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Spasticity is one of many consequences after stroke. It is characterized by a
velocity-dependent increase in resistance during passive stretch, resulting from
hyperexcitability of the stretch reflex. The underlying mechanism of the hyperexcitable
stretch reflex, however, remains poorly understood. Accumulated experimental evidence
has supported supraspinal origins of spasticity, likely from an imbalance between
descending inhibitory and facilitatory regulation of spinal stretch reflexes secondary
to cortical disinhibition after stroke. The excitability of reticulospinal (RST) and
vestibulospinal tracts (VSTs) has been assessed in stroke survivors with spasticity using
non-invasive indirect measures. There are strong experimental findings that support the
RST hyperexcitability as a prominent underlying mechanism of post-stroke spasticity.
This mechanism can at least partly account for clinical features associated with spasticity
and provide insightful guidance for clinical assessment and management of spasticity.
However, the possible role of VST hyperexcitability cannot be ruled out from indirect
measures. In vivo measure of individual brainstem nuclei in stroke survivors with
spasticity using advanced fMRI techniques in the future is probably able to provide direct
evidence of pathogenesis of post-stroke spasticity.

Keywords: spasticity, stroke, pathophysiology, brainstem, reticulospinal pathways

Introduction - Spasticity Represents a Phenomenon of
Abnormal Plasticity

Spasticity is a common complication of stroke, but is only one of the many consequences of the
UMN syndrome. It is considered a “positive” UMN sign since it represents excessive muscle tone
and stretch reflex. Other so-called positive consequences include clonus and spasms. “Negative”
consequences of the UMN syndrome, on the other hand, include weakness, impaired coordination,
impaired motor control/planning, and easy fatigability (Mayer and Esquenazi, 2003). Following
an UMN lesion, these positive and negative consequences emerge, evolve, and interact with each
other, resulting in a dynamic clinical presentation during the recovery phase after a stroke (Gracies,
2005a,b). For example, weakness and spasticity often result in immobilization of a joint at a
shortened muscle length, and thus potentiating contracture. This in turn exacerbates spasticity in

Abbreviations: ASR, acoustic startle reflex; a-MN, a-motor neuron; CST, corticospinal tract; RST, reticulospinal tract; UMN,
upper motor neuron; VST, vestibulospinal tract.
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these muscles. Such a vicious cycle continues and worsens the
condition if not effectively interrupted (O'Dwyer et al., 1996;
Gracies, 2005a,b). There is a wide range of the prevalence of spas-
ticity (Wissel et al., 2013), from 19% (Sommerfeld et al., 2004) to
92% (Malhotra et al., 2011) and variable onset time after stroke
(Ward, 2012).

Motor recovery starts immediately after stroke onset, and fol-
lows a relatively predictable pattern, regardless of stoke type
(hemorrhagic or ischemic, cortical or subcortical; Twitchell,
1951). Brunnstrom (1966, 1970) empirically described the stereo-
typical stages of motor recovery, starting with flaccidity to full
recovery of motor function (see Figure 1). During the course
of motor recovery, stroke survivors could progress from one
recovery stage to the next at variable rates, but always in an
orderly fashion and without omitting any stage. However, recov-
ery may be arrested at any one of these stages (Twitchell, 1951;
Brunnstrom, 1970).

Based on Brunnstrom’s description, the evolution of motor
recovery appears to parallel the emergence and eventual disap-
pearance of spasticity. The common observation is that right after
stroke onset, a state characterized by depression of strength, con-
trol, and reflexes sets in. This is followed by a gradual return of
reflexes, and in some cases, development of hyperreflexia. There
is no a sudden change to hyperreflexia. The emergence of spastic-
ity, though highly variable, is usually shortly following the onset
of stroke (Ward, 2012). This implies that there must be some sort
of neuronal plastic changes after the initial injury. This process
occurs at any time, but is usually seen between 1 and 6 weeks
after the initial injury (Balakrishnan and Ward, 2013). This pro-
cess of plastic rearrangement often results in muscle overactivity
and hyperreflexia, thus spasticity (Farmer et al., 1991). In a recent
longitudinal study that examined the time course of develop-
ment of spasticity and contractures at the wrist 6 weeks after
a stroke, the authors reported that patients who recovered arm
function showed signs of spasticity at all assessment points but
did not develop contractures. In contrast, patients who did not
recover useful arm function had signs of spasticity and evidence
of contracture formation over the course of a 36-weeks follow-up
(Malhotra et al., 2011). Collectively, emergence and disappear-
ance of spasticity during the course of complete motor recovery

