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In this study we used graph theory analysis to investigate age-related reorganization
of functional networks during the active maintenance of information that is
interrupted by external interference. Additionally, we sought to investigate network
differences before and after averaging network parameters between both maintenance
and interference windows. We compared young and older adults by measuring
their magnetoencephalographic recordings during an interference-based working
memory task restricted to successful recognitions. Data analysis focused on the
topology/temporal evolution of functional networks during both the maintenance and
interference windows. We observed that: (a) Older adults require higher synchronization
between cortical brain sites in order to achieve a successful recognition, (b) The main
differences between age groups arise during the interference window, (c) Older adults
show reduced ability to reorganize network topology when interference is introduced,
and (d) Averaging network parameters leads to a loss of sensitivity to detect age
differences.
Keywords: complex networks of the brain, aging effects, magnetoencephalography (MEG), functional networks,
synchronization

Introduction

Older adults show a decline in information-processing resources, such as working memory, and it
is commonly accepted that aging adversely affects memory abilities. In this regard, age-related diffi-
culties to suppress irrelevant information from distractors are evident during the active rehearsal of
the to-be-rememberedmaterial (Hasher and Zacks, 1988; Madden et al., 2004; Gazzaley et al., 2008;
Solesio et al., 2009; Solesio-Jofre et al., 2011, 2012; Salami et al., 2014). Compelling evidence from
functional neuroimaging studies has suggested that the disproportionate susceptibility to interfer-
ence in older individuals is accompanied by greater activity in prefrontal and parietal regions rel-
ative to their young counterparts. This over-recruitment is thought to be compensatory when it is
accompanied by similar task performance across age groups (Grady et al., 1994; Cabeza et al., 1997).
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On the other hand, less activity in frontoparietal regions may also
be shown in aging as task demands increase, which is associated
with a drop in performance (Reuter-Lorenz and Cappell, 2008).
Despite extensive evidence on focal brain activity, the human
brain is primarily a network and complex cognitive functions,
such as interference resolution, may be mediated by interactions
among a set of functionally related areas rather than specific brain
regions (McIntosh, 1999; Salami et al., 2014). Functional con-
nectivity (Friston et al., 1993; Salami et al., 2014) refers to the
interactions among spatially remote brain regions (Wang et al.,
2010) and connections within specific networks involved in high
level cognitive processes seem to be altered with age, which in
turn might affect behavior (Grady, 2000; Andrews-Hanna et al.,
2007; Damoiseaux et al., 2008; Grady et al., 2010; Clapp and
Gazzaley, 2012; Salami et al., 2014). Specifically, a greater dis-
tractibility has been associated with reductions in connectivity
between the prefrontal cortex and the parahippocampal area
(Clapp et al., 2011), and within a more anterior network includ-
ing the middle frontal gyrus, anterior cingulate, and basal ganglia
(Salami et al., 2014). Additionally, Geerligs et al. (2014) compared
connectivity changes between four different networks showing
increased connectivity in older compared to young adults.

Altogether, current research suggests an age-related reorga-
nization within and between specific networks. On the other
hand, most of the studies have considered functional networks
as static entities without investigating their evolution over time.
Importantly, functional networks emerge, evolve and disappear
according to the specific requirements of a given cognitive pro-
cess and also in the absence of external stimulation (Hutchison
et al., 2012). Only a few studies to date have focused on the tempo-
ral evolution of different neural networks (De Vico Fallani et al.,
2008a,b; Dimitriadis et al., 2010; Bassett et al., 2011; Doron et al.,
2012). In this regard, Valencia et al. (2008) showed stable small-
word configurations (Watts and Strogatz, 1998) in combination
with variations in functional connectivity at different time points
and frequencies during a visual task. Network reconfigurations
at larger time scales have been shown to be strongly correlated
with learning (Bassett et al., 2011). Hence, the temporal evolution
of simultaneous brain networks can help identifying the neural
mechanisms promoting interference resolution with progressing
age. In this regard, magnetoencephalography (MEG), is an ideal
tool to explore the dynamical properties of whole-brain networks
as it enables a direct measurement of brain magnetic fields from
pyramidal neurons in the human cortex with optimal temporal
resolution (i.e., milliseconds; Hämäläinen et al., 1993).

Two main principles might be considered when exploring the
temporal dynamics of whole-brain networks, the so-called local
specialization and global integration of functionally linked brain
networks (Sporns et al., 2000; Bressler and Kelso, 2001; Friston,
2002; Wang et al., 2010; Zhu et al., 2012). In this context, graph
theoretical approaches provide valuable tools to investigate the
topological organization of large-scale functional networks sup-
porting cognitive processes (Boccaletti et al., 2006; Bullmore and
Sporns, 2009; Wang et al., 2010). Especially, they have been able
to demonstrate that the healthy brain is organized according to a
small-world architecture that favors cognitive performance (Smit
et al., 2012), which is characterized by high local specialization

(high clustering coefficient, C) and high global integration (short
topological distance between nodes or path length, L; Watts
and Strogatz, 1998). Additionally, deviant graph parameters have
been used as markers for several pathological conditions (for a
review, see Bassett and Bullmore, 2006; Guye et al., 2010; Wang
et al., 2010; Stam and van Straaten, 2012), such as mild cognitive
impairment and Alzheimer’s disease (Stam et al., 2007, 2009; de
Haan et al., 2009; He et al., 2009; Buldú et al., 2011; Smit et al.,
2012; Petti et al., 2013; Pineda-Pardo et al., 2014) and also for
healthy aging (Micheloyannis et al., 2009). In this regard, healthy
aging generally leads to alterations in the topology of large-scale
functional networks with connectivity patterns more similar to
“random” networks (Micheloyannis et al., 2009; Petti et al., 2013)
and, hence, deviating from the optimal small-world organization
observed in healthy young individuals.

