subgroup of the
amusic group with Peretz et al. (2003) cut-off score for all of the
subtests except for the memory subtest, where our cut-off score
was higher, cf. Table 7. The rest of the participants were labeled
“controls.”

In the upper part of Figure 2, the response bias c is plot-
ted per group for every subtest. Overall, the controls groups’ c
is located around 0, indicating that location of the border in the
decision space of the controls is between the two stimulus cate-
gories. The two amusic groups have a slightly more positive bias
(i.e., a tendency to answer “same”).

The lower part of Figure 2 shows the sensitivity mea-
sure d′, the groups’ ability to discriminate, for each subtest.
As can be seen, there is no overlap between our amusic
group and the control group for the first five subtests, show-
ing a clear distinction in discriminatory ability between the
groups. The d′ values for the amusic group(s) are much lower
than that for the controls for these five subtests, indicating
that amusics have difficulties discriminating between the stim-
uli.

New cut-off scores based on the discriminatory ability of
the groups were calculated. The cut-off score was set to be
mean – 1 SD (chosen a priori). It is to be noted that it is
an arbitrary statistical criterion. Even though the categoriza-
tion varies based on the statistical criterion that is applied, this
might offer a more reliable measure than averaging the sum of
correct responses as the bias is factored out and participants
can be categorized solely based on their ability to discrimi-
nate. The new cut-off scores and prevalences can be found in
Table 8.

This new categorization based on discriminatory ability shows
cases of over- and underdiagnosis in comparison to the previous
scores. An underdiagnosis (previously categorized as control, but
low discriminatory ability) does not happen for two of the three
pitch-based subtests. For the scale subtest, it happens for 2.7% of
all diagnosis. For the temporal subtests and the memory subtests,
however, 7.2–11.2% of all participants with a low discriminatory
ability are not diagnosed as amusic. Depending on the subtest, an
overdiagnosis (diagnosed as amusic, but normal discrimination
ability with a high bias) seems to happen in 1.8–4.5% of all diag-
nosis, based on the entire group. But when only considering the
amusia-diagnoses based on the previous scores, then the percent-
age of overdiagnosis rises to 12–20% depending on the subtest,
or even to 30%, when the diagnosis was based on the average
score.
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TABLE 7 | Sum of correct responses for the group tested in the laboratory.

Sum of correct responses Scale Contour Interval Rhythm Meter Memory Average Pitch Average

Mean 24.95 24.68 24.32 25.84 26.07 27.51 25.48 24.64

SD 2.73 3.01 3.29 2.64 3.65 1.77 2.06 2.47

Cut-off (2 SD) 19.49 18.66 17.74 20.56 18.77 23.97 21.36 19.7

Cut-off (%) 65.0 62.2 59.1 68.5 62.6 79.9 71.2 65.7

% below cut off 4.5 7.2 7.2 4.5 6.3 7.2 5.4 6.3

Cut-off % Peretz 73.3 73.3 70 76.7 66.7 73.3 76.6 72.2

% below cut-off Peretz 14.4 22.5 15.3 20.7 7.2 0 9.01 13.5

Cut-off scores and resulting percentage of amusics based on our mean compared to Peretz et al.’s (2003) means.

TABLE 8 | Means and SD of d′ and c for the group tested in the laboratory, including cut-off scores and percentage of amusics and controls
categorization based on PC and z-scores used for normality analysis.