Spasticity

n
Marked

pasticity
I

Synergies
Some spasticity

Out of synergy
Less spasticity,

v
Selective control
of movement

solated/coordinated
movement

Motor control

FIGURE 1 | Brunnstrom stages of motor recovery after stroke (at the
end of the manuscript).

imply that the development of spasticity reflects a phenomenon
of abnormal plasticity. Conversely, spasticity may persist if plastic
rearrangement and recovery are arrested.

Definition

Spasticity is easily recognized, but to accurately define it is not
easy. Lance (1980) proposed a consensus definition at a confer-
ence as follows:

“Spasticity is a disorder of the sensorimotor system characterized
by a velocity-dependent increase in tonic stretch reflexes (‘muscle
tone’) with exaggerated tendon jerks, resulting from hyperexcitabil-
ity of the stretch reflex, as one component of the upper motoneuron
syndrome”

(Lance, 1980).

This definition, though widely used, has been challenged,
and others have proposed different descriptions (Young, 1994;
Pandyan et al., 2005). However, all these definitions have explic-
itly emphasized that spasticity and associated phenomena are
caused by abnormal or hyperexcitable spinal reflexes.

Abnormal Regulation of Spinal Stretch
Reflex and Spasticity

Excitability of spinal stretch reflex arc is maintained by a bal-
anced descending regulation from the inhibitory dorsal RST
and facilitatory medial RST and VST, as well as intraspinal pro-
cessing. Therefore, hyperexcitability of stretch reflex in stroke
survivors with spasticity could be mediated by two categories of
mechanisms: abnormal descending regulations and/or abnormal
intraspinal processing of stretch reflex.

Abnormal Intraspinal Processing

Abnormal intraspinal processing in patients after stroke has been
well documented in the literature (Gracies, 2005b; Nielsen et al.,
2007; Mukherjee and Chakravarty, 2010; Burke et al., 2013).
In summary, abnormal intraspinal processing could result from:
(1) increased afferent input to spinal motoneurons. The sensitiv-
ity of spindles (group Ia primary and group II secondary afferent
fibers) is enhanced through activation of the gamma fusimotor
system and/or adaptive changes after immobilization, resulting
in increased gain of stretch reflex; (2) altered inter-neuronal reflex
circuits resulting in enhanced motoneuronal excitability, includ-
ing reduction in presynaptic inhibition on Ia afferents, group Ib
facilitation (instead of inhibition), group II facilitation, reduced
reciprocal inhibition. These changes result in less inhibition from
intraspinal reflex circuits on spinal motor neurons, such that
motoneurons are at subthreshold or at spontaneous firing; and
(3) changes in intrinsic properties of the spinal motor neurons.
Disruption of descending inputs could cause spinal motoneu-
rons to activate voltage-dependent persistent inward currents
(Heckmann et al., 2005), which can lead to the development of
plateau potentials in motoneurons and self-sustained firing in
response to a transient input, such as a bout of passive stretch.
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These changes in reflex circuits and intrinsic properties of spinal
motoneurons can lead to a-MN hyperexcitability (i.e., spon-
taneous motor unit firing or at subthreshold levels) and thus
decreased reflex threshold.

o-MN hyperexcitability has been considered as the primary
intraspinal change in stroke survivors with spasticity (Katz and
Rymer, 1989). A number of studies using different technologies
[surface electromyography (EMG), intramuscular EMG, and lin-
ear array surface recordings] have provided evidence of motor
unit spontaneous discharges in stroke survivors with spasticity
(Burne et al., 2005; Li et al., 2006; Kallenberg and Hermens, 2009,
2011; Mottram et al., 2009, 2010; Chang et al., 2013). Motor unit
spontaneous discharges indicate that motor neurons are sponta-
neously firing. For example, spontaneous motor unit discharges
were detected at rest in spastic biceps brachii muscles. The fir-
ing frequency of the spontaneous motor units was increased
with increases in voluntary elbow flexion force. The spontaneous
motor units continued to fire after activation despite verbal cue-
ing to relax the muscle, although the stroke subject reported that
he was relaxed (Mottram et al., 2009). The firing frequency of
spontaneous units was found be greater in the post-contraction
resting period than in the pre-contraction resting period (Chang
et al., 2013). Collectively, these observations suggest that spon-
taneous motor unit discharges are likely caused by supraspinal
mechanisms that are not under voluntary control (Chang et al.,
2013).