Graph theory methods have been used to describe age effects
on large-scale functional connectivity, predominantly at rest.
Compelling evidence has reported age-related decreases in small-
worldness of resting state networks in fronto-cingulo-parietal
clusters (Achard and Bullmore, 2007; Meunier et al., 2009; Wang
et al., 2010; Smit et al., 2012; Petti et al., 2013). However, only a
few studies to date have examined age effects on task-related func-
tional connectivity with graph approaches (Heitger et al., 2013),
with only one of them focusing on memory processes (Wang
et al., 2010). In this respect, the authors observed age-related dis-
ruptions of large-scale networks relevant to memory encoding
and recognition. Specifically, older adults showed a widespread
loss of long-range connections and longer path lengths in fronto-
temporal and temporo-parietal regions with a few increases in
posterior parietal regions.

The present study aimed at expanding limited previous work
from graph approaches on age-related disruptions of memory-
based functional connectivity, with special emphasis on the tem-
poral evolution of network topology. To address this important
issue, we examined whole-brain temporal dynamics of large-
scale functional networks with MEG during the performance
of an interference-based working memory task in young and
older adults. To this end, we calculated phase synchronization
(PS) across whole-brain regions and computed complex net-
work parameters within each age group for alpha (8–12 Hz), beta
(12–30 Hz) and gamma (30–48 Hz) bands, observing that the
alpha band was the one reporting significant differences between
young and older individuals. We then compared the abovemen-
tioned complex network values between age groups for successful
recognitions. We also focused on the ability of functional net-
works to evolve and adapt in time during both the maintenance
and interference period. Finally, we investigated network differ-
ences before and after averaging network parameters between
both maintenance and interference windows. In contrast with
previous research that focused on memory encoding and recog-
nition, we were interested in memory maintenance (MM) as it
corresponds to the period in which distraction is presented and
interference resolution takes place. The present work is built
on the study by Solesio-Jofre et al. (2011), who examined age-
related changes in brain activations during MM. The authors
demonstrated that interference resolution from distractors dur-
ing the active maintenance of information requires greater neural
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resources for older adults in order to match the level of per-
formance seen in young adults. Based on the initial analyses of
Solesio-Jofre et al. (2011) and previous studies of network func-
tionality in aging (Meunier et al., 2009; Madden et al., 2010), we
hypothesized that older adults would demonstrate altered tem-
poral dynamics in whole-brain functional networks during task
performance compared to younger adults. To investigate this
issue, we analyze how the topology of the functional networks
of both young and old adults evolves during the experiment and
we compare it with the classical analysis of the averaged func-
tional networks, i.e., disregarding the fluctuations of the network
topology along the experiment.

Materials and Methods

Participants
The sample comprised 20 healthy individuals divided into two
groups according to their age, young and older adults (see
Table 1 for a description of the sample). They were selected from
the adults program at the Universidad Complutense de Madrid
(UCM). All participants reported corrected to normal vision and
hearing within the normal range. All participants underwent a
screening evaluation including a semi-structured interview, the
reduced Geriatric Depression Scale rGDS (Yesavage et al., 1983),
and the MiniMental State Examination MMSE (Folstein et al.,

TABLE 1 | Demography of the sample.

Female/male Age MMSE rGDS

Young 6/3 21.88 (3.40) 29.77 (0.44) 0.92 (1.38)

Older 9/2 64.45 (4.68) 29.17 (0.83) 1.58 (2.47)

Variables are included as mean values (standard deviation).

1975). They were required to satisfy a number of inclusionary
criteria: (I) No psychiatric diagnosis described by the American
Psychiatric Association (DSM-IV-TR axis I or II disorder), (II)
No chronic neurological disease (e.g., seizure disorder or demen-
tia) or severe medical illness that requires medication (e.g., dia-
betes or cardiopathies), (III) A score <5 on the rGDS, and (IV)
A score>27 on the MMSE. Informed consent was obtained prior
to participation and approved by the Institutional Review Board
at UCM.

