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The extent of visual cortex reorganization following injury remains controversial. We

report serial functional magnetic resonance imaging (fMRI) data from a patient with

sequential posterior circulation strokes occurring 3 weeks apart, compared with data

from an age-matched healthy control subject. At 8 days following a left occipital stroke,

contralesional visual cortical activation was within expected striate and extrastriate sites,

comparable to that seen in controls. Despite a further infarct in the right (previously

unaffected hemisphere), there was evolution of visual cortical reorganization progressed.

In this patient, there was evidence of utilization of peri-infarct sites (right-sided) and

recruitment of new activation sites in extrastriate cortices, including in the lateral middle

and inferior temporal lobes. The changes over time corresponded topographically with

the patient’s lesion site and its connections. Reorganization of the surviving visual cortex

was demonstrated 8 days after the first stroke. Ongoing reorganization in extant cortex

was demonstrated at the 6 month scan. We present a summary of mechanisms of

recovery following stroke relevant to the visual system. We conclude that mature primary

visual cortex displays considerable plasticity and capacity to reorganize, associated with

evolution of visual field deficits. We discuss these findings and their implications for

therapy within the context of current concepts in visual compensatory and restorative

therapies.
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Introduction

Serial functional magnetic resonance imaging (fMRI) has been used to examine cortical remod-
eling following injury and track functional recovery, particularly after strokes involving the
motor and sensory systems (Calautti and Baron, 2003). Activation patterns are often compared
to those of healthy age-matched control participants, and assume that pre-stroke activation in
the patient population would have been comparable to those of controls. There are few case
reports in the fMRI literature where individuals were studied prior to their deficits (Thulborn
et al., 1999), and sequential strokes have rarely been studied. In addition, researchers study-
ing the visual system have usually recruited patients months to years following their injury
(Goebel et al., 2001; Nelles et al., 2002; Schoenfeld et al., 2002). Here we present qualitative fMRI
findings from a 49 year old man, who participated in a prospective study of visual reorganization
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after stroke. He suffered sequential occipital strokes 3 weeks apart
affecting first the left, then the right visual cortices. We contrast
his first scan at 8 days following his first stroke with that done on
review at 6 months, and with those of a healthy control subject
selected from a group of people tested for associated projects. We
then discuss mechanisms of recovery in the visual cortex follow-
ing stroke, and present a brief summary of both compensatory
and restorative therapies and their implications for rehabilitation.

Background

Ethics
Informed written consent was obtained. The study was approved
by the Austin Health Human Research Ethics Committee, which
abides by the Declaration of Helsinki.

Participants
Single case data were taken from a prospective clinical study on
the fMRI study of visual recovery after stroke. Patients received
standard stroke management, including admission imaging with
CT or MRI scans. Patients were studied within 10 days post-
stroke (Session 1) and at 6 months (Session 2) with fMRI and
visual perimetry. Controls had identical testing in two sessions 6
months apart.

Inclusion Criteria
Stroke patients were recruited if they had a confirmed first-ever
acute ischemic infarct affecting visual cortex with a correspond-
ing perimetric defect (n = 10, one presented here). Other study
criteria have been described in detail (Brodtmann et al., 2003,
2007, 2009a,b). Control participants were included if they were
free of neurological disease, and aged in the following decade
cohorts: 30–39, 60–69, 70–79, and 80–89 years; total n = 24,
12 women. This formed the basis of a normal cohort for com-
parison, from whom we have selected one age- and sex-matched
subject for this case report (Brodtmann et al., 2003, 2009a).