Abnormal intraspinal processing and resultant a-MN hyper-
excitability is likely a plastic rearrangement secondary to
imbalanced excitatory and inhibitory descending inputs to
the intraspinal network. Plastic rearrangement at segmental
levels has been demonstrated after disruption of descending
supraspinal inputs to spinal reflexes after stroke (Gracies, 2005b;
Nielsen et al., 2007; Burke et al., 2013; Sist et al., 2014). Recently,
Sist et al. (2014) demonstrated in an animal model that after a
cortical sensorimotor stroke, there is a time-limited period of
heightened post-stroke structural plasticity in both brain and
spinal cord. The plastic change correlates with the severity of cor-
tical injury and promotes behavioral recovery. Elevated structural
plasticity in spinal cord is highest during the first 2 weeks and
returns to baseline levels by 28 days post-stroke.

Imbalanced Descending Regulations

Excitability of the stretch reflex pathway (afferent fibers, spinal
motor neurons, and efferent fibers) is predominantly regulated by
excitatory and inhibitory descending signals of supraspinal ori-
gins [see reviews in (Young, 1994; Gracies, 2005b; Sheean, 2008;
Mukherjee and Chakravarty, 2010; Burke et al.,, 2013)]. Among
five important descending pathways of the human motor sys-
tem, including corticospinal (CST), RST, VST, rubrospinal, and
tectospinal, the CST is the only one that originates from the cere-
bral cortex and is primarily involved in voluntary movement.
Isolated lesions to this pathway in animal studies produce weak-
ness, loss of dexterity, hypotonia, and hyporeflexia, instead of
spasticity. In a patient with a lacunar stroke causing an exclusive
lesion of the pyramidal fibers at the medullary level, no spasticity
was observed (Sherman et al., 2000). The other four descend-
ing pathways, on the other hand, originate from the brainstem.

The rubrospinal pathway originating from the lateral brainstem is
almost absent in humans (Nathan and Smith, 1955). Tectospinal
tract originates from the tectum (superior colliculus) in the mid-
brain and contributes to visual orientation (Brown, 1994; Sheean,
2008; Mukherjee and Chakravarty, 2010).

Reticulospinal and VST are anatomically distinct and differ in
cortical control. The dorsal RST provides a powerful inhibitory
effect on the spinal stretch reflex. It originates from the ventrome-
dial reticular formation in the medulla, which receives facilitation
from the motor cortex via corticoreticular fibers, and acts as
the suprabulbar inhibitory system. The CST and corticoreticular
tracts run adjacent to each other in the corona radiata and inter-
nal capsule. Below the medulla, the dorsal RST and the lateral
CST descend adjacent to each other in the dorsolateral funiculus.
In contrast, the medial RST and VST exert excitatory effects on
spinal stretch reflexes. The medial RST has a diffuse origin mainly
from the pontine tegmentum with efferent connections passing
through and receiving contributions from the central gray and
tegmentum of the midbrain and the medullar reticular formation
(distinctly different from the inhibitory area). In contrast to the
dorsal RST, the medial RST is not affected by stimulation of motor
cortex or internal capsule. The VST originates from the lateral
vestibular nucleus and descends virtually uncrossed. Both medial
RST and VST descend in the ventromedial cord, anatomically
distant from the lateral CST and dorsal RST in the dorsolateral
cord [see reviews in Brown (1994), Young (1994), Sheean (2008),
Mukherjee and Chakravarty (2010)].