Cognitive Task
We performed an interference-based working memory task,
composed of 120 trials (see Solesio et al., 2009). Stimuli
were presented using E-Prime 1.2 software (Groningen, The
Netherlands). The experimental design is schematically depicted
in Figure 1. It is divided into three stages: encoding, mainte-
nance and recognition. A ‘LEARN’ yellow cue (500 ms) indi-
cated the beginning of each trial, followed by a blank screen
(200 ms). Two paired-associates, each of them composed of
a visual stimulus (face) plus an auditory stimulus (semantic
attribute describing some aspect of the face, i.e., ‘clever’), were
subsequently shown during 2000 ms, separated by a blank screen
(200 ms). Participants were instructed to memorize each pair.
Next, after a 500 ms blank screen, an interfering face of a
famous person was presented during 3000 ms. Participants had
to answer a yes/no question (i.e., ‘Is he a writer?’) pressing one
of two response buttons, followed by a blank screen (500 ms).
Next, a ‘REMEMBER’ white cue appeared (500 ms), followed
by another blank screen (200 ms). Thereafter, two more paired-
associates were shown during 2000 ms each. Finally, another
blank screen appeared for 200 ms. Subjects were required to
make a match/non-match button-press response with the index
finger to each probe as quickly as possible without sacrific-
ing accuracy. We used a specially designed button panel and
left/right (yes/no) index finger assignment was counterbalanced

FIGURE 1 | Trial structure. Two paired-associates were shown
subsequently for 2000 ms each to memorize during the encoding stage.
An interfering picture of a famous face was displayed for 3000 ms and
subjects were asked about some attribute related to that picture during

the maintenance stage. Two paired-associates were presented
subsequently for 2000 ms each during the recognition stage and
subjects reported whether each of them had appeared during the
encoding phase.
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across participants. All participants were right-handed as stated
with the initial semi-structured interview. On 120 of the 240
probes, the two paired-associates had been presented previously
during the encoding period (a cue visual stimulus plus a cue
auditory attribute) and the order of cue paired-associates at
recognition was randomized. For the other 120 probes, the two
paired-associates were foils. Specifically, 60 of these 120 probes
were two paired-associates consisting of a cue visual stimulus
plus a novel auditory attribute, and the other 60 consisted of
a novel visual stimulus plus a cue auditory attribute. The pre-
sentation of ‘Old/New’ paired-associates was randomized and
counter-balanced across all trials.

Visual stimuli consisted of colored pictures of human faces
from the MEG laboratory database for faces. Sex and age were
counter-balanced across all pictures. Age range was the same as
the one employed in the selection of young and older participants
(19–27 years for young participants, and 55–73 years for older
participants). Famous faces were selected based on a preliminary
behavioral study conducted with a different set of participants
in which pictures were equally recognizable to young and older
adults (Solesio-Jofre et al., under revision). Paired-associates and
famous faces at the maintenance period were novel across tri-
als. The set of employed images consisted of 240 faces for the
encoding stage, 120 for the maintenance, and 240 for the recog-
nition stage. From those at the recognition state, 120 were target
(faces presented at encoding) and the rest were distractors. From
the set of distractors, half incorporated a novel auditory stimulus
and the half matched those at the encoding stage, but incorpo-
rated a novel face. Gender and age showed a variety of neutral
expressions and were controlled across pictures.

Auditory stimuli were stereo-recorded at a frequency of
44.1 KHz and 16 bits. The set of stimuli consisted of 300
words: 100 were adjectives taken from the dictionary of the
Royal Academy of the Spanish Language; 100 were professions
taken from the Spanish National Institute of Statistics; and the
100 remaining were places of residency taken from the Spanish
National Institute of Statistics. Prior to the MEG scan, subjects
undertook a 20 trial-training session with the same structure as
described above.

Magnetoencephalografic Recordings
Magnetic fields were recorded using a 148-channel whole-head
magnetometer (MAGNES R© 2500 WH, 4-D Neuroimaging, San
Diego, CA, USA) confined in a magnetically shielded room. The
sampling rate was set to 678.17 Hz. An online anti-aliasing band-
pass filter between 0.1 and 100 Hz was applied. Four electrodes
were attached for the identification of blinks and eye move-
ments; two of them near the left and right outer canthus and
the other two above and below the right eye. Prior to the MEG
measurements, the position of the magnetometers relative to the
subject’s head was determined utilizing five small radiofrequency
coils.

Responses at recognition were classified either as ‘hits’ (both
answers were correct at recognition) or ‘errors’ (one answer or
none of them were correct at recognition). We were interested in
successful recognition; hence, we selected trials with hit responses
for subsequent network analysis.

Baseline correction was applied on the basis of a pre-stimulus
100 ms window. Thereafter, the signal was submitted to a low-
pass filter of 48 Hz. Ocular artifacts were corrected using BESA
(version 5.1.6; MEGIS Software GmbH, Gräfelfing, Germany),
which is a standard artifact-correction tool. Datasets were then
visually inspected for movement artifacts, and epochs with peak-
to-peak amplitudes exceeding a threshold of 3 pT were discarded
from further analysis. In order to avoid any bias related to the
different number of trials across subjects, we used a quality crite-
rion referred to the minimum number of trials free of artifacts,
which in the present study were 32. In individuals with more
than 32 trials free of artifacts, we selected 32 of them randomly.
From these trials, we segmented epochs of 1500 ms, including the
blank-screen period prior to presentation of the interfering stim-
ulus (500ms) and the first 1000ms after it. This segmentation was
applied to avoidmuscular artifacts coming from the button press-
ing while answering the interfering question. Hence, segmented
epochs contained two different parts: (a) MM window (500 ms)
and (b) and interference window (1000 ms).