Experimental Design
Magnetic Resonance Imaging

Activation task
A block-design was used with alternating central presentations of
grayscale unfamiliar faces (FACE), scrambled faces (SCRF), and
a 50% gray field with a central black fixation cross (GRAY). Stim-
ulus conditions (A = FACE, B = SCRF, C = GRAY) alternated
in a repeated ACBC. . . sequence—see Figure S1 for schematic.
Each single stimulus was presented for 0.5 s with no gap between
successive stimuli. The duration of each stimulus block was 20 s,
therefore 40 FACE or SCRF stimuli were presented in each
block. There were three stimulus cycles (i.e., ABCB-) within an
imaging run (3 cycles × 20 s block × 4 blocks/cycle = 240 s).
The duration of the imaging run was 254 s as it included an
initial 8 s non-stimulation (50% gray—rest task) period allow-
ing for steady-state transverse magnetization and a 6 s non-
stimulation period (black screen) at the end of the run to allow
the hemodynamic response to return to baseline. After a rest of
approximately 2–4min the imaging run was repeated. We have

previously demonstrated robust striate and extrastriate activa-
tion in the cortices of participants aged 30–90 years using this
paradigm (Brodtmann et al., 2003, 2009b).

The subject was placed in the scanner in a supine position
with a mirror attached to the head coil centered above his eyes.
Through the mirror he was able to see the stimuli projected onto
a screen placed at his feet and positioned prior to scanning so
that he was able to see the entire image margins. Video images
(PAL format size = 768 × 576 resolution) were projected via
a mirror through the control room window onto the back of a
screen. Once the subject’s head was positioned inside the scanner
the visual angle of display was approximately 15◦ in diameter.

Functional imaging
All images were acquired on a 3 Tesla GE Horizon LX MRI
scanner in a single scanning session (GE Systems, Milwaukee,
Wisconsin, USA): 14 coronal T1-weighted slices beginning at pri-
mary visual cortex and covering the posterior half of the brain,
extending anteriorly through to the thalami. Coronal section was
selected as it covered all the visual areas of interest with the least
number of slices (compared to axial acquisition, for example).
The convoluted nature of the calcarine sulcus means that it is
poorly visualized in axial and sagittal slices. Activation on both
medial and lateral sides of the fusiform gyrus could also be seen
with coronal slices. Fewer slices (i.e., partial brain acquisition)
also increased the number of brain volumes per task available
for analysis. These images were used as a template for a real-time
gradient echo echo-planar imaging sequence (EPI: TR = 2000,
TE = 40, FOV= 24 cm, flip angle= 40◦, matrix= 128×128, in-
plane voxel size= 1.85× 1.85mm, slice thickness= 4mm, gap=
1mm). Two imaging runs were obtained, yielding a maximum
number of 60 volumes per condition. A face localizer pre-scan
was performed prior to the fMRI scanning run.

Behavioral Data Collection
A target detection task was introduced in order to monitor main-
tenance of attention on the visual stimulus display. Subjects were
asked to detect a transiently appearing centrally presented white
cross (target), and to raise their left thumb on target detection.
Targets were presented for 0.5 s each time. They were randomly
interspersed throughout the paradigm, were equally distributed
in each condition, and acted as an objective means of monitoring
attention during functional scanning. A total of 12 targets were
presented during the course of each imaging run.

Subjects were observed throughout each run for target detec-
tion accuracy. Black crosses were not present during the face or
scrambled face image presentation displayed without white cross
targets. Subjects were requested to keep their eyes directed cen-
trally and remain vigilant for the appearance of the targets. Eye
movements were not otherwise monitored during the scanning
sessions. The number of hits, misses and falsely identified targets
was noted at the end of each imaging run. Student’s t-test was
used to evaluate difference between error rates.

Structural Imaging
Coronal T1 and magnetic resonance angiography (MRA)
sequences and axial 3D SPGR images were also acquired. All
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structural scans were independently reported by a radiologist
blinded to the subject’s details so that subtle structural pathol-
ogy would not be overlooked (e.g., prior silent infarcts, new
infarction).

fMRI Data Analysis
Our choice of partial brain acquisition for the functional images
limited the analysis tools available. MEDx 3.3 (Sensor Systems
Inc., Sterling, VA, USA) was used for the majority of the anal-
ysis. Motion detection and correction was performed using the
AIR algorithm as previously described (Brodtmann et al., 2003,
2007, 2009a,b). Within-subject t-test maps were obtained for
each comparison of interest i.e., FACE vs. GRAY, and SCRF
vs. GRAY. T-test maps were thresholded using an uncorrected
p < 0.001, based on a prior false-positive analysis (Brodt-
mann et al., 2003). These thresholded maps were overlaid on
MRA images to exclude activation arising from large intracere-
bral blood vessels and onto the matching extracted T1-coronal
slices (Smith, 2002). All subsequent analysis was performed
using the functional data overlaid onto the extracted T1-images
as an index of individual anatomy. We did not normalize or
spatially smooth the fMRI data. Data remained in the sub-
ject’s native anatomical space to allow for differing infarct sites,
variable age-related atrophy, possible acute edema and chronic
involution.