Therefore, the RST and VST provide balanced excitatory and
inhibitory descending regulation of the spinal stretch reflex, and
any imbalance of these descending influences is thought to be
a major cause of abnormal stretch reflex and thus spasticity
(Figure 2). Abnormalities in RST outflow are considered to play
a major role in the genesis of spasticity in humans, while the
VST, although responsible for decerebrate rigidity, appears to
have a limited role. These views are based on findings from inva-
sive lesional studies in animals in the last century [see reviews
in Brown (1994), Sheean (2008), Mukherjee and Chakravarty
(2010)]. For example, section of unilateral or bilateral VST in the
anterior cord only caused a transient reduction in the extensor
tone in the lower limbs. With more extensive cordotomies that
damage the medial RST, spasticity was drastically reduced, but
tendon hyperreflexia, clonus, and adductor spasms, persisted. In
stroke with cortical and internal capsular lesions, damages often
happen to both CST and corticoreticular tracts, resulting in loss
of cortical facilitatory input to the medullary inhibitory center.
This leaves the facilitatory medial RST unopposed, since it is inde-
pendent of cortical control. As a result, spastic hemiplegia with
antigravity posturing is often seen.

Recent Advances in Brainstem
Mechanisms of Stretch Reflex
Hyperexcitability

There is no experimental evidence from human studies, since
Brown’s (1994) review of animal studies on possible brain-
stem mechanisms for spasticity. It is mainly due to technical

Frontiers in Human Neuroscience | www.frontiersin.org

April 2015 | Volume 9 | Article 192


http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive

Li and Francisco

Spasticity pathophysiology

Cerebral Cortex

]
CST— H

i

T

Cortico- __| [I—
reticular tract i

Medial RST-
VST-

%)
Al ©
Nl

Intraspinal network

\

P )
()~

: Pontine reticular formation

1 Medullar reticular formation

1 . .
1 Lateral vestibular nuclei

Dorsal RST
Lateral CST

FIGURE 2 | lllustration of supraspinal control of spinal stretch reflex. CST, cortical spinal tract; RST, reticulospinal tract; VST, vestibular spinal tract; (+),
facilitation; (—), inhibition. Other descending pathways, such as rubrospinal tract, tectospinal tract, medial CST are not shown here.

lllustration of supraspinal control of spinal stretch
reflex. CST: cortical spinal tract; RST:
reticulospinal tract; VST: vestibular spinal tract;
(+): facilitation; (-): inhibition. NOTE: other
descending pathways, such as rubrospinal tract,
tectospinal tract, medial CST are not shown here.

difficulty to assess brainstem activity in stroke survivors with
spasticity. Recent advance in functional MRI techniques with
high spatial resolution offers the hope to localize brainstem
nuclei (D’Ardenne et al., 2008; Katyal et al., 2010; Henderson
and Macefield, 2013; Sulzer et al., 2013; Katyal and Ress,
2014). Such in vivo measurement of individual brainstem nuclei
in stroke survivors with spasticity is probably able to pro-
vide direct evidence of pathogenesis of post-stroke spastic-
ity. Nevertheless, recent studies have used indirect measure-
ments to examine different brainstem mechanisms in post-
stroke spasticity. Findings from these studies have provided
further support for brainstem mechanisms in post-stroke
spasticity.

The ASR, a brainstem-mediated reflex via reticulospinal path-
ways (Davis et al., 1982; Brown et al., 1991), could be used to
examine reticulospinal excitability non-invasively in stroke sur-
vivors (Voordecker et al., 1997; Jankelowitz and Colebatch, 2004;
Coombes et al., 2009; Honeycutt and Perreault, 2012; Li et al,
2014). Normal ASR responses could be elicited in flaccid mus-
cles of some patients in the acute phase after cerebral infarcts,
although no muscle response to magnetic cortical stimulation
of the primary motor cortex was elicited (Voordecker et al,
1997). Furthermore, exaggerated ASR responses were observed
in spastic muscles in chronic stroke (Jankelowitz and Colebatch,
2004). In a recent study (Li et al., 2014), we examined ASR

responses in a group of chronic stroke survivors within the full
spectrum of motor recovery, from stage I (flaccid) to stages
IT to V (spastic paresis) to stages VI and VII (full recovery)
without spasticity. The rationale was that motor recovery has
been arrested or plateaued in chronic stroke. ASR responses
could reflect reticulospinal excitability. We observed that ASR
responses were within normal limits in stroke survivors in the
extreme ends of this spectrum of recovery (i.e., those who
remained flaccid or have fully recovered). However, exaggerated
ASR responses were consistently observed in spastic patients.
These results suggest that hyperexcitability of reticulospinal path-
ways at rest occurs in the spastic stages, but not in the flaccid
or recovered non-spastic stages. The presence of exaggerated
ASR responses and hyperexcitable RST were considered to result
from corticoreticular disinhibition after stroke (Voordecker et al.,
1997).