Synchronization Analysis
The construction of the functional networks relies on the evalua-
tion of the PS between brain regions. PS detects when the phases
of two signals synchronize, even though their amplitudes remain
uncorrelated (Pikovsky et al., 2001; Pereda et al., 2005) and was
quantified through the phase-locking value (PLV; Lachaux et al.,
1999) using HERMES toolbox (Niso et al., 2013). Phases asso-
ciated with the dynamics recorded at each magnetometer were
extracted using the Hilbert Transform (Pikovsky et al., 2001).
Next, we defined ϕ(t) as the difference between the two phases
and calculate the PLV as:

PLV =
〈
eiϕ(t)

〉
=

√
〈cosϕ(t)〉2 + 〈sinϕ(t)〉2 (1)

The PLV index ranges from 0 to 1 and indicates how the rela-
tive phase is distributed over the unit circle. Higher PS between
two signals is related to small differences between phases and high
PLV, and vice versa for lower PS.

We were interested in the temporal evolution and topology of
the functional networks. This way, we split the 1500 ms epochs
into time windows of 50 ms length each with no overlap and eval-
uate the PLV within each temporal window. The window length
was set to a value low enough to guarantee a sufficient number
of points to observe a non-stationary temporal evolution of the
network structure, but large enough to allow an accurate PLV.
PLVs were computed in ten frequency bands (from 8 to 48 Hz,
with central frequencies separated each 4 Hz) between pairs of
the 148 magnetometers. Lower frequencies could not be consid-
ered due to edge effects after Hilbert transforms. Then, results
were normalized with respect to a baseline (an open eyes resting
state period of 100 ms). PLVs were then merged to form alpha
(8–12 Hz), beta (12–30 Hz), and low gamma (30–48 Hz) fre-
quency bands. Note that the length of the time windows to obtain
the PLV is lower than the 1/fmin limit suggested by Leonardi and
Van De Ville (2015). Nevertheless, the fact that we are analyzing
non-stationary signals allow us to reduce the length of the time
window beyond this limit, as recently explained by Zalesky and
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Breakspear (2015). Importantly, statistical differences between
network parameters were only found at alpha band. Thus, we will
focus on this frequency band in the forthcoming sections.

Complex Network Analysis
The PLV between all pairs of channels led to a NxN (N = 148)
symmetric matrix W, where its elements wij quantify the PS
between node i and node j. Note that the W matrix is the math-
ematical description of a weighted network, where the N nodes
correspond to the brain regions whose activity has been recorded
by the MEG and the weighted links account for how coordinated
the activity between these brain sites is. Due to the time segmen-
tation into 50 ms windows, we obtained a set of matrices W for
each individual, and we tracked how the topology of these matri-
ces changed with time. With this aim, we computed a series of
complex networks parameters for each matrix of the W set: the
network strength (S), outreach (O), weighted clustering coeffi-
cient (Cw), global efficiency (Eg ), and average shortest path (SP;
see Rubinov and Sporns, 2010, for a detailed description of all net-
work metrics). Table 1 summarizes the mathematical definition
of these parameters, which were obtained, first, for each node of
the network and, second, averaged over the whole network. This
procedure was followed for each individual and, finally, each net-
work metric was averaged over individuals of the same group,
leading to an average of the ensemble with its corresponding
error.

We have also computed the average values for the MM, the
interference and the whole experiment, in order to evaluate the
information gained from the analysis of the evolution of the
network parameters.

Statistical Analysis
Age-related differences in complex network parameters were cal-
culated using non-parametric Kruskal–Wallis test (Siegel and
Castellan, 1988). Reported p-values were corrected for multi-
ple comparisons using a non-parametric permutation approach
as elsewhere (Nichols and Holmes, 2002). Statistical significance
was considered for p-values lower than 0.05.

Results

Functional Network Parameters in Alpha
Band
We have computed a group of classical network metrics over
averaged and non-averaged functional networks in order to
investigate functional activity (see Table 2). Our first approach
was to obtain three different averages of the network parameters
during: (A) MM, (B) interference (I), and (C) the whole exper-
iment (MM+I). As we will see, the averaging of the network
parameters leads in many cases to non-significant differences
between groups, but we will use them as a reference to evaluate
the advantages of analyzing their temporal evolution. First row
of Figure 2 shows the network parameters of the functional net-
work obtained for averaging the set of synchronization matrices
{W} during the whole experiment (MM+I).We observed that the
older adults group had a higher average of the network strength

S (Figure 2A), indicating a more synchronous activity during the
whole experiment. As a consequence, the outreach O, measur-
ing how the synchronized activity is correlated with the physical
length of the links (see Materials and Methods) also had higher
value in the older adults group (Figure 2B). Accordingly, the net-
work shortest path SP was lower in the older group (Figure 2C),
since the topological length of a link is obtained as the inverse of
its weight (which, in turn, measures the synchronization). Thus,
a higher value of S is translated into a lower average length of the
network links, reducing the “topological distance” between nodes
and leading to a lower SP in the older group. Note that this does
not necessary indicate a better/worse organization of the network
structure (in terms of information-processing) since the lower
SP was just a consequence of having a larger S (i.e., higher aver-
age synchronization). The global efficiency Eg is a closely related
measure of the overall connectivity of the network (Latora and
Marchiori, 2001). Eg was obtained as the inverse of the harmonic
mean of the shortest distances between nodes, and it normally
correlates with the inverse of SP, which is the case of our exper-
iment (Figure 2D). As explained before, the higher efficiency of
the older group is just a consequence of having a higher average
synchronization between cortical regions.