For each subject, left and right striate and ventral extrastriate
cortices were identified a priori, using T1-weighted anatomical
coronal sections as a reference and comparing to coronal sections
in a standard published text (Duvernoy et al., 1999). Anatomi-
cal ambiguities were also clarified by scrutinizing the 3D SPGR
high-resolution T1 axial images in the orthogonal viewer inMED
× 3.3. Regions of interest (ROIs) were identified, combined into
groupings of left and right ventral extrastriate, and left and right
striate cortical sites. Each extrastriate region included the poste-
rior two-thirds of the fusiform gyrus, ventromedial parts of the
inferior temporal gyrus, inferior lingual, and inferior occipital
gyri; the “striate” region included cuneus, gyrus descendens, and
the parts of the superior lingual and lingual gyri and precuneus
adjacent to the calcarine sulcus. The striate areas were defined
according to a standard anatomical reference (Duvernoy et al.,
1999).

Visual Field Testing
Visual fields were assessed using Medmont M600 automated
perimetry including fixation loss errors (Medmont, Camber-
well, Australia). This computerized program gives a number of
options for assessment. The neurological visual field option was
used as this paradigm has been designed to identify a variety of
visual field anomalies associated with neurological (as opposed to
ophthalmological) disease, including homonymous and bitem-
poral deficits, scotomas, and cataracts. For the stroke subjects,
fields were graded as normal, partial hemianopia, or complete
hemianopia. Comparisons of visual fields between sessions were
descriptive, graded as minimal, partial, and complete recovery.
This is a full field test. Fixation errors were compared between
groups, but for the purposes of this case report only individual
fixation errors are reported for perimetry.

Case Report
A 49-year-old recreational intravenous drug user with known
insulin-dependent diabetes mellitus presented with a 48 h his-
tory of visual disturbance, confusion, and reduced hearing
following a 2 week period of heavier than usual heroin
use. Admission renal function was impaired, presumed sec-
ondary to dehydration: creatinine 0.17mmol/l (normal range
0.03–0.11mmol/l), urea 17.8mmol/l (2.8–7.7mmol/l), glucose
16.1mmol/l (3.3–8.0mmol/l); BP was 190/90, heart rate 92. He
was disoriented and had trouble hearing the examiner. Left pto-
sis and a right congruous homonymous visual field deficit with
macular sparing were noted. AdmissionMRI scanning confirmed
the presence of a left inferior occipital infarct and right-midline
midbrain infarct (see Figure 1).

Blood glucose and renal function normalized rapidly: Day
2 glucose 5.1mmol/l, creatinine 0.075mmol/l, creatinine clear-
ance 2.91ml/s (1.50–2.50ml/s). Within 2 days his hearing and
orientation returned to normal, and his visual deficits rapidly
evolved. On day 5, automated perimetry was performed, and
revealed incomplete resolution of the right homonymous visual
deficit, restricted to the superior quadrant for the left eye and

FIGURE 1 | Stroke sites and corresponding visual field deficits on

perimetry. Top Row: day 8 T2-weighted MRI scan, axial slices (radiological

convention, so images are flipped) through occipital cortex showing left acute

occipital lesion and demonstrating midbrain lesion (traced or circled in white).

