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Social contact is essential for survival in human society. A previous study demonstrated
that interpersonal contact alleviates pain-related distress by suppressing the activity of
its underlying neural network. One explanation for this is that attention is shifted from
the cause of distress to interpersonal contact. To test this hypothesis, we conducted
a functional MRI (fMRI) study wherein eight pairs of close female friends rated the
aversiveness of aversive and non-aversive visual stimuli under two conditions: joining
hands either with a rubber model (rubber-hand condition) or with a close friend (human-
hand condition). Subsequently, participants rated the overall comfortableness of each
condition. The rating result after fMRI indicated that participants experienced greater
comfortableness during the human-hand compared to the rubber-hand condition,
whereas aversiveness ratings during fMRI were comparable across conditions. The fMRI
results showed that the two conditions commonly produced aversive-related activation
in both sides of the visual cortex (including V1, V2, and V5). An interaction between
aversiveness and hand type showed rubber-hand-specific activation for (aversive > non-
aversive) in other visual areas (including V1, V2, V3, and V4v). The effect of interpersonal
contact on the processing of aversive stimuli was negatively correlated with the
increment of attentional focus to aversiveness measured by a pain-catastrophizing
scale. These results suggest that interpersonal touch suppresses the processing of
aversive visual stimuli in the occipital cortex. This effect covaried with aversiveness-
insensitivity, such that aversive-insensitive individuals might require a lesser degree of
attentional capture to aversive-stimulus processing. As joining hands did not influence
the subjective ratings of aversiveness, interpersonal touch may operate by redirecting
excessive attention away from aversive characteristics of the stimuli.

Keywords: interpersonal touch, fMRI, attentional shift, aversive stimuli, visual cortex

Introduction

Interpersonal relationships serve a fundamental function for human health and well-being. Lack
of interpersonal relationships, i.e., loneliness, is one of the major risk factors for health, along with
smoking, or obesity (House et al., 1988a; Holt-Lunstad et al., 2010). Social support via interper-
sonal relationships for distressed others has a distress-alleviation regulatory function such as the
suppression of painful thoughts and the repression of negative memories (Mikulincer et al., 2003).
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Interpersonal touch is one type of social support. Physical
contact with a person has been found to exert a stronger social
support effect than verbal or emotional contact (Gallace and
Spence, 2010). One striking example is that joining hands with
a romantic partner suppresses brain activation during pain threat
as compared to no physical contact (Coan et al., 2006). However,
the neural mechanisms by which interpersonal touch suppresses
brain activation accompanying distress are poorly understood.

Previous neuroimaging studies have shown that distress-
related brain activation is suppressed by attending to cognitive
tasks (Seminowicz et al., 2004) or paying attention to the sen-
sation of breath (Zeidan et al., 2011). These findings raise the
possibility that interpersonal touch suppresses distress-related
activation by shifting attention from the cause of distress to inter-
personal contact. If this is the case, we can assume that this
suppression effect can be applied to processing of other stimuli.
In the present study, we investigated the effect of interpersonal
touch on the processing of aversive visual stimuli.

Previous neuroimaging studies have shown that observation
of aversive stimuli such as others in distress produces activa-
tion in a distributed network of brain regions (Singer et al,
2004; Vollm et al., 2006; Akitsuki and Decety, 2009). This net-
work includes regions of the visual cortex such as the lateral
occipital area (BA 18 or 19; Lane et al., 1999; Mourao-Miranda
et al, 2003; Singer et al, 2004; Vollm et al., 2006; Akitsuki
and Decety, 2009) and limbic structures including the ante-
rior cingulate cortex and anterior insula (Singer et al., 2004;
Akitsuki and Decety, 2009). Activation in this network can be
induced, because aversive stimuli attract more attention than
non-aversive stimuli (Kawasaki et al., 2001; Vuilleumier, 2005;
Pessoa, 2011). Indeed, a large body of literature demonstrates
that the visual cortex is a major target of attentional modulation
(Corbetta and Shulman, 2002). For instance, visual processing
of objects in the occipito-temporal cortex is modulated by a
range of factors, including painful stimuli (Bingel et al., 2007)
and distractor stimuli present in cognitive tasks (Rose et al,
2005; Bingel et al., 2007; Klemen et al., 2009). Our attention is
directed to the contact with others (e.g., contact with a famil-
iar person; Stack and Muir, 1992; Peldez-Nogueras et al., 1996),
which attenuates the negative response caused by aversive stim-
uli (Hertenstein, 2002). Accordingly, we can hypothesize that
joining hands with a person can suppress activity of attention
modulation target regions involved in the processing of aversive
stimuli, such as the visual cortex. Moreover, increase of atten-
tional resource toward aversive stimuli can depend on personality
traits (Sullivan et al., 1995). Thus, personality traits can be associ-
ated with aversive-related brain responses, which are modulated
by joining hands.