Finally, we focused on the local properties of the network by
inspecting the weighted clustering coefficient Cw, measuring how
dense the connections are at the local level. In particular, how
strong the connections forming triplets between brain regions
are. We report a higher value in the older group (Figure 2E),
which can be attributed again to a higher value in the average syn-
chronization. Nevertheless, although there are clear differences at
the average value, none of the network parameters had significant
statistical differences between groups in the MM+I analysis (see
Table 3 for details), i.e., when an averaged functional network is
considered for the whole experiment.

Second row of Figure 2 shows the same network param-
eters but restricted to the MM window. We observe similar
results as in MM+I, with the exception of the clustering coef-
ficient where average values of both groups remain very close.
The statistical analysis leaded to the same results as in MM+I:
average differences between groups are not statistically signifi-
cant.

Finally, in the third row of Figure 2 the analysis is restricted
to the interference window (I). In this case, S (Figure 2K), O
(Figure 2L), SP (Figure 2L), and Cw (Figure 2O) show statisti-
cally significant differences (p < 0.05) between young and older
adults. The average strength S (p = 0.0230) during the interfer-
ence period is higher for the older group, which suggests that
they require a higher synchronization between cortical regions in
order to successfully perform the memory task (note that only
successfully recognized items are considered for the analysis).
This fact is reflected in the differences in the SP: the increase of
S reduces the topological distance between nodes, and SP now
becomes statistically significant (p = 0.0476). Interestingly, the
outreach is the network parameter showing the lower p-value
(p = 0.0174) and, in turn, the largest difference between aver-
ages. When inspecting the local scale, we also obtain statistical
significant differences in the clustering coefficient C (p = 0.0264).
Only the Eg does not show enough differences to overcome
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TABLE 2 | Mathematical definition of the network parameters: strength (S),
outreach (O), weighted clustering coefficient (Cw ), global efficiency (Eg),
and average shortest path (SP).

Network parameter Definition Average over the network

Strength si=
∑N

j wij S= 1
N ·∑N

i si

Outreach oi=
∑N

j wij · d(i,j) O= 1
N ·∑N

i oi

Weighted clustering cw
i =

∑N
j,k wij wjk wik∑N

j,k wij wik Cw= 1
N ·∑N

i cw
i

Global efficiency cli = 1
N-1 · ∑N

j=1
1

disij
Eg = 1

N · ∑N
i cli

Shortest path spi= 1
N-1

∑N
j=1 disij SP= 1

N ·∑N
i spi

wij quantifies the synchronization between node i and node j computed with the PLV
(see Materials and Methods), d(i,j) accounts from the physical distance between
nodes i and j, and disij is the shortest topological distance to go from node i to node
J. The node strength (S) accounts for the sum of the weights of the links arriving
to node i. Outreach (O) is a network metric that combines the weight of the links of
node i together with its length and it has been related with the energy demanded for
maintaining functional connections (Buldú et al., 2011). The clustering parameter
(Cw) accounts for the functional triplets inside the network. The shortest path (SP)
is a measure of the topological distance between all nodes of the networks and the
global efficiency (Eg) averages the inverse of the shortest paths nodes.

the statistical test, although the differences between the average
values between groups are larger than in the MM window.

Two general conclusions can be extracted from the analy-
sis of the topology of the averaged functional networks. First,
a division of the task into MM and I gives more interesting
information about the functional network structure as com-
pared to the average over the whole experiment (MM+I). This is
somehow expected as we are considering two different cognitive

processes: MMand interference. Second, age differences aremore
evident during the interference period, leading us to consider that
older individuals require higher synchronization between brain
regions in order to perform a successful recognition. However, no
correlations were observed between the averagednetworkmetrics
and the task behavior, i.e., the percentage of correct answers.

Temporal Evolution of Functional Networks
in Alpha Band
The fact that the topology of functional networks is not static rec-
ommends a study of how their temporal evolution is. Thus, it
is desirable to split the whole experiment into short time inter-
vals, calculate the properties of the functional networks at each
interval and track their evolution. The shorter the time intervals,
the larger the number of points and the better the temporal res-
olution. Nevertheless, the minimum length required to compute
the synchronization between cortical regions (see Materials and
Methods) introduces a lower threshold when dividing each time
series into short windows. In our case, we have chosen a thresh-
old of 50 ms, which leads to 30 points during the 1500 ms
of each measurement. Next, we have obtained, and compared,
all network parameters for each time step (see Supplementary
Table S1 for the p-values associated to each network parame-
ter and time step). Figure 3A shows the evolution of the net-
work strength S during the whole experiment, with a dashed
line indicating the end of the MM period and the beginning
of the interference period. As we observed in the previous sec-
tion, the average strength S was higher in older individuals. This

FIGURE 2 | Average network parameters obtained during the whole
experiment MM+I (A–E), memory maintenance MM (F–J) and
interference I (K–O) windows: strength (S), outreach (O), weighted
clustering coefficient (Cw), global efficiency (Eg) and average shortest

path (SP). Rows refer, respectively, to MM+I, MM and I. Statistically
significant parameters (p < 0.05) are highlighted in green, see Table 3
summarizing the reported p-values. Black bars represent standard error of
the mean. Y = young, O = old.
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TABLE 3 | p-values of the comparisons between average graph metrics
after correction for multiple comparisons through non-parametric
permutations test.