Reticulospinal pathways usually have bilateral projections
(Davidson and Buford, 2006; Riddle et al., 2009; Herbert et al.,
2010; Baker, 2011). If RST hyperexcitability is present in stroke
survivors with spasticity, unilateral voluntary activation could
lead to activation on the contralateral side (i.e., motor overflow).
We further compared EMG activities of resting contralateral
biceps muscles between stroke survivors with and without spas-
ticity (Li et al., 2014). During unilateral voluntary elbow flexion,
EMG activity of the resting biceps muscles on the non-impaired
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limb increased proportionally in the spastic group, but no such
correlation was found in the recovered non-spastic group. Such
results of contralateral motor overflow from voluntary activation
of spastic biceps muscles further support RST hyperexcitability
in spastic, but not non-spastic stages. Collectively, these findings
provide new evidence that RST hyperexcitability plays a critical
role in pathophysiology of spasticity. Furthermore, the disappear-
ance of spasticity and RST hyperexcitability in fully recovered
stroke survivors suggests that spasticity is a phenomenon of
abnormal plasticity in the course of motor recovery.

In another study that examined the potential role of VST in
post-stroke spasticity, vestibular evoked myogenic potentials in
the sternocleidomastoid muscle in response to high-level acoustic
stimuli (130 dB) to the ears of stroke survivors were analyzed. The
magnitudes of evoked potentials were greater on the impaired
side than the non-impaired side, and had a strong positive
relationship between the degree of asymmetry and the severity
of spasticity in spastic-paretic stroke survivors, thus suggesting
hyperexcitability of VST (Miller et al., 2014). Yet this level of
acoustic stimuli is also likely to activate ASR via reticulospinal
pathways (Davis et al., 1982; Brown et al., 1991). Furthermore,
the VST mediating the evoked myogenic potentials terminates in
the cervical region (Nyberg-Hansen, 1964), thus not likely to be
involved in lower limb spasticity. Advanced imaging studies with
in vivo assessment of individual brainstem nuclei will be needed
to provide direct evidence of different mechanisms.

It is worth mentioning that the reticular formation is very
diffusely located throughout the brainstem, yet well organized
(Angeles Fernandez-Gil et al., 2010; Hurley et al., 2010). It has
four longitudinal columns with ill-defined boundaries, including
the paramedian, paramedian-medial, intermediate, and lateral
zones. The reticular formation has connections with the spinal
cord, cortices, thalamus, cerebellum, basal ganglia, and other
centers in the brainstem. In addition to its above-mentioned
role in the regulation of spinal reflexes, the reticular formation
is also involved in the coordination of fine movements, auto-
nomic regulation of respiration, heart rate, and blood pressure, as
well as in arousal, consciousness, and modulation of pain. These
anatomical connections could help understand clinical features

associated with spasticity which appears to be primarily related
to reticulospinal hyperexcitability (Table 1).

Peripheral Contributions

Spasticity is one of a multitude of factors that cause hypertonia. It
can be differentiated from hypertonia of other etiologies through
its dependence on the speed of muscle stretch (Sheean, 2002).
In a study of 24 hemiparetic patients tested within 13 months
after stroke, 12 had increased resistance to passive stretch of the
elbow joint among whom only five had a velocity-dependent
response, i.e., spasticity (O’Dwyer et al., 1996). Furthermore,
spasticity may be explained by changes in mechanical proper-
ties of muscles and not only by hyperreflexia (Dietz et al., 1981;
Thilmann et al., 1991). The increased mechanical resistance may
be caused by alterations in tendon compliance and physiological
changes in muscle fibers. These muscular property changes may
be adaptive and secondary to paresis. When a paralyzed muscle
is held in a shortened position, it loses sarcomeres to “adjust”
its length so that it can produce optimal force at the shortened
muscle length. As a result, muscle fibers are almost twice as stiff
as in normal subjects (Friden and Lieber, 2003). These changes
in mechanical properties of muscles occur gradually and may
lead to contracture and increased muscle stiffness (Mirbagheri
etal., 2008). These components are not adequately distinguished
in routine clinical examinations (Vattanasilp et al., 2000) and in
quantitative assessment based on measurement of muscle stiff-
ness in response to passive external stretch at different speeds in
a laboratory setting as well (Malhotra et al., 2009).