In the present study, we measured the brain activation of
eight pairs of close friends (16 participants). During func-
tional MRI (fMRI), participants completed a cognitive rating
task related to aversiveness for aversive and non-aversive pho-
tographs. Participants completed the task under two conditions
designed to manipulate social contact with others: (1) the human-
hand condition, in which the participant placed their left hand
on the left hand of their close friend; (2) the rubber-hand con-
dition, in which the participants placed their left hand on a

rubber hand. We predicted reduced activation of the visual cor-
tex during the human-hand relative to rubber-hand condition. In
addition, we predicted modulation of brain activity by an indi-
vidual difference measure indexing sensitivity to aversive stimuli
(pain-catastrophizing scale; PCS; Sullivan et al., 1995). Since indi-
viduals who have catastrophic thoughts about pain (i.e., persons
with a higher PCS score) are more attentive to aversive stimuli
(Sullivan et al., 1995, 2001), we predicted that the influence of
social contact on the processing of aversive stimuli in the brain
would differ depending on the PCS.

Materials and Methods

Participants

A total of eight pairs of female friends [aged 26.4 £ 2.5 years
(mean = SEM); minimum duration of friendship = 6 months
(mean £ SEM = 72.0 + 19.9 months)] took part in the
experiment. We only recruited female participants, because we
aimed to minimize cross-gender effects (e.g., sexual arousal)
and because social support between friends of the same gen-
der is particularly strong in females (House et al., 1988b). All
participants had normal or corrected-to-normal visual acuity
and were right-handed according to the Edinburgh handed-
ness inventory (Oldfield, 1971). Participants were provided with
monetary compensation. The protocol was approved by the
ethical committee of the National Institute for Physiological
Sciences, Okazaki, Japan. The experiments were undertaken
in compliance with national legislation and the Code of
Ethical Principles for Medical Research Involving Human
Subjects of the World Medical Association (Declaration of
Helsinki). All the participants provided written informed con-
sent.

Questionnaire

Participants completed two questionnaires. First, all participants
completed the PCS (Sullivan et al., 1995). This 13-item scale
measures the level of catastrophic thinking related to pain. Each
item is evaluated using a five-point Likert scale (0, not at all;
1, to a slight degree; 2, to a moderate degree; 3, to a great
degree; 4, all the time). Since the PCS measures catastrophiz-
ing about pain, which has been shown to result in more intense
pain and emotional distress in response to pain (Sullivan et al.,
1995, 2001), we used the total PCS score as a measure of trait
pain sensitivity in order to index aversiveness sensitivity in the
present task. The total PCS score was computed by summing
the responses to all 13 items. Thus, the total PCS scores ranged
from 0 to 52.

Second, participants rated the uncomfortableness they experi-
enced during the human-hand condition and during the rubber-
hand condition using two seven-point scales from 1 (not at all) to
7 (very uncomfortable). The questionnaires were completed after
the fMRI experiment.

Apparatus for Visual Presentation
Visual stimuli were presented using Presentation software 14.4
(Neurobehavioral Systems, Inc.) implemented on a personal
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computer (dc7900; Hewlett-Packard, Ltd.). A liquid crystal dis-
play (LCD) projector (CP-SX12000; Hitachi, Ltd.) located outside
and behind the scanner projected the stimuli through a waveg-
uide to a translucent screen, which the participants viewed via
a mirror placed in the MRI scanner. The spatial resolution of
the projector was 1,024 x 768 pixels, with a 60-Hz refresh rate.
The distance between the screen and each participant’s eyes was
approximately 175 cm, and the visual angle was 13.8 (horizon-
tal) x 10.4 (vertical). Responses were collected via an optical
button box (Current Designs, Inc.).

Task Design

The task consisted of three runs. In two of the runs, partici-
pants were shown aversive and non-aversive photographs. For
each photograph, participants evaluated the intensity of pain and
degree of unpleasantness felt by the person shown in the pho-
tograph (aversive-evaluation runs). The two aversive-evaluation
runs differed in touch: the participant’s left hand was placed
either on the left hand of their partner (human-hand run) or
on a rubber hand (rubber-hand run) (Figure 1A). The rub-
ber hand was produced from the cast of an adult’s left hand
with gender-neutral features (see Kitada et al., 2010 for details
of the production of the rubber hand). In the remaining run,
the participants were seated outside the scanner with their left
hand supporting the left hand of their partner, while their part-
ner was evaluating the aversiveness of visual stimuli in their
own human-hand run (lending-hand run). The lending-hand run
was conducted before or after the two aversive-evaluation runs,
with the order counterbalanced between participants. Likewise,
the order of the human-hand and rubber-hand runs was coun-
terbalanced in the aversive-evaluation runs between partici-
pants.