Despite the fact that his midbrain lesion was right-sided, the patient had

persistent left ptosis, with left lid artifact present on perimetry (white arrow). T2

images are shown as subacute ischemic lesions are difficult to see on T1

images. His right partial homonymous visual deficit can be seen on his

perimetric visual field maps (black arrows). Note that perimetric tests were 90◦

visual field tests. Bottom row: repeat MRI at 6 months, axial T1-weighted

slices through occipital lobes, revealed interval infarction in the right occipital

pole (traced in white). Lid artifact still present from ptosis (white arrow), but

perimetry revealed almost complete resolution of right homonymous deficit

despite interval development of partial left inferior quadrantanopia (gray

speckled arrow). LE, left eye; RE, right eye.
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peripheral loss crossing the horizontal meridian in the right
eye (Figure 1). Perimetry also demonstrated a patchy symmet-
rical reduction in peripheral vision in the unaffected hemi-
field. These deficits have been described previously in the
acute post-stroke period, and are believed to be due to associ-
ated hypometabolism or diaschisis of the contralesional hemi-
sphere, as they recover over the ensuing weeks after stroke
(Bosley et al., 1987). Left ptosis caused significant left lid
artifact.

Transcranial and carotid Doppler studies were normal. Con-
trast transesophageal echocardiography was positive, consistent
with a trivial patent foramen ovale, but no significant right to left
shunt. Endocarditis was excluded. Stroke etiology was presumed
to be thromboembolic secondary to a contaminated intravenous
injection. He was discharged home with residual left ptosis.

Two weeks later he noted sudden onset of difficulty reading
and reduced vision in the left visual field, not associated with
a resumption of drug use. He did not seek medical attention.
Repeat MR scanning at 6 months as part of our fMRI research
study confirmed the presence of a further right-sided stroke,
affecting the superior occipital gyrus and cuneus (Figure 1). After
review, the mechanism of this further stroke was thought to
be due to non-compliance with stroke prophylaxis with known
patent foramen ovale.

Results
Control Subject
We chose one age- and gender-matched control (39 year old
man) as an exemplar for qualitative comparison for this report.
On both occasions, visual field testing was normal, with no
fixation errors made on perimetric testing.

Patient Results

Session 1
Visual field testing on Day 5 revealed a resolving partial right
homonymous hemianopia. One fixation loss was detected for the
left eye and four for the right eye with no false positive responses
(graded as excellent fixation by Medmont automation). Day 8
fMRI revealed reduced left-sided ipsilesional ventral extrastri-
ate activation (fusiform and lingual gyri) compared to controls,
with no evidence of intra-infarct activation (Figure 2). Peri-
infarct activation foci were seen medially and laterally. Reduced
calcarine activation was seen bilaterally, common in the acute
post-stroke period presumed secondary to diaschisis (Brodtmann
et al., 2007). Evidence of right superior occipital activation can be
seen.

Session 2
Visual field testing at 6 months revealed an incomplete resolu-
tion of the right homonymous hemianopia and a new left inferior
quadrantanopia; one fixation loss and one false positive response
were made for each eye. fMRI revealed that fusiform activation
was unchanged. On the left (first stroke side) new left superior
parietal and left middle temporal gyral activation was noted, with
small nodes of peri-infarct activation also apparent. On the right,
occipital activation was shifted superiorly and laterally compared
to Session I (Figure 2).

FIGURE 2 | (A) Control subject t-test SCRF maps (individual exemplar)

overlaid onto corresponding T1-weighted images, 3 coronal slices through

occipital pole and calcarine cortices, demonstrating symmetrical activation in

striate (calcarine) and extrastriate regions. Normal visual field in seen on

perimetry, right of figure. (B) Patient t-test SCRF maps overlaid onto

corresponding T1-weighted images, 3 coronal slices through occipital pole

and calcarine cortices (radiological convention), demonstrating reduced

extrastriate activation and bilaterally absent calcarine activation, common

acutely secondary to diaschisis. Stroke site traced in pink. Corresponding

visual deficit again shown, highlighted with pink arrow. Note the white arrows

highlighting sites of activation in the middle occipital lobe. (C) Patient t-test

SCRF maps overlaid onto corresponding T1-weighted images, 3 coronal

slices through occipital pole and calcarine cortices (radiological convention),

demonstrating bilateral return of striate (calcarine) activation, despite the

presence of a further stroke, stroke site traced in green. Corresponding visual

deficit shown, green arrow. Note that the new stroke site has affected an area

of activation demonstrated in the initial fMRI, but visual cortical reorganization

has continued despite the recurrent lesion. Blue arrows point out regions of

activation not present on initial fMRI.