S O SP Eg Cw

MM+I 0.0532 0.0524 0.0708 0.1008 0.0674

MM 0.8226 0.5496 0.3390 0.5026 0.8810

I 0.0230 0.0174 0.0476 0.704 0.0264

Values highlighted in bold are statistically significant (p < 0.05).

phenomenon is clearly reported in the interference time-window,
where Solder > Syoung over the whole window.

It is worth noting that those time steps where the func-
tional network has statistically significant differences appear at
the beginning of the interference period (see stars in Figure 3A,
indicating the time steps with a p-value p < 0.05), vanishing after
step 23 (700 ms after the beginning of the interference). Also
note how the strength decreases during the interference period
when compared with the MM period. This decrease is sharper at
the beginning of the interference in the young group and much
smoother in older individuals.

Similar results are obtained with the outreach O parameter, as
shown in Figure 3B. Again the temporal evolution of the func-
tional network reveals statistically significant differences between
groups during the early stages of the interference period, in this
case disappearing after 500 ms (step 20). For both groups, the
outreach decreases in the interference period (see Figures 2G,L)
following a similar profile as the network strength S, as it can be
seen by comparing Figure 3A with Figure 3B.

Interestingly, the weighted clustering coefficient Cw does
not reveal such clear differences (see Figure 3C). The num-
ber of points that have statistically significant differences (stars
in Figure 3C) decreases in just one time step located in the
interference period. Again, the main differences are reported dur-
ing interference and similar profiles to those of S and O are
obtained, i.e., higher values during the MM in both groups and
Cw(older) > Cw(young) during the interference.

Figures 4A,B account for the two parameters related with the
global transmission of information along the network: global effi-
ciency Eg and the average shortest path SP. As for the rest of
parameters, differences between both groups are more evident in
the interference period. In both measures, we only obtain two
time steps with statistical differences, both of them during the
first 500 ms of the interference region. The higher Eg reported
in the older group (Figure 4A) is a consequence of the higher
value of S: the higher the synchrony between nodes, the higher
the efficiency will be. Note that Eg refers only to topological
efficiency, and to the efficiency of the brain during the cogni-
tive task. This decrease in network efficiency might indicate that
older subjects require a higher synchronization between brain
regions, which implies a higher energy demand, to achieve the
same objective, in this case, a successful recognition after the
inference.

Finally, we observe that SP behaves in the opposite direc-
tion from the topological efficiency parameter (Figure 4B). The
increase of synchrony in the older adults group results in link
weights of higher values that, in turn, lead to shorter paths
between nodes (i.e., the higher the synchrony between two nodes,
the shorter the distance between them).

FIGURE 3 | Evolution of the network strength S (A), outreach O (B) and
weighted clustering Cw (C) for young (blue squares) and older (red
squares) groups. The dashed line indicates the end of the memory
maintenance period and the beginning of the interference period. Stars indicate

those time steps where the strength of the functional network shows statistically
significant differences (p < 0.05) between both groups. See Supplementary
Table S1 for a summary of the p-values of all parameters and time steps where
statistically significant differences were found.
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FIGURE 4 | Temporal evolution of the global efficiency Eg (A) and the
average shortest path SP (B) for both the young (blue squares) and older
(red squares) groups. The dashed line indicates the end of the memory
maintenance period and the beginning of the interference period. Stars indicate

those time steps where the strength parameter shows statistically significant
differences between both age groups. See Supplementary Table S1 for a
summary of the p-values of all parameters and time steps where statistically
significant differences were found.

Fluctuations of Network Parameters in
Alpha Band
We finally focused on the ability of functional networks to evolve
and adapt in time during both the MM and the interference
window. With this aim, we quantified the increment of the net-
work strength S at every time step �S = | Si-Si−1| since, as seen
in the previous section, this parameter influences the rest. We
used �S as an indicator of how much the synchrony over the
functional network is able to increase/decrease during the short

time interval of 50 ms associated to each time step. Next, we
computed the cumulative probability distribution Pc(�S) of hav-
ing an increment of network strength higher than �S. Pc(�S)
was obtained for both groups separately. A comparison between
MM and interference is plotted in Figure 5. Interestingly, dur-
ing the MM, fluctuations of the network strength are higher in
the young adults group (Figure 5A). When analyzing the same
distributions during the interference period, we observe that the
situation is reversed. In this case, the older adults group shows

FIGURE 5 | Cumulative probability distributions of the increment of
the network strength �S between consecutive time steps (insets)
and differences between groups. �S is defined as �S = |Si-Si−1|
. Blue circles refer to �S of individuals belonging to the young group
and red squares to �S of old subjects. Both insets show the
cumulative probability distributions Pc(S) for the maintenance and

interference regions (in log-linear scale), respectively. Main figures, (A,B)
show the difference (Pc

Old – Pc
Young), in linear scale, between both

groups. We observe how, during the memory maintenance the
increments of the network strengths are higher in the young group.
On the contrary, during the interference region, fluctuations are mush
larger in old individuals.
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higher fluctuations of the network strength, which can be clearly
observed by looking at the difference between both distributions
(Figure 5B).