We employed a conventional block design. Each aversive-
evaluation run involved six blocks for the evaluation of aver-
sive stimuli (aversive block) and six blocks for the evalua-
tion of non-aversive stimuli (non-aversive block). Each block
lasted for 30 s, followed by a 15-s rest block to allow
the blood-oxygen-level dependent (BOLD) signal to return
to baseline levels between task blocks (30-s block + 15-s
rest X 12 = 540 s, Figures 1B,C). We presented three stim-
uli during each task block [3 stimuli x 6 blocks x 2 types
(aversive/non-aversive) = 36 stimuli in total]. While each visual
stimulus was presented for 5 s, the participant was instructed
to imagine the pain intensity and unpleasantness experienced
by the person shown in the photograph. After the 5-s pre-
sentation of the stimulus, the participant reported the esti-
mated pain intensity and unpleasantness using a visual analog
scale (VAS) ranging from 0 (not at all painful or unpleas-
ant) to 100 (extremely painful or unpleasant) using the right
index and middle fingers. Pushing the button with the right
index finger decreased the value of the VAS, whereas push-
ing the button with the right middle finger increased the
value of the VAS. The amount of change of the value of
the VAS was dependent on the time of pressing the but-
ton. Quitting the button press stopped the value change of
the VAS. After setting the appropriate value, participants were
required to wait until the end of each rating phase (2.5 s)

to validate the value of the VAS. The order of reporting pain
intensity and unpleasantness was counterbalanced within each
run. Durations for reporting pain intensity and unpleasantness
were 2.5 s.

The aversive visual stimuli were scenes showing an injection
to the arm or foot (Figure 1D), whereas the non-aversive visual
stimuli were scenes showing a Q-tip being pressed to the arm
or foot (Figure 1E). The compositions (e.g., number of persons,
body part, and positional relation) between the two types of stim-
uli were highly similar. Visual stimuli were selected from a set
of 24 stimulus pairs consisting of aversive and non-aversive pho-
tographs with similar compositions. The 24 pairs were rated on
pain intensity and aversiveness by nine independent raters [aged
30.9 % 2.3 years (average & SEM); five male], who were blind to
the purpose of the present study. Based on the rating results, a
set of 18 pairs of photographs was selected for the present fMRI
study, such that the pain intensity and unpleasantness differed
significantly between the aversive and non-aversive photographs
[for pain intensity p < 0.001 (average score (=SEM) aversive, 74.8
(£1.1), non-aversive, 8.7 (£0.9)); for unpleasantness p < 0.001
(aversive, 72.6 (£1.1), non-aversive, 38.9 (£1.4))].

fMRI Data Acquisition

A 3-T scanner (Verio; Siemens, Ltd., Erlangen) was used for
MRI. The participants head was immobilized within a 32-
element phased-array head coil. fMRI was performed using
an echo planar imaging (EPI) gradient-echo sequence [echo
time (TE) = 30 ms; repetition time (TR) = 2,500 ms; field of
view (FOV) = 192 mm x 192 mm; flip angle = 80°; matrix
size = 64 x 64; 39 slices; slice thickness = 3 mm; and total
number of volumes = 220]. A whole-brain high-resolution,
T1-weighted anatomical MR image using magnetization pre-
pared rapid acquisition gradient echo (MP-RAGE) was also
acquired for each participant (TE = 2.97 ms; TR = 1,800 ms;
FOV = 256 mm x 256 mm; flip angle = 9° matrix
size = 256 x 256 pixels; and slice thickness = 1 mm).

fMRI Data Analysis

A single participant reported the same values for each of the aver-
sive and non-aversive stimuli, and was therefore judged to have
misunderstood the task instructions. Data from this participant
were excluded. The final data set consisted of the findings from
15 participants.