Scale Contour Interval Rhythm Meter Memory Average Pitch Average

c Mean 0.01 0.15 0.29 –0.05 –0.22 –0.21 –0.00 0.15

SD 0.55 0.54 0.48 0.55 0.34 0.43 0.29 0.46

d′ Mean 2.33 2.25 2.16 2.65 2.81 3.23 2.25 2.25

SD 0.84 0.90 0.95 0.90 1.28 0.81 0.66 0.73

z skew –0.51 0.69 0.28 –0.19 –0.99 0.32 1.56 –0.01

z kurtosis 1.28 –1.30 0.10 –1.64 –1.70 –1.15 0.61 0.15

% below cut-off score: Mean–1 SD 15.32 18.02 13.51 25.23 18.92 17.12 14.41 14.41

% overdignosis: amean–1 SD 1.80 4.50 1.80 2.70 0.00 1.80 2.70 1.80

% underdiagnosis: Mean–1 SD 2.70 0.00 0.00 7.21 11.71 11.71 1.80 2.70

Subtypes
We were also interested in different subgroups, i.e., subtypes of
congenital amusia, therefore we considered the different patterns
that participants exhibit on the different subtests. 53.2% scored
below a cut-off score on at least one subtest, 28.8% on at least two,
and 13.5% on three ormore subtests. For the latter two groups, we
analyzed the different subtypes. As Table 9 shows, there are three
distinct subgroups: One bigger group with below cut-off-scores
on pitch and rhythm (and partly also memory) subtests and two
smaller groups with low scores on only pitch and memory or only
rhythm and memory subtests. As many studies also consider the
average of all subtests and the pitch-average, we also calculated
these. Of the 28.8%, 34.4% also had a below cut-off score on the
average of all subtests and on 43.8% also scored below cut-off on
the pitch average. For the population with below cut-off scores
on at least three subtests, 66.6% had a below cut-off score on the
average score and 80% on the pitch average score.

Questionnaire
Our questionnaire contained 27 items: six demographic items
(age, gender, education, handedness, occupation, native lan-
guage(s)), 20 self-rate items about music education, attitude
toward music, music habits and dancing, and one free text
question (why people considered themselves unmusical, if they
indicated so in the previous question). The questionnaires of
the web-based and the laboratory-based group were analyzed
together as they were collected under the same circumstances
in the laboratory. A principal component analysis (PCA) with
an oblique rotation (promax) allowed for the collapsing of the
items into six factors. The PCA included 19 out of the 20

self-rate items, as the remaining item (Perception 5 – Evaluation
of own perception) failed to reach the acceptable limit of 0.5 on
the Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy.
This item was included in a first analysis but excluded from the
final analysis. It is to be noted that not every participant answered
every question and cases were therefore excluded pairwise. The
KMO measure verified the sampling adequacy for the analysis,
KMO = 0.8, and all KMO values for individual items were >0.5.
Bartlett’s test of sphericity χ2 (171) = 1530.778, p < 0.001, indi-
cated that correlations between items were sufficiently large for
PCA. Six components had eigenvalues over Kaiser’s criterion of
1 and in combination explained 67.65% of the variance. Table 10
shows the factor loadings after rotation. The items that cluster on
the same components suggest that component 1 represents per-
ception but also contains clapping, component 2music education,
component 3 dancing, component 4 singing/production, com-
ponent 5 self-assessment of musicality, and component 6 music
listening habits. These components were then entered into a mul-
tiple regression analysis in order to calculate their influence on
the MBEA-scores.

The multiple regressions was performed separately for every
subtest. The regression analysis again included only the MBEA-
scores obtained in the laboratory-based group and only those
participants who answered all questionnaire items, so as not
to include participants with missing values. 76 participants
remained in this analysis step. The six components were entered
as predictors and d′ was used as outcome variable. To use d′-
scores in this context has an advantage over using PC scores, as
these were shown not be normally distributed, which is one of
the assumptions that has to be met for a regression analysis. The
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FIGURE 2 | Signal Detection Theory (SDT) scores (d′ and c) plotted per subtest. Categorization based on PC-scores. For statistics, cf. Table 8.

assumptions of multicollinearity and independent errors were
true (cf. Table 11 collinearity statistics and Durbin–Watson test,
respectively). The assumptions of linearity and homoscedasticity
were visually inspected and also true.

Different models were fit to the data, excluding non-significant
predictors, until the best fitting regression model was found for
every subtest. Table 11 summarizes these models.