We also analyse the fluctuations in strength at the nodal
level. In Figures 6A,B we show between-group differences, in
the average strength of the nodes (i.e., �sold−young = siold-
siyoung), for both the MM and the interference time windows.
During MM, we observe that despite the average network
strength S is higher in the older adults group (see Figure 2K),
this is not a generalized feature, since some nodes show a
negative value of �sold−young (Figure 2A). In the interfer-
ence time-window, with a higher average network strength
S for the older group compared to the young group (see
Figure 2K), the majority of nodes have, accordingly, positive
�sold−young , with values much higher than the ones in the MM
window.

Finally, it is worth analyzing strengths fluctuations at the
node level during MM and interference. Figures 6C,D shows
differences in strength fluctuations at the node level between
both time windows (MM and I) for both age groups. This way,
we first obtained strength fluctuations between two consecu-
tive time steps �s = | si-si−1| and, next, we averaged this
value within each time-window and computed the difference
�sMM – �sI . The results show how in the older adults group,
differences between MM and I are more extreme at certain
node placed at the frontal and occipital regions (Figure 6D),
while differences in the young adults group are more homoge-
neous (Figure 6C). In both cases, we have positive and negative
deviations of �sMM – �sI , indicating that it is worth going
to the level of nodes to gain insights about how the fluctua-
tions of the network strength are distributed among the cortical
region.

FIGURE 6 | Comparison of the strength of the nodes and their
fluctuations during the memory maintenance and interference time
windows. (A) Comparison of nodal strengths si of both groups during memory
maintenance (si

old – si
young). (B) Same as differences as (A) obtained during the

interference period. In (A,B) node size is proportional to the average node
strength. We can observe how, during the interference period, the strength, in

this case at the node level is much higher in the old group. (C,D) Average
differences of strength between consecutive time steps �s = | si -si−1| at the
nodal level. Colors account for the difference of �s between the memory
maintenance and interference regions, i.e., �sMM – �sI. This way, we compare
the value of the fluctuations within the same group at the different regions (MM –
I): (C) Young group and (D) old group.
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Discussion

We have investigated how functional networks of young
and older individuals modulate their structure during an
interference-based working memory task. We have seen that
averaging the network topology during the whole experiment or,
splitting it into two parts corresponding to the MM and inter-
ference, hide the differences reported between groups when a
full segmentation along the experiment is performed. The latter
analysis allows observing the evolution of the network param-
eters on time, reporting significant differences between young
and older individuals at the beginning of the interference period.
These differences are more pronounced in parameters such as
the strength S or outreach O, despite they are also reported in
the weighted clustering Cw, average shortest path SP and net-
work global efficiency Eg . Interestingly, the ability of the network
topology to reorganize is impaired in the older group, which
shows lower variations of the network strength between consecu-
tive time steps during the interference region when compared to
the MM.

In the framework of functional brain networks, a diversity
of studies have shown how network parameters such as small-
worldness, synchronizability, robustness, or the existence of hier-
archical community structures can be related to the processes
occurring in the brain thanks to the interpretation coming from
complex network theory (Bullmore and Sporns, 2009). At the
same time, the effects of aging or the emergence of brain dys-
function can also be captured by the network metrics (Stam and
van Straaten, 2012), as shown in different studies regarding nor-
mal aging (Micheloyannis et al., 2009; Zhu et al., 2012; Petti
et al., 2013; Cao et al., 2014; Song et al., 2014), mild cognitive
impairment (Buldú et al., 2011; Navas et al., 2014; Pineda-Pardo
et al., 2014) or Alzheimer’s disease (Stam et al., 2007, 2009).
Nevertheless, complex networks’ metrics have traditionally quan-
tified the topological properties of networks with a unique and
fixed value (Boccaletti et al., 2006). This approximation is valid
in those cases where the time scales of the network evolution are
orders of magnitude higher than the dynamical processes occur-
ring in them. For example, when evaluating anatomical brain
networks, it is reasonable to assume that the topology of the
network is fixed during the measurement of the network itself,
despite it is known that the synaptic connections also evolve
with time (although at much slower rates). On the contrary, dur-
ing a cognitive task, the brain activity suffers drastic changes
at really fast time scales, and it is reasonable to expect that the
associated functional networks could modify their topology dur-
ing the task. Thus, averaging the network properties during a
whole task may hinder information about the real topology of
the functional network. Despite these limitations, the majority of
the studies analyzing the topology of functional networks have
dealt with, what we call, averaged functional networks (Bullmore
and Sporns, 2009), which are obtained as the average of the activ-
ity during a cognitive process, e.g., one memory task, one single
functional network. Unfortunately, this approximation may not
give enough accuracy to draw conclusions about how the topol-
ogy of the functional network is and how it evolves in unison with
the cognitive task. In addition, it can be expected that the analysis

of the evolution of a functional network, if possible, would result
on a deeper knowledge of how the network arises, evolves and
disappears, thus leading to a better understanding of the interplay
between the network topology and cognitive processes.