Implications for Clinical Assessment
and Management

As discussed above, the RST hyperexcitability is likely to be a pri-
mary mechanism, while altered intraspinal network processing
and peripheral muscular changes are secondary and adaptive fac-
tors that contribute to the development of post-stroke spasticity.

TABLE 1 | Clinical features associated with post-stroke spasticity.

Associated with increased reticulospinal excitatory inputs to intraspinal
network, resulting in hyperexcitable stretch reflex responses

® Increased resting tone and velocity-dependent resistance
® Exaggerated response to normal stimuli (passive stretch at various speeds) or noxious

stimuli (cutaneous and nociceptive)
® Dynamic tone (change with posture and during walking)

Associated with imbalanced excitatory reticulospinal pathways,
resulting in diffuse, stereotyped activation in the presence of diminished
CST voluntary activation

flexion)

® Spastic co-contraction (disordered motor control), e.g., attempt to extend the elbow leads
to activation of elbow flexors — co-contraction.
® Stereotyped synergy pattern (shoulder adduction, internal rotation, elbow, wrist, and finger

® Associated reactions (abnormal spread of motor activities)

Associated with interactions between disinhibited reticular formation
and other centers in the brainstem and cortex

® Fluctuating tone (decreased at night and during sleep)
® Elevated tone with pain (via connections with reticular formation)

® Elevated tone with emotional changes, such as anxiety, anger (via connections with reticular
formation)

® Change with respiratory activities (increased with cough; a flaccid hand opens when a
patient with acute stroke yawns)

® Associated with sympathetic symptoms (e.g., complex regional pain syndrome after stroke)
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As illustrated in Figure 2, the reticulospinal mechanism for post-
stroke spasticity is theoretically associated with the following
three pathophysiological changes along the neuroaxis: (1) disin-
hibited reticular formation centers in the brainstem secondary to
damage of corticoreticular tract, (2) hyperexcitable descending
reticulospinal projection along with diminished CST voluntary
activation, (3) altered intraspinal network and hyperexcitabil-
ity of spinal stretch reflex as a result. These pathophysiological
changes are able to at least partly account for other clinical fea-
tures associated with post-stroke spasticity, which are not as well
studied as spasticity itself (Table 1).

Implications for Clinical Assessments

Advances in understanding the underlying pathophysiology
make it easier to understand clinical presentations and assess-
ment of spasticity. Such clinical presentations are listed in
Table 1. Other than its role in the regulation of muscle tone and
motor function, the reticular formation has very divergent but
well-organized projections to other areas/centers in the brain-
stem and cortex (Angeles Fernandez-Gil et al., 2010). As such, the
reticular formation and its projections are involved in the regula-
tion of other basic survival functions, such as breathing, posture,
pain, temperature, and mood. RST hyperexcitability secondary
to disinhibition could alter interactions among these functions.
For example, recruitment of both plantar flexor and dorsiflexor
muscles was observed in a stroke survivor with spasticity dur-
ing normal breathing at rest, but with a predominance of plantar
flexion during coughing (Gracies, 2005b). Similarly, this mecha-
nism could also account for other common clinical observations
that spasticity changes with posture (dynamic tone), temperature

[weather (tighter in winter)], pain, emotion (anxiety, anger), and
time (day and night fluctuation). In the experience of many
clinicians, a sudden change in spasticity may result from and
is a presenting sign of changes in medical conditions, among
which urinary tract infections are commonly observed. These
associations are usually anecdotal observations and reports. The
newly proposed RST mechanism helps understand the underly-
ing pathophysiology.

Post-stroke spasticity is traditionally examined using clinical
scales such as the Ashworth scale and Tardieu scale and their
variations. The RST hyperexcitability mechanism of spasticity,
however, is able to offer an alternative approach to assess the
severity of spasticity. Since the RST plays an important role in
maintaining joint position and posture against gravity (Drew
et al., 2004), its anti-gravitational force effect could lead to a shift
in neuromuscular balance favoring anti-gravity muscle groups,
e.g., upper limb flexors and lower limb extensors. This new bal-
ance could be reflected by a change in the resting angle of a
joint, ie., the more spastic the muscle is, the more abnormal
resting angle the involved joint maintains. The concept of abnor-
mal resting angle is particularly helpful in the clinical assessment
of spasticity of small muscles or muscles that are difficult to
access (e.g., sternocleidomastoid muscle). The severity of ster-
nocleidomastoid muscle spasticity could be estimated based on
abnormality of head posture.

Implications for Spasticity Management

Disordered motor control is often seen in stroke survivors
with spasticity. In patients with moderate-to-severe elbow flexor
spasticity, an attempt to extend the elbow joint could lead to
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FIGURE 3 | A representative electromyography (EMG) of flexor digitorum  soon and as hard as possible after the “grip signal” and relax after the “release
superficialis (FDS) and extensor digitorum communis (EDC) before and signal” (dash lines). The release delay time decreases after injection, along with
10 days after botulinum toxin injection. The subject was asked to grip as shortened EDC activities. Modified from Chang et al. (2012, with permission).
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co-activation of the weak elbow extensors and spastic elbow flex-
ors (Ivanhoe and Reistetter, 2004). Similarly, Kamper and Rymer
(2001) reported finger flexion during an attempt to extend fingers
in patients with finger flexor spasticity. The inability to activate
weak extensors likely results from (1) weak extensors by dimin-
ished voluntary activation secondary to CST damage, and (2)
co-activation of spastic flexors secondary to hyperexcitable RST
activation after loss of inhibition. Understanding of these two
separate mechanisms underlying impaired voluntary control of
upper limb extensors is critical for management. Essentially, spas-
tic flexors could be “therapeutically weakened” via botulinum
toxin injection. As such, residual weak extensors may be able to
function adequately, since the primary goal of the extensors is to
open the hand or extend the elbow in preparation for functional
operation by the flexors in most activities of daily living which
does not require significant activation of the extensors (Park and
Li, 2013). We name it “therapeutic weakness” with the goal of
improving motor control of the antagonist.

This phenomenon of therapeutic weakness is revealed in a
recent case of improved voluntary grip control after botulinum
toxin injection to spastic finger flexors (Chang et al., 2012).
The patient was a 53-years-old female, who sustained a hem-
orrhagic right middle cerebral artery stroke 3 years earlier. She
had finger flexor spasticity and residual weak finger/wrist exten-
sion. She received 50 units of onabotulinumtoxinA injection to
each of the left flexor digitorum superficialis and flexor dig-
itorum profundus, respectively. As expected, botulinum toxin
injection led to weakness and tone reduction in the spastic fin-
ger flexors. However, she was able to open her hand faster due to
improved grip release time. This was accompanied by shortened
extensor electromyography activity (Figure 3). The improved
voluntary control of hand opening/grip release was likely realized
by decreased co-contraction of spastic finger flexors during vol-
untary finger extension. This case demonstrated that reduction in
finger flexor spasticity can improve voluntary control of residual
finger extension. Improvement in voluntary control of extensor
muscles likely results from reduced reciprocal inhibition from
the spastic flexors after injection. Previous results have shown
that injections can paralyze afferent fibers (Filippi et al., 1993),
in addition to blocking acetylcholine release pre-synaptically at
neuromuscular junctions, as such, resulting in reduced inhibition
from paralyzed flexors after injection.

This concept is further supported by another study (Bensmail
et al., 2010), where 15 patients with spastic hemiparesis from
stroke or traumatic brain injury were instructed to perform
reaching movements within the available range of motion before
and 1 month after botulinum toxin injections. Toxin was admin-
istered to the elbow, wrist, and finger flexors based on assessment
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