R2 can be used as a measure of how much variability of the
outcome variable is accounted for by the predictors. Twenty-two
percent to 25% of the variation in MBEA scores of the three
pitch-based subtest can be predicted by the first and second

component. Only 9% of the variation of the rhythm scores can
be explained by questionnaire items, while 38% can be explained
for the meter subtest, based on component 2 music educa-
tion and component 6 listening habits/attitude. Eleven percent
of the variability in memory scores can also be explained by
questionnaire items, more specifically by one’s own musical-
ity assessment. Lastly, the 39% of the variation in the aver-
age score can be predicted by component 1 and 2, perception
and music education, respectively. The standardized beta value
(in SD units) is used as a measure of how much the out-
come variable is changed by a change of the predictor. The
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TABLE 9 | Percentage of participants scoring below a cut-off score of
(mean–1 SD) on at least two subtests.

Two or more subtests Three or more subtests

Total
(%)

Below cut-off
score (%)

Total
(%)

Below cut-off
score (%)

Total 28.8 13.5

Only pitch 5.4 (3.6) 18.6 (15.6) 2.7 (2.7) 20.0 (20.0)

Only rhythm 9.0 (4.5) 31.3 (12.5) 0.9 (0.9) 6.6 (6.6)

Pitch and rhythm 14.4 (5.4) 50.0 (18.6) 9.9 (5.4) 73.3 (40)

The value in brackets indicates how many percent also included a below cut-off
score on the memory subtest.

standardized beta value on the interval subtest (standardized
β = 0.50), for example, indicates that if the score of compo-
nent 2 increases by 1 SD (1.02), the d′ score increases by 0.50
SD (0.47).

Discussion

In the present study, a comparison of the MBEA scores for our
laboratory-tested participants calculated both on the basis of the
sum of correct answers and the Signal Detection measure d′ (with
mean – 1SD as cut-off) yielded different diagnoses. With the PC-
based measure, 12–20% of amusia diagnoses are misdiagnoses
of people who could be shown to have a normal discriminatory
ability but simply a larger response bias. If we consider the

average score across all subtests, then this misdiagnosis rises to
30%. This number confirms Henry and McAuley’s (2013) find-
ing of a PC-based misdiagnosis of 33%. At the same time, the
PC-based scores in our study fail to diagnose 7.2–11.2% of the
participants with a low discriminatory ability as amusic.

Furthermore, we found that 28.8% of the laboratory-tested
participants scored below cut-off score on two or more sub-
tests and of those only 34.4% also scored below cut-off on the
average of all subtests. This shows that a substantial number of
participants with an impaired discriminatory ability is missed
by using average scores for the diagnosis of congenital amu-
sia. In addition, we could show that for the average pitch score,
which is often employed in MBEA studies (see the overview in
Section “Scoring and Subtests”), the scores on the pitch sub-
tests correlated as highly with each other as with the other
subtests, giving no statistical reason for using an average pitch
score.

The misdiagnosis of congenital amusia has implications for
the inclusion of participants in scientific studies and therefore the
expansion of knowledge about congenital amusia. At the same
time, the diagnosis has personal consequences for the individual
in question, just as in the case of acquired amusia. Many possi-
ble amusics who come to our lab actively seek answers as to why
their perception seems to be different from that of other peo-
ple. These participants deserve an accurate assessment of their
abilities. Using d′ to assess amusics’ discriminatory ability reflects
their abilities more accurately than using the sum of correct
answers.

TABLE 10 | Summary of principal component analysis (PCA): Rotated pattern matrix with factor loadings, ordered according to the factor loadings per
component.