Discussion

Case Report Findings
This case report is unique in documenting fMRI evidence of
visual system plasticity between sequential occipital infarcts. Ini-
tial fMRI evaluation following his first stroke showed abnormal
visual cortex activation ipsilesionally and normal patterns con-
tralesionally. 6 months after the initial stroke, left visual cortex
reorganization changes were seen along with peri-infarct acti-
vation. This report complements one of the few other studies
which also document pre-stroke fMRI activation patterns, but
which involved a language evaluation rather than visual system
paradigm (Thulborn et al., 1999). Whilst there is minimal evi-
dence in the functional MRI literature of patients with recurrent
or sequential stroke, we know that functional status declines after
ischemic stroke. Recurrent stroke is associated with worse cogni-
tion and function (Dhamoon et al., 2012). From this we infer that
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compensatory remodeling may be limited by recurrent events.
Yet the visual system appears capable of functional recovery fol-
lowing repeated infarction (Gray et al., 1989; Goebel et al., 2001;
Nelles et al., 2002; Schoenfeld et al., 2002).

There are two main findings. First, contralesional activation
was within expected sites and comparable to that seen in controls
prior to the second stroke. This finding is important as the major
underlying assumption of lesion-based functional neuroimaging
studies is that the patient under study would have had a pat-
tern of cortical activation prior to injury within the spectrum of
normal variation. This patient’s data demonstrated the expected
pattern of activation in the right hemisphere following the initial
left occipital stroke.

Second, visual cortical reorganization progresses despite
sequential infarcts. In this patient, there was evidence of utiliza-
tion of peri-infarct sites (right-sided) and recruitment of new
activation sites, such as the left lateral middle and inferior tempo-
ral nodes. The changes over time corresponded topographically
with the patient’s lesion site and its connections.

Study Limitations
Case reports are always limited by individual variation. In addi-
tion, our choice of partial-brain coronal acquisition and inability
to register these images into standard space means that only a
modest interpretation of the fMRI activation changes is possible.
Whilst the patient’s visual fields were closely studied, no detailed
face perception tasks were performed. Attention was monitored
during the activation task, but eye movement monitoring was
not performed, meaning that eyemovement differencesmay have
contributed to the fMRI changes described.

Mechanisms of Recovery Following Ischemic
Stroke
There are two major phases to recovery of function follow-
ing stroke. The acute phase incorporates re-perfusion with sal-
vage of extant neurons in ischaemic, but not infarcted, zones,
and resolution of edema. In this patient, penumbral salvage
was not possible as re-perfusion therapies such as thrombol-
ysis or clot retrieval, which need to be given within hours of
stroke, were not feasible due to his late presentation. A later or
chronic phase includes re-modeling or re-organization of surviv-
ing cortex to resume or approximate impaired function. Recov-
ery predominantly occurs in the first few weeks, plateauing at 3
months, but many patients report on-going improvements over
years.

Recovery over the first few days is usually due to resolution of
edema which is believed to disrupt axonal pathways and hence
corticocortical connectivity, thereby uncovering the extent of the
deficit (Calautti and Baron, 2003). Reperfusion of the ischemic
penumbra appears important, but it is not yet known to what
extent this affects prognosis (Astrup et al., 1981; Donnan and
Davis, 2002). Some authors posit that the perfusion deficit has
more impact on sub-acute post-stroke function than the infarct
core (Shirani et al., 2009; Khurshid et al., 2012). In addition,
recovery of damaged or ischemic neural networks within the
infarct may also contribute, particularly in areas of misery perfu-
sion or chronic ischemia, but these latter two phenomena remain

unproven in human studies (Cao et al., 1999; Thulborn et al.,
1999). Cellular level changes, such as cortical reorganization via
synaptic sprouting, and the formation of new cortical connec-
tions may also contribute to recovery (Darian-Smith and Gilbert,
1994).