We used SPMS8 revision 4667 (Wellcome Trust Centre for
Neuroimaging; http://www.fiLion.ucl.ac.uk/spm; Friston et al,
2007) in MATLAB 2011b (MathWorks, Inc.) to analyze the
functional images. The first four volumes of each fMRI run
were discarded to allow for T1 equilibrium effects. To correct
subject’s head motion, functional images from each run were
realigned to the first image, and again realigned to the mean
image after the first realignment. After the realignment pro-
cesses, we checked head-movement parameters. None of the runs
included head movements over 3 mm. We corrected slice tim-
ing within each image to the middle slice by applying Fourier
phase-shift interpolation. Then, the mean of the realigned EPI
images was co-registered with the T1-weighted MP-RAGE image.
Subsequently, the co-registered T1-weighted MP-RAGE image
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A Run Condition
Human-hand Condition

Rubber-hand Condition

Not at all

5s 25s

FIGURE 1 | Outline of experiment. (A) Participants joined hands with
a close friend or a rubber hand. (B) Example of a time chart of
visual stimuli presentation sequence. (C) In between stimulus blocks, a
fixation cross was presented at the center of the screen for 15 s.

Very much

Non-aversive | —i—= — i— e ——— o p— p— - — —— - —-
Rest |- —m - - i m  — — — —— —— -
€ Rest >
t
15s
D Aversive
Intensity Unpleasantness
X 3 times
Not atall Very much
5 _ 25s
E  Non-aversive
Intensity Unpleasantness
X 3 times

25s

(D,E) During target blocks (30 s), participants were presented with
three aversive or non-aversive visual stimuli (5 s). For each stimulus,
participants rated unpleasantness and pain intensity using a visual
analog scale (5 s).

was normalized to the Montreal Neurological Institute (MNTI)
template, involving linear and nonlinear three-dimensional (3D)
transformations. The parameters from this normalization process
were applied to each of the EPI images. Finally, the anatomi-
cally normalized EPI images were resampled to a voxel size of
2mm x 2 mm X 2 mm and spatially smoothed using a Gaussian
kernel of 8 mm full width at half maximum (FWHM; final
smoothness values: x = 11.8 mm; y = 11.8 mm; z = 11.9 mm).

Task-related activation was statistically evaluated using the
general linear model (GLM) at the individual level to generate
contrast images, which in turn were incorporated into random-
effects analysis at the group level (Friston et al., 1994). In the
individual level analysis, we defined four regressors (rubber-
hand aversive, rubber-hand non-aversive, human-hand aversive,
and human-hand non-aversive); a further six regressors repre-
sented head movements (realignment parameters). Participants
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needed to remember the aversiveness of stimuli when rat-
ing their pain intensity and unpleasantness. As an aversive
response can be caused both when viewing and when recall-
ing aversive stimuli, we modeled all four regressors for the
six 30-s blocks, including the period when participants rated
their pain intensity and unpleasantness (5 s). As each regres-
sor contains the response-related phase, the irrelevant com-
ponents of the rating phase (e.g., moving the VAS) should
be canceled out in the comparison between the four condi-
tions.

After the individual level analyses were completed, we con-
ducted group-level analysis using the contrast images produced
by the individual level analysis [contrasts of common aver-
sive effects (aversive (rubber-hand + human-hand) > non-
aversive (rubber-hand 4+ human-hand)) and interaction effects
between rubber/human hand effects and aversive effects (rubber-
hand (aversive — non-aversive) > human-hand (aversive — non-
aversive))]. To examine the main effects of hand type, we
also compared the rubber-hand (aversive + non-aversive) with
human-hand (aversive + non-aversive) conditions. The statisti-
cal threshold for these analyses was set at p < 0.005 uncorrected
at the peak level, and p < 0.05 at the cluster level family-
wise error (FWE) corrected over the whole brain. In terms of
significant activation related to the interaction effects between
rubber/human hand effects and aversive effects, the average beta
value (parameter estimate) of the four conditions (rubber-hand
aversive, rubber-hand non-aversive, human-hand aversive, and
human-hand non-aversive) within a 12-mm diameter sphere
located at the peak (x = 26, y = -80, z = 0) of a significant cluster
were calculated for 15 subjects. The diameter was defined accord-
ing to the final smoothness. A spherical region of interest (ROI)
was defined for the following analysis because the beta value
around the peak represented the characteristics of the significant
cluster well. We then conducted post hoc analysis to compare the
beta values of the four conditions. Anatomical labeling of the acti-
vated clusters was performed using the Anatomy toolbox v1.8
(Eickhoff et al., 2005).

Using the results of the fMRI analysis, we conducted simple
regression analysis between the total PCS and the average beta
value of (rubber-hand aversive > human-hand aversive) within a
12-mm diameter sphere located at the peak coordinates (x = 26,
y = -80, z = 0) of a group-level significant cluster related to the
interaction between hand effect and aversive effect.

Behavioral Data Analysis

We conducted statistical analysis of the rated pain inten-
sity and unpleasantness. This involved two two-way [aver-
sive (aversive/non-aversive) x hand condition (human/rubber)]
repeated measures analyses of variance (rmANOVA) on pain
intensity and unpleasantness ratings.