Questionnaire item Component

1 2 3 4 5 6

Perception 1 – melodies without lyrics 0.85 –016 –0.19 –0.04 –0.07 0.10

Perception 3 – piano tones 0.84 –0.00 –0.08 –0.01 0.02 –0.02

Perception 2 – off/wrong singing 0.72 0.01 –0.02 0.15 0.07 –0.06

Clapping 0.69 0.13 0.20 –0.22 –0.09 0.17

Singing 3 – notice wrong singing and correct it 0.52 –0.07 0.10 0.37 0.06 –0.08

Perception 4 – surrounded by music as child 0.44 0.19 0.12 0.19 –0.03 –0.12

Music education 2 – age of onset 0.01 0.90 –0.08 –0.05 –0.09 –0.02

Music education 4 – frustration 0.00 0.86 0.00 –0.04 0.00 0.03

Music education 3 – years of lessons –0.14 0.82 0.09 –0.03 –0.09 0.06

Music education 1 – type of education 0.15 0.60 0.00 0.06 0.02 –0.12

Music education 5 – still playing/singing –0.08 0.52 –0.16 0.19 0.32 0.05

Dancing 2 – quality – own assessment 0.03 –0.01 0.95 –0.06 0.00 –0.05

Dancing 1 – quantity/frequency –0.14 –0.03 0.91 0.13 0.04 0.04

Singing 1 – when alone –0.08 –0.01 0.09 0.85 –0.04 0.13

Singing 2 – in public 0.13 0.01 –0.05 0.80 –0.02 –0.01

Unmusicality 1 – family members –0.15 –0.11 –0.01 0.04 0.93 –0.01

Unmusicality 2 – qwn assessment 0.17 0.04 0.08 –0.13 0.83 0.05

Listening habits 1 – quantity listening to music –0.02 –0.02 –0.03 0.27 –0.13 0.80

Listening habits 2 – attitude toward music 0.09 0.02 0.02 –0.12 0.17 0.77

Bold indicates that this item loads onto the component given in the first line.
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TABLE 11 | Summary of multiple regression analysis predicting MBEA scores per subtest from components.

Coefficients Collinearity statistics Model fit

Subtest Components
included

B β VIF Tolerance R2 Durbin–Watson ANOVA F-ratio

Scale
Constant
1 perception
2 music education

2.33
0.20
0.27

0.23
0.33

0.83
0.83

1.20
1.20

0.22 1.87 10.23

Contour
Constant
1 perception
2 music education

2.20
0.29
0.21

0.31
0.24

0.83
0.83

1.20
1.20

0.22 2.41 10.12

Interval
Constant
2 music education

2.01
0.46 0.50 1.00 1.00

0.25 1.93 24.70

Rhythm
Constant
2 music education

2.75
0.24 0.29 1.00 1.00

0.09 2.07 6.90

Meter
Constant
2 music education
6 attitude

2.76
0.73
0.25

0.56
0.21

0.99
0.99

1.01
1.01

0.38 2.13 22.30

Memory
Constant
5 own musicality
assessment

2.93
0.31 0.33 1.00 1.00

0.11 2.10 8.97

Average
Constant
1 perception
2 music education

2.22
0.21
0.30

0.30
0.44

0.83
0.83

1.20
1.20

0.39 2.36 23.30

Bold and italics indicates p < 0.001, italics p < 0.05.

We were furthermore also interested whether our data pro-
vided evidence for different subtypes of amusia, as have been
proposed in previous studies (see the discussion in Section
“Subtypes of Amusia”). For our group of participants that per-
formed below the cut-off score of mean – 1 SD and failed at
least two subtests, we found three subgroups: A group that only
exhibits pitch deficits (18.6% of amusics), one with only rhyth-
mic deficits (31.4% amusics) and another with pitch and rhythm
deficits (50% of amusics). All of these groups contained par-
ticipants with and without low performance on the memory
subtest. When considering only participants who failed at least
three subtests, then the same three groups remain. However,
only 6.6% of amusics exhibit a rhythm deficit, 20% exhibit a
pitch perception deficit, and 73.3% exhibit both. The probabil-
ity of these three types is the same as if the three failed tests
were randomly distributed across all six subtests. The high co-
occurrence of pitch and rhythm deficits could be due to the
very high correlations between the various subtests, which were
found above. The percentage of the rhythm subtype sinks so
drastically due to the imbalance of pitch and rhythm tests on
the MBEA. In order to score below cut-off on three subtests
with only one rhythm perception deficit is impossible; therefore
also a memory deficit has to be present. Reports of subtypes