Only a few studies have focused on the evolution of the topol-
ogy of functional networks, most of them analyzing the effects of
aging or adaptation during learning (Bassett et al., 2006; De Vico
Fallani et al., 2008a,b). The fact that the majority of real networks
change their topology as time goes by is capturing the attention
on scientist working on complex networks analysis (Holme and
Saramäki, 2012) and redefining classical measures in a way that
they are able to capture the intrinsic evolution of the network
structure.

In the current work, we use of this kind of methodologies in
order to evaluate how young and older individuals perform an
interference-based memory task and what are the consequences
of undergoing an interference stimulus aiming to alter the MM.
While the majority of the studies referring to functional brain
networks considered them as static entities disregarding their
temporal evolution, we focus specifically on this aspect, compar-
ing the evolution of several network metrics during both the MM
and interference. We show that calculating the parameters of the
functional networks averaged along the whole experiment leads
to differences between groups (young and older) that are not sta-
tistically significant. This fact reveals that, whenever it is possible,
temporal averaging of the functional networks should be avoided.
When the analysis is divided into two different stages, i.e., MM
and interference, statistical difference between young and older
individuals arise. Interestingly, it is only the interference window
where the comparisons between network metrics show signif-
icant differences. This result indicates that at the whole-brain
network level, the mechanism that allows to the elder group to
achieve a successful recognition appears during the interference
period, and this seems to be related with a global increase of
functional connectivity, as observed for the network strength and
outreach in the two first time windows. This result is in agreement
with previous evidence considering the increase of functional
connectivity as a compensation mechanism.

Interestingly, the fact that an impaired functional network
shows a higher synchronization between its nodes has been
reported in mild cognitive impairment (Buldú et al., 2011), a
brain disease considered as Alzheimer’s prodromal state. The net-
work metrics reflect differences between groups when taking into
account both the global organization, by means of the outreach
parameter, and the local organization, through the network clus-
tering. The older group showed higher values of both metrics,
indicating a higher activity of their functional networks, despite,
as in the case of network strength, only the interference period
shows significant statistical differences. The fact that outreach
parameter takes into account the physical length of the links
indicates that the differences between groups are also influenced
by geometrical constraints. Nevertheless, we must note that the
increase of the network strength in the older group has conse-
quences in the rest of the network parameters. Higher strength
leads to shorter distances between nodes, since topological dis-
tance scales with the inverse of the weight of the links. Thus,
an increase of S is translated into a reduction (increase) in the
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SP (Eg). At the local scale, the clustering coefficient of the older
group shows higher values than the young group, also capturing
the enhancement of the synchronization in old individuals. As a
general picture, the increase of the correlated activity of the older
group modifies the network parameters accordingly, a fact that is
mainly reported in the interference region.

In the present study, age-related differences in network topol-
ogy are restricted to the alpha band. Converging evidence has
demonstrated a central role of alpha oscillations in both the active
processing necessary to MM (Palva et al., 2005; Sauseng et al.,
2005) and functional inhibition (Klimesch et al., 2007; Jensen
and Mazaheri, 2010). Both aspects are intrinsically linked to the
notion of “top–down control,” which refers to an attentional
control function that focuses on task-relevant information and
suppresses task-irrelevant information by means of inhibition
(Pinsk et al., 2004). In this regard, our results support the impor-
tance of alpha in inhibitory top–down control to enhance the
retention of the to-be-remembered material and the suppression
of interference during the maintenance period.

Finally, it is worth mentioning how the functional networks
adapt their values in time. We observed how the increment of the
network strength between consecutive time steps behaves differ-
ently during theMM and the interference periods.While the fluc-
tuations of the network strength are slightly higher in the young
adults group during the MM, this situation is reversed during
the interference period, where fluctuations of the strength of the
older adults group are much higher. This fact suggests that the
ability of functional networks to maintain (modify) its topology

during interference is decreased (increased) with aging, which
may be related to inefficient top–down control, particularly, to
deficits in inhibitory mechanisms necessary to override interfer-
ence (Geerligs et al., 2012). These enhanced fluctuations of the
network topology in order to compensate external disturbances
might be of interest in the early diagnosis of neurodegenerative
diseases such as Alzheimer’s disease or other types of dementia.

Finally, we should note that one limitation of our study is
that the sample size is rather small, and thus, further work
should be addressed to develop similar studies with larger popu-
lations. Nevertheless, the results presented here were statistically
significant, and, in addition, are consistent with previous litera-
ture reflecting age-related changes during recognition processes
(Grady et al., 1994; Cabeza et al., 1997).
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