Results
Questionnaire Results

The mean (£SEM) score on the PCS was 24.6 (£2.5). The
mean (=SEM) uncomfortableness ratings during the human- and

rubber-hand conditions were 2.9 (£0.2) and 4.5 (£0.4), respec-
tively. The paired samples ¢-test showed a significant difference in
uncomfortableness ratings between the human- and rubber-hand
conditions [¢(14) = 3.36, p < 0.01; Figure 2A].

Rating Results: Pain and Unpleasantness
Ratings during fMRI

Figure 2B shows the pain intensity and unpleasantness of aver-
sive stimuli in the fMRI experiment. Two separate two-way
rmANOVA [aversiveness (aversive/non-aversive) X hand con-
dition (human/rubber)] on pain intensity and unpleasantness
ratings showed main effects of aversiveness: there were greater
ratings for aversive than non-aversive stimuli [pain intensity,
F(1,14) = 255.45, p < 0.001; unpleasantness, F(1,14) = 67.30,
p < 0.001]. We did not find any significant main effects of
hand [pain intensity, F(1,14) = 0.37, p = 0.554; unpleasantness,
F(1,14) = 0.07, p = 0.791] and interaction effects [pain inten-
sity, F(1,14) = 1.06, p = 0.320; unpleasantness, F(1,14) = 1.14,
p = 0.303].

fMRI Results

Aversive effects that were common to both the human- and
rubber-hand conditions (common aversive effects) showed sig-
nificant activations in both visual areas [two clusters; peak
voxels = (x = 26, y = — 64, z = 22) and (x = — 36,
y = — 70, z = 18); Table 1; Figure 3 green-colored
area]. On the other hand, we observed no main effect
of hand type; neither the contrast of [human-hand (aver-
sive + non-aversive) > rubber-hand (aversive + non-aversive)]
nor [rubber-hand (aversive + non-aversive) > human-hand
(aversive + non-aversive)] revealed any significant activa-
tion.

Regions of significant activation were observed for the inter-
action between hand (human-hand vs. rubber-hand) and aver-
siveness (aversive vs. non-aversive) in the right visual areas
[peak voxel = (x = 26, y = — 80, z = 0); Table 2;
Figure 3 red-colored area and Figure 4]. In addition, regions
of activation revealed by these two contrasts (the common
effects related to aversiveness and the interaction between
hand type and aversiveness) showed little overlap (yellow-
colored area in Figure 3; section of z coordinates = 5).
Furthermore, even with a more lenient peak threshold (uncor-
rected p < 0.01) for the common aversive effects, there was
little overlap [39 voxels (8.9%)] between these two contrasts.
Post hoc analysis showed that only the comparison between the
rubber-hand aversive and rubber-hand non-aversive conditions
showed a significant difference (Bonferroni corrected p < 0.05,
Figure 4B).

We analyzed the cluster of activation in the visual cor-
tex according to the anatomical probabilistic map (Eickhoff
et al, 2005). The cluster of the interaction effects consisted
of regions within V1, V2, V3v, and V4. By contrast,
two clusters of visual areas found
effects included neither V3v nor V4. Instead, these clus-
ters included regions of activation within V1 and V5
(Table 3).

in common aversive
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FIGURE 2 | Continued

FIGURE 2 | Continued

Rating results during and after fMRI experiment. (A) Uncomfortableness
experienced during the two aversive-evaluation runs (human-hand and rubber-
hand runs) is shown. Contact with the rubber hand was more unpleasant
than contact with the human hand (paired-t test, p < 0.01). (B) Rating
results regarding pain intensity and unpleasantness that the person depicted
in the photograph stimuli would feel. Pain intensity ratings for rubber-hand
aversive, rubber-hand non-aversive, human-hand aversive, and human-hand
non-aversive stimuli were 77.0 (£2.1), 11.9 (£2.6), 76.7 (£2.1), and 13.8
(+3.5), respectively. Unpleasantness ratings for rubber-hand aversive, rubber-
hand non-aversive, human-hand aversive, and human-hand non-aversive
stimuli were 72.9 (£2.9), 18.2 (£3.6), 72.0 (£3.6), and 20.0 (+4.8), respectively.
Two separate two-way rmANOVAs (hand x aversiveness) on pain intensity
and unpleasantness ratings showed significant main effects of aversiveness
(p-values < 0.001). **p < 0.01, ***p < 0.001.

TABLE 1 | Significant activation for common aversive effects [aversive
(rubber-hand + human-hand) > non-aversive (rubber-hand + human-
hand)].