Patterns of activation after stroke have been reported, charac-
terized by diaschisis, compensation and restitution of function.
For example, stroke patients with left motor cortical infarction
demonstrate bilateral reductions in motor network activation
acutely, presumed secondary to diaschisis. With early recovery,
they display increased right motor and supplementary motor
activation, which are felt to be compensatory and may relate to
more “effortful” tasks. Only with good recovery is there resti-
tution of activation to peri-infarct regions, or even to primary
motor cortex in patients with subcortical lesions.

In prior studies examining patients with visual cortical stroke,
we have demonstrated similar findings in the visual cortex, with
a return of activation to peri-infarct regions with visual recov-
ery. In this patient’s first scan, we demonstrated a generalized
reduction in right and left hemispheric activation, and have
shown this in Figure 2. Whilst reduced, there was evidence
of a normal pattern of activation in the right visual cortex.
The second right-sided stroke affected the superior occipi-
tal gyrus and cuneus, causing a new left inferior quadran-
tanopia. The second stroke affected some regions that had
shown activation in the initial scan. Right visual cortical acti-
vation patterns were hence altered in the second scan, exhibit-
ing regions of new or increased activation in the right visual
network.

Relevance to Presented Case
The information presented in this case report demonstrates
evidence of each of these post-stroke phenomena. There was
evidence of diaschisis on initial perimetry, associated with
a symmetrical constriction in the unaffected hemifield—see
Figure 1. Diaschisis may also have contributed to the over-
all reduction in bihemispheric activation seen on early scan-
ning (Bosley et al., 1987; Brodtmann et al., 2007)—see Figure 2.
We interpret the fMRI activation changes as evidence of cor-
tical remodeling, which may be compensatory or associated
with a restitution of function. At 6 months, there was almost
complete recovery of his right hemianopia caused by his left
occipital stroke, with associated return of peri-calcarine (peri-
striate) and new extrastriate activation in the left hemisphere.
In the right hemisphere, the site of the second stroke, there
was increased activation in extrastriate regions, especially within
the dorsal extrastriate visual cortex. It is not possible to com-
ment on the recovery of his visual deficit, as perimetry was not
performed at the time of the second stroke. We have previ-
ously reported utilization of dorsal extrastriate cortices in post-
stroke recovery (Brodtmann et al., 2007, 2009b). Dorsal regions
are association or “secondary” cortical regions, and demon-
strate unique characteristics within the visual network. They are
less reliant on striate regulation, display greater inherent lev-
els of experience dependent plasticity, and have faster, more
abundant extra-geniculostriate connections (Brodtmann et al.,
2009b).
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Mechanisms of Recovery Following Stroke
Affecting the Visual System
Until recently, the human visual system was thought to have
an exquisitely contralateral representation, and was thought to
be one of the least plastic parts of the brain (Tootell et al.,
1998). However, there is now interest in visual function recovery
after stroke (Brodtmann, 2012). Many therapists are taught that
visual recovery after stroke is poor and incomplete, but results
from natural history studies are at odds with this preconcep-
tion. Whilst Ali et al. reported that less than 20% of completely
hemianopic patients had full recovery of their visual fields after
a month (Ali et al., 2013), more than 70% of those with partial
hemianopia recovered their vision fully in the same time frame
(Gray et al., 1989). Moreover, Zhang et al. found that sponta-
neous visual field defect recovery occurred in at least 50% of a
group of 254 patients within 1 month of injury (Zhang et al.,
2006a,b).

Cross-Modal Plasticity in the Visual System
Evidence for cross-modal plasticity in the visual system has
emerged in the last decade, when functional neuroimaging
researchers (using PET, TMS, and fMRI) revealed remarkable
activation of the primary visual cortex during tactile tasks. Some
regions in the visual system display high levels of cross-modality.
There appear to be cross-modal interactions of auditory, visual,
somatic, and even olfactory inputs, with studies in blind peo-
ple demonstrating extraordinary levels of activation in occipi-
tal regions to auditory and tactile stimuli (Saenz et al., 2008;
Collignon et al., 2009; Fiehler and Rosler, 2010; Lewis et al., 2010;
Kupers et al., 2011; Wong et al., 2011; Striem-Amit et al., 2012).
These findings represent some of the most exciting advances in
cognitive neuroscience, as researchers explore the organizational
principles that drive this cross-modal plasticity.