with pitch deficits or pitch and rhythm deficits are more fre-
quent than cases with rhythmic problems only (Phillips-Silver
et al., 2011 – 1 case; Launay et al., 2014 – 3 cases), possi-
bly due to the low proportion of rhythm-related subtests in
the MBEA. We therefore propose that additional tests assess-
ing rhythmic abilities, e.g., a part of the Beat Alignment Test
by Iversen and Patel (2008), should be considered as a supple-
ment to the MBEA. This might make a further differentiation
of subtypes of congenital amusia and a clearer definition of
them more feasible in the future. This finding again also sup-
ports our view that an average score should not be used for
the diagnosis of amusia [see also Wise (2009) and Henry and
McAuley (2010)], as it does not reflect the heterogeneous behav-
ior of participants across the six subtests. The evaluation of scores
on individual subtests, on the other hand, can lead to misdi-
agnosis of people as amusic who simply did not pay enough
attention to the experiment. Though we tried to filter out such
participants by the so-called catch trials, these catch trials can
be detected without focused attention and therefore might not
be an adequate way of controlling for such possible false positive
diagnoses.

In addition to the MBEA scores, we also analyzed the infor-
mation from our questionnaire.
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The questionnaire contained 27 items, which were reduced
by PCA to six components. These encompassed perception,
music education, dancing, singing/production, listening habits,
and self-assessment of musicality. Three of these components,
singing/production, music education and listening habits, over-
lap with the ones found by Cuddy et al. (2005). She identified
a total of four components, the fourth being childhood memo-
ries. While Cuddy et al. (2005) and Wise (2009) were interested
in the self-labeling as tone-deaf and consequently used it as out-
come variable, we incorporated it as one of our components, 5 –
self-assessment of musicality, into a multiple regression analysis
with d′ as the outcome variable, because both studies found self-
reports of tone-deafness not to be reliable and overlapping with
the presence of congenital amusia. Our analysis showed that part
of the variation in d′ scores can be accounted for by questionnaire
information, more specifically music education and perception.
The outcome of the meter subtest was also influenced by lis-
tening habits, a finding that is in agreement with Cuddy et al.’s
(2005) findings. Contrary to Cuddy et al. (2005), we found no
influence of the component music production on our outcome
variable. We also found that only (and also only a small but
significant amount of) the variation of scores on the memory
subtest can be accounted for by one’s own assessment of musi-
cality. It did not account for any other variability in d′ scores.
Considering these results, it seems adequate to use at least a short
questionnaire containing items about music education andmusic
perception.

With our large-scale study we also tested the difference
between MBEA scores that were obtained in a web-based exper-
iment and those that were obtained under laboratory conditions
with a computerized version of the MBEA. Participants scored

significantly lower on all but the rhythm subtest if they were
tested via the internet, probably due to uncontrollable external
factors such as technical variance (e.g., internet speed or usage
of headphones) and environmental factors (like noise or distrac-
tions; for an overview of drawbacks with web-based testing, see
Reips, 2000; Dandurand et al., 2008). Our findings indicate that
the results of studies employing web-based tests (such as Peretz
et al., 2008; Provost, 2011) should be considered carefully, as
they diagnose more congenital amusics (5.8 and 11.6%, respec-
tively) than laboratory-based studies if the same cut-off scores are
applied. A possible solution might be the application of differ-
ent cut-off scores depending on the type of testing. However, it is
questionable whether web-based testing of the MBEA should be
used at all, since a controlled and quiet environment seems cru-
cial for the success of perceptual and especially auditory research
(cf. Krantz and Dalal, 2000).

In sum, we thus recommend the calculation of cut-off scores
based on the SDT measures d′ and c instead of percentage cor-
rect for all MBEA subtests separately (rather than averaging over
subtests) and the additional use of a questionnaire and a further
rhythmic subtest. We furthermore advise testing in the laboratory
only. This way, amore reliable diagnosis of congenital amusia and
a differentiation of amusic subtypes seem possible in the future.
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