Clusterp x y z Cluster size t-value
(FWE) (number of voxels)
Right visual  <0.001 26 —-64 22 2050 5.78
area
Left visual 0.015 -36 -70 18 556 5.49
area

The threshold of these activations was at peak level uncorrected p < 0.005 and at
cluster level family-wise error (FWE) corrected p < 0.05.

Simple regression analysis between the total PCS scores
and estimated beta values from the (rubber-hand - human-
hand) aversive contrast revealed a significant negative correlation
(R =-0.556; p = 0.031; Figure 5).

Discussion

Effects of Aversiveness on Behavioral

Results

Participants gave unpleasantness and simulated pain intensity
ratings for aversive and non-aversive photographic stim-
uli. The results showed significantly higher unpleasantness
and pain intensity ratings for aversive than non-aversive
visual stimuli. These results suggest that the partici-
pants cognitively recognized the aversiveness of the visual
stimuli.

Effects of Aversiveness on fMRI Results

Compared with non-aversive visual stimuli, greater activation
was found in visual cortical areas for aversive visual stim-
uli during the rubber- and human-hand conditions. In this
sense, the present results support the previous studies showing
aversiveness-related activation in visual cortical areas (Lane et al.,
1999; Mourao-Miranda et al., 2003). As the aversive-related acti-
vation in the present study partially overlapped with the visually
body-sensitive activation found in our previous studies (3-15%
in the right cluster, and 21-47% in the left cluster; Kitada et al,,
2014; Okamoto et al., 2014), the common aversive effects might
involve body-related aversive processing such as physical pain.
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FIGURE 3 | Significant activation for the interaction between hand
and aversiveness conditions (rubber-hand > human-hand — aversive
effects) and common aversive effects. Red, green, and yellow clusters
showed interaction effects, common aversive effects, and overlapped

I Rubber-hand > Human-hand - Aversive Effect
Common Aversive Effect
Overlap

clusters, respectively. Threshold of these activations was at peak level
uncorrected p < 0.005 and at cluster level family-wise error (FWE)
corrected p < 0.05. The left upper number of each section indicates z
coordinates.

Thus, aversive characteristics (pain intensity and unpleasantness)
are associated with increased visual cortical activation.

Behavioral Effect of Joining Hands with a

Person

The results of a questionnaire measuring comfortableness com-
pleted after the fMRI session indicated that joining hands with a
person was more comfortable than joining with a rubber hand.
Since the set of visual stimuli was identical across the human-
and rubber-hand conditions, and the order of the two conditions
was counterbalanced among the participants, the current com-
fortableness rating results can be attributed to the target of the
joined hands. This result can be partly explained by the uncanny
valley effect (Mori, 1970). In this effect, humans have an unpleas-
ant reaction toward an almost perfectly realistic human model

(Mori, 1970) and its abnormal features (Seyama and Nagayama,
2007). In this experiment, the rubber and real hands looked
highly similar, whereas the rubber hand alone was disconnected
from the forearm. Thus, the uncanny valley effect may contribute
to the more uncomfortable feeling related to joining hands with
the rubber hand compared with joining hands with a friend. In
addition to this effect, it is known that photographic or video
stimuli showing participants’ romantic partner or child activates
the reward system (Bartels and Zeki, 2000, 2004; Aron et al.,
2005; Noriuchi et al., 2008; Xu et al., 2011a; Acevedo et al,,
2012). In this sense, the presence of a familiar person might be
experienced as rewarding. In addition, since humans communi-
cate emotional information through touch (Fisher et al., 1976;
Whitcher and Fisher, 1979; Hertenstein et al., 2006; Lederman
et al., 2007; Kitada et al., 2013), joining hands with a person,
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TABLE 2 | Significant activation for the interaction between hand and
aversiveness [rubber-hand (aversive - non-aversive) > human-hand
(aversive — non-aversive)].

Cluster p X y z  Cluster size t-value
(FWE) (number of voxels)
Right 0.027 26 —-80 O 436 517
visual area

The threshold of these activations was at peak level uncorrected p < 0.005 and at
cluster level FWE corrected p < 0.05.

especially with a familiar person, might give rise to positive
affect.

Modulation of Visual Processing Caused by
Joining Hands with a Person

The interaction between hand (human-hand vs. rubber-hand)
and aversiveness condition [rubber-hand (aversive > non-
aversive) — human-hand (aversive > non-aversive)] was signif-
icant in the right visual cortex. Furthermore, the rubber-hand
aversive condition showed significantly greater activation than
the rubber-hand non-aversive condition, whereas the human-
hand aversive condition did not show significantly greater acti-
vation than the human-hand non-aversive condition. To the best
of our knowledge, this is the first demonstration that the neural
response to aversive stimuli in the visual cortex can be sup-
pressed by social contact through interpersonal touch. Consistent
with previous studies showing that aversive (unpleasant and high
arousal) visual stimuli cause activation in visual areas (Lane et al.,
1999; Mourao-Miranda et al., 2003), aversive visual stimuli dur-
ing the rubber-hand condition activated visual perception areas
(V2, V3v, and V4). Since the response in V2 and V4 can be
modulated by top-down attention (Kastner and Ungerleider,

2000), one possible explanation for this interaction effect is that
the effect of aversiveness during the human-hand condition was
suppressed via an attentional shift away from aversive visual
processing and toward the processing of interpersonal touch.
Furthermore, the location of visual cortical activation in the cur-
rent study overlaps with that shown in a previous study indicating
that attentional modulation affects visual object processing in the
lateral occipital complex (Rose et al., 2005; Bingel et al., 2007;
Klemen et al., 2009) via modulation by higher visual perceptual
areas including V4 (Rose et al., 2005). The present result is con-
sistent with the suggestion that attention to positive emotional
information via interpersonal touch has a modulatory effect on
visual perceptual processing.

Simple regression analysis showed a negative correlation
between total PCS score and average activation around the peak
of the cluster of interaction effects related to rubber-hand aver-
sive > human-hand aversive. Participants scoring more highly on
the PCS scale are more sensitive to aversive visual stimuli in com-
parison with participants scoring lower on the PCS scale (Sullivan
etal., 1995, 2001). This sensitivity to aversive stimuli may recruit
attentional focus such as recursive thoughts about aversive visual
stimuli (Sullivan etal., 1995), and this might lead to a requirement
for a higher load of information processing in the visual cortex.
Thus, the present negative correlation results suggest that par-
ticipants who are more sensitive to aversiveness show a reduced
tendency to show the reported effect of a familiar friend’s hand,
due to a higher processing load caused by aversive stimuli.

The brain areas showing the interaction between hand type
and aversiveness ratings (V2, V3v, and V4) are located in the
ventral visual pathway (Rottschy et al., 2007; Wilms et al,
2010), also known as the ‘what’ pathway in visual perception
(Ungerleider and Mishkin, 1982; Goodale and Milner, 1992).
Ventral occipital lesions impair explicit discrimination of objects’

o)

Average estimaged beta in
12 mm diameter sphere at (26, -80, 0) (a. u.)

FIGURE 4 | Significant activation for the interaction between hand and
aversiveness conditions. (A) Significant cluster is shown. The peak of the

significant cluster is located at the section. (B) Average estimated beta of each
condition in 12 mm diameter sphere at (26, —-80, 0) is shown. The threshold of

0.6

0.4

0.2

T
Aversive I Non-aversive| Aversive |Non-aversive
Rubber-hand Human-hand

activation at peak level uncorrected p < 0.005 and at cluster level FWVE
corrected p < 0.05. Post hoc analysis showed that the aversive effect in the
rubber-hand condition significantly differed (Bonferroni corrected p < 0.05),
whereas that in the human-hand condition did not.
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TABLE 3 | Classifications of the visual areas (V1, V2, V3v, V4, and V5) in three clusters.

Cluster size(number of voxels) \"Al V2 V3v V4v V5
Aversive (rubber-hand + human-hand) > non-aversive (rubber-hand + human-hand)
Right visual area (26, —64, 22) 2050 396 (17.2%) 31 (1.9%) - - 10 (10.5%)
Left visual area (—36, —70, 18) 556 - - - - 47 (65.0%)
Rubber-hand (aversive - non-aversive) > human-hand (aversive - non-aversive)
Right visual area (26, —80, 0) 436 44 (1.8%) 78 (4.4%) 44 (1.8%) 59 (9.4%) -

Anatomical labeling of the activated clusters was performed using the Anatomy toolbox v1.8 (Eickhoff et al., 2005). The number of activated voxels and % of activated

voxels in each visual area are shown.
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(rubber-hand > human-hand) aversive
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FIGURE 5 | Correlation between average beta value related to
(rubber-hand > human-hand) aversive condition and total PCS score.
Average beta value was calculated within a sphere of 12-mm diameter
located at the peak of significant activation from the interaction between hand
effects and aversive effects.

properties, although patients are still able to reach and grasp
the objects (James et al., 2003). Thus, the present result showing
modulation of visual processing during the human-hand condi-
tion may be implemented via suppression of the processing of
object features. Joining hands with a person may suppress feature
inspection for aversive visual stimuli.

The two aversive rating results (unpleasantness and pain
intensity) did not show hand effects. This suggests that cogni-
tive evaluation of visual stimuli was similar during human- and
rubber-hand conditions. In addition, there was little overlap of
the activation in visual cortex between the aversive effects specific
to the rubber-hand and the common aversive effects. As process-
ing of the cognitive evaluation of aversiveness should be reflected
in the activation related to the common aversive effects, this result
indicates that the visual cortical region showing aversive-related
activation specific to the rubber-hand (Figure 3) was not engaged
in the cognitive evaluation process. Thus, aversive-related acti-
vation in the rubber-hand condition might be redundant visual
processing. Furthermore, we found no overlap between the
present rubber-hand-specific activation and that reported in visu-
ally body-sensitive areas in previous studies (Kitada et al., 2014;
Okamoto et al., 2014). Based on these results, we speculated that
the modulation target process was not restricted to body-related

processing (e.g., physical pain or interpersonal touch), and that it
might include more general processes for redundant processing
or rumination (e.g., visual imagery related to negative feeling).
Rumination about aversive stimuli can lead to negative thoughts
(Sullivan et al., 1995). We suggest that joining hands with a
person suppress redundant visual processing, thus, leading to
reduced stress or negative emotion. In this sense, joining hands
with a person might have a security-provision function through
attention modulation, which is afforded by social relationships
(Mikulincer et al., 2003).

Based on these results and previous findings, we hypothe-
size how these interpersonal touch effects are related to atten-
tion modulation as follows. Interpersonal touch evokes positive
feelings, which can suppress negative emotions (e.g., emotions
aroused by aversive stimuli; Hertenstein, 2002). Furthermore,
interpersonal touch contributes to social connections (Gallace
and Spence, 2010) and social bonding (Dunbar, 2010) via various
mechanisms, including psychopharmacological ones (e.g., release
of neuropeptides such as oxytocin and endorphins; Dunbar,
2010). As humans have a fundamental motivation to form pos-
itive social relationships (Baumeister and Leary, 1995), interper-
sonal touch captures our attention because it reminds us of social
relationships. In order to further investigate these mechanisms,
future studies should clarify whether other factors involved in
interpersonal touch, such as the social closeness of the person
(e.g., familiar vs. unfamiliar person) and the object properties of a
human skin (e.g., shape, warmth, and smoothness of one’s hand),
are critical modulators of the response toward aversive stimuli.

Limitations

In the present study, we did not find empathy-related brain acti-
vation in the pain matrix, including limbic structures (Hutchison
etal., 1999; Singer et al., 2004, 2006; Cheng et al., 2010). Empathic
brain responses are modulated by various kinds of relation-
ships and by participants’ personality features (de Vignemont and
Singer, 2006). One of the major factors that leads to enhanced
empathic brain responses is familiarity (Singer et al., 2004; Cheng
et al., 2010; Kawamichi et al., 2013). Furthermore, the aversive
response to visual stimuli showing an injection to the arm or
foot (similar to in the present study) could be suppressed by the
context [e.g., suppression of the affective link caused by a profes-
sional relationship between the participant and the target (Decety
etal., 2010), and association with a desired outcome (Lamm et al.,
2007)]. The lack of empathy-related pain-matrix activation in our
study may be partly due to the fact that an unfamiliar person
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without affective link, rather than a familiar person, was receiv-
ing aversive visual stimuli. However, the aim of the present study
was to investigate the modulatory effects of joining hands on
visual perceptual processing. Since low processing load is nec-
essary for investigating attention modulation effects (Xu et al.,
2011b), using aversive visual stimuli showing unfamiliar others
is preferable, as this will be less emotionally arousing. This sug-
gests that, in studies designed to investigate modulatory effects
on visual perceptual processing, absence of pain-related empathic
brain responses is to be expected.

Conclusion

Joining hands with a person arouses positive feelings. The cur-
rent study showed evidence that the interpersonal touch effect
caused by joining hands with a person suppresses visual per-
ceptual processing in visual cortical areas, in a way that is
similar to attention modulation processes. This hand-modulated
visual activation was located in areas including V1, V2, V3,
and V4v, which differed from the location (in areas includ-
ing V1, V2, and V5) of the aversive-related activation com-
monly caused by the two conditions (i.e., rubber-hand and
human-hand). This effect was particularly evident for more
aversiveness-insensitive participants, who might allocate less
attentional resources to processing aversive stimuli. We conclude
that interpersonal touch prevents redundant visual inspection of
aversive stimuli.
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