Implications for Therapy: Restorative vs.
Compensatory Training
Over the last few decades, a number of research groups postulated
that deficits caused by acquired visual pathway injury in adult-
hood were potentially reversible through visual training strate-
gies. Researchers demonstrated evidence of visual field recovery
in people with stable lesions, often with lesions that were many
years old (Kasten et al., 1999, 2006, 2007; Poggel et al., 2004,
2006, 2010; Henriksson et al., 2007; Chokron et al., 2008; Mueller
et al., 2008; Jobke et al., 2009; Raemaekers et al., 2011). Visual
Restoration Therapy (VRT) has been promoted by a number of
researchers as a means of “striate system restoration” (Sabel and
Kasten, 2000). The training usually consists of target detection
during gaze fixation. During training, the subjects are asked to
fix their gaze centrally whilst detecting stimuli in the border zone
of their impaired visual field; i.e., on the edge of their visual field
deficit. Results from these studies have demonstrated a gradual
enlargement of their functional visual field, with concomitant
reduction in their objective visual field deficit (Bergsma and van
der Wildt, 2010).

It remains unclear whether such therapies are causing actual
improvement of visual field deficits or whether they are adap-
tive, causing functional improvement by increased saccades

into the affected hemifield (Reinhard et al., 2005; Glisson and
Galetta, 2007). When the early studies were first published, many
researchers felt that the functional improvements demonstrated
by the authors were due to compensation strategies (e.g., better
scanning and attention) rather than a true expansion of the visual
field. However, field expansion has subsequently been shown to
be independent of eye movements (Kasten et al., 2006). Mueller,
Mast, and Sabel performed a large clinical observational study of
302 patients before and after being treated with computer-based
VRT for a period of 6 months at eight clinical centers. In around
70% of patients, VRT was associated with a 17% improvement
stimuli detection in the blind hemifield. These detection gains
were not significantly correlated with eye movements, and were
validated by standard perimetry (Mueller et al., 2007).

In their comprehensive review of spontaneous recovery and
treatment effects following homonymous visual deficits, de Haan
et al. identified important differences between the outcomesmea-
sured by restorative vs. compensatory training (de Haan et al.,
2014). By definition, restorative training primarily focuses on
improving the visual field, reducing the visual deficit, whilst
compensatory training teaches the patient to apply scanning
strategies in daily life in order to improve independence and
mobility. They also recommended patient participation mea-
sures be used more frequently as a rehabilitation outcome, in
order to assess whether an intervention or treatment is of ben-
efit for their activities of daily living. These are important con-
siderations for therapists working with patients with acquired
visual field deficits, as merely expanding a visual field is of no
benefit unless it translates into functional gains. Involvement
of specialist therapists with specific expertise with clients with
blindness or low vision is especially important in their rehabili-
tation.

Concluding Remarks

The data support the assumption that stroke patients have acti-
vation patterns comparable with healthy controls prior to their
strokes, and that abnormal activation sites are a consequence
of their pathology. The findings also demonstrate the degree of
resilience and extent of plasticity in the visual system, with uti-
lization of other visually sensitive areas even in the presence of
sequential insults. Specialist therapies are available for treatment.
Traditionally, these are largely compensatory training strategies,
teaching the patient to overcome their deficit via compensatory
methods. However, there is renewed interest in restorative train-
ing, although these methods are not without controversy. These
data challenge the concept of a hard-wired visual system capable
of minimal remodeling following injury. As demonstrated in this
case report, mature primary visual cortex displays remarkable
plasticity and capacity to reorganize following injury.
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Figure S1 | Schematic of activation task. (A) Example of FACE image

displaying white cross target, (B) 50% GRAY background with black central
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target, (D) 50% GRAY background displaying white cross target, (E) Example of

FACE image without white cross target. First 100 s shown but cycle continued for

240 